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Abstract

In this paper we describe a new technique for the creation of feature-
based stochastic maps using standard Polaroid sonar sensors. The
fundamental contributions of our proposal are: (1) a perceptual
grouping process that permits the robust identification and local-
ization of environmental features, such as straight segments and
corners, from the sparse and noisy sonar data; (2) a map joining
technique that allows the system to build a sequence of indepen-
dent limited-size stochastic maps and join them in a globally consis-
tent way; (3) a robust mechanism to determine which features in a
stochastic map correspond to the same environment feature, allow-
ing the system to update the stochastic map accordingly, and perform
tasks such as revisiting and loop closing. We demonstrate the prac-
ticality of this approach by building a geometric map of a medium
size, real indoor environment, with several people moving around
the robot. Maps built from laser data for the same experiment are
provided for comparison.

KEY WORDS—map building, local maps, data association,
sonar sensors, Hough transform

1. Introduction

The problem of concurrent mapping and localization (CML)
for an autonomous mobile robot is stated as follows: start-
ing from an initial position, a mobile robot travels through a
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sequence of positions and obtains a set of sensor measure-
ments at each position. The goal is for the mobile robot to
process the sensor data to produce an estimate of its posi-
tion while concurrently building a map of the environment.
The difficulty of this problem lies in the fact that, to obtain a
good map, an accurate estimation of the vehicle trajectory is
required, but reducing the unbounded growing odometry er-
rors requires to associate sensor measurements with a precise
map. The problem of CML, also referred to as SLAM (simul-
taneous localization and map building), presents a number of
difficult issues, including (1) efficient mapping of large-scale
environments, (2) correct association of measurements, and
(3) robust estimation of map and vehicle trajectory informa-
tion. This paper presents contributions to each of these three
areas.

1.1. Choice of Representation

As with many problems in robotics and artificial intelligence,
the issue of choosing a representation is perhaps the key step in
developing an effective CML solution. A central requirement
is the ability to represent uncertainty (Brooks 1984; Lozano-
Pérez 1989). Popular choices for the map representation in-
clude grid-based (Elfes 1987; Schultz and Adams 1998), topo-
logical (Kuipers 2000; Choset and Nagatani 2001), feature-
based models (Moutarlier and Chatila 1989; Ayache and
Faugeras 1989), and sequential Monte Carlo methods (Thrun
2001; Doucet, de Freitas, and Gordan 2001).

This paper adopts a feature-based approach to CML, in
which the locations of geometric features in the environ-
ment and the position of the vehicle are jointly estimated in
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a stochastic framework (Smith, Self, and Cheeseman 1988;
Moutarlier and Chatila 1989). CML is cast as a variable-
dimension state estimation problem in which the size of the
state space is increased or decreased as features are added
or removed from the map. As the robot moves through its
environment, it uses new sensor measurements to perform
two basic operations: (1) adding new features to its state
vector, and (2) updating concurrently its estimate of its own
state and the locations of previously observed features in the
environment.

Grid-based representations seek to determine where par-
ticular measurements come from. Feature-based approaches
additionally try to estimate what measurements come from,
or what processes give rise to particular measurements. Part
of the motivation here is based on how the environment is
modelled. In many cases, the physical processes underlying
sensor measurement can be broken into discrete mathemati-
cal models. For example, sonar returns are characterized as
specular or diffuse. Feature-based representation of the en-
vironment allows the use of multiple models to describe the
measurement processes for different parts of the environment.

One reason for avoiding a cell-based approach is the effect
of data smearing. Cell-based approaches often smear mea-
surements onto a region of the map to account for measure-
ment and navigational uncertainty. However, these two types
of uncertainty are fundamentally different. Navigational un-
certainty is an a posteriori amalgam of measurement and
process noises. Measurement noise is stipulated a priori. By
combining these uncertainties for data smearing, information
is lost. If a feature-based approach is taken, a distinction is
made between modeling features themselves and mapping
the features globally. Characterization of a feature and rela-
tive positioning with nearby features can be obtained with low
uncertainty (near the level of measurement noise) even when
the vehicle navigational uncertainty is high. In a cell-based
approach, the local information would be lost by reducing the
information content to global levels of certainty.

Related recent research by ourselves and others that
adopts a feature-based representation can be found in Feder,
Leonard, and Smith (1999), Castellanos and Tardós (1999),
Dissanayake et al. (2001), and Guivant and Nebot (2001).
Alternative approaches include the work of Lu and Milios
(1997), Gutmann and Konolige (1999), and Thrun (2001).
These methods do not need to explicitly associate individual
measurements with features in the environment, but seem to
rely on the high quality of laser scanner data. Thrun (2001)
writes “It is unclear how the performance of our approach
degrades with inaccuracy of the sensors. For example, it is
unclear if sonar sensors are sufficiently accurate to yield good
results.”

The scientific motivation behind our research is to develop
new methods for sensor data interpretation that can cope with
sparse data sets that contain a large amount of outliers and
that are contaminated by significant levels of navigation un-

certainty. Attempting CML with range-only measurements,
instead of using advanced sensor arrays (Chong and Klee-
man 1999b), forces one to confront challenging issues such
as partial observability. We believe that this line of investi-
gation can lead to algorithms that will apply in more general
situations, such as multi-robot mapping of complex natural
environments.

1.2. The Sonar Mapping Problem

Most would agree that mobile robot navigation and mapping
in indoor environments is far more difficult to perform with
sonar than with laser data. Figure 1 provides a comparison of
data from a SICK laser scanner and a ring of 24 sonar sensors
taken at a single position in a typical environment. The lack of
information in the sonar data in comparison to the laser data
is evident: only half of the Polaroid sensors obtain a return,
with a high proportion of outliers. As a result, the underly-
ing structure of the scene is less visually apparent to a human
observer. Despite the increased difficulty of sonar interpre-
tation, we feel that it is interesting to perform research with
sonar for a variety of reasons. From the perspective of cost,
laser scanners are much more expensive than sonar sensors.
From the perspective of basic science, questions such as the
basic mechanisms of bat and dolphin echolocation are highly
important (Au 1993). Finally, the fundamental characteristics
of high range accuracy and wide beam-width are shared with
many types of sonars of which underwater mapping sonars
are a prime example. Our long-term goal is to develop in-
terpretation methods that are applicable to a wide variety of
different types of sonars and environments.

The information given by laser sensors in a single scan
is quite dense and has good angular precision, usually better
than one degree (see Figure 1). Feature-based approaches to
CML using laser data typically perform the data association
task in two steps:

1. A segmentation step, where the laser returns in each
scan are grouped and processed to obtain simple ge-
ometric features such as lines corresponding to walls
(Castellanos et al. 1999) or circles corresponding to
trees (Guivant and Nebot 2001). Also more complex
features as corners or door frames can be easily ob-
tained from laser data (Castellanos, Neira, and Tardós
2001).

2. During the map building process, a second data associ-
ation step looks for matches between the features ob-
tained from different scans, based on a probabilistic
model of the sensor and of the vehicle motion.

Other approaches do not rely on the assumption that a cer-
tain type of geometric feature will be present in the environ-
ment, and use raw laser data in the map building process. The
data association is solved implicitly by computing the robot
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Fig. 1. Sensor information obtained from a single robot
position in a typical environment using a 180 degree SICK
laser scanner and a ring of 24 Polaroid sonar sensors. The
true environment map, obtained by hand, is shown by dotted
lines.

locations that maximize scan-to-scan (Lu and Milios 1997;
Gutmann and Konolige 1999) or scan-to-map (Thrun 2001)
correlations. In these approaches, the density and precision
of the laser data is central in achieving robustness in the scan
matching process.

In contrast, information given by a ring of sonar sensors is
sparse and its angular precision is limited by the large sonar
beam-width, typically in the range of 20 to 30 degrees. In man-
made environments, most surfaces are specular reflectors for
sonar (Kuc and Siegel 1987). This has two undesirable ef-
fects: only surfaces whose perpendicular is inside the sonar
beam are usually detected, and many ghost returns are ob-
tained as a result of multiple specular reflections. A rotating
sonar scanner has been used by Leonard and Durrant-Whyte
(1992) to obtain regions of constant depth (RCDs), allowing
us to determine with good precision the location of simple fea-
tures as planes, corners, edges and cylinders. However, from
a single scan, the RCDs produced by edges and corners are
indistinguishable from the RCDs produced by planes.

One avenue for research to overcome difficulties with sonar
data is to develop advanced sensor arrays that allow feature
discrimination and precise localization from a single vehicle
location. For example, Barshan and Kuc (1990) developed an
intelligent sonar sensor that was able to disambiguate plane
and corner reflectors using amplitude and travel time infor-

mation. Peremans, Audenaert, and Van (1993) developed a
trinaural sensor that could measure object curvature. One of
the most notable land robot sonars in recent years was devel-
oped by Kleeman and Kuc (1995), who were able to achieve
remarkably precise localization and classification of targets
from a rotating sensor array. This sensor was used in a CML
implementation to perform large-scale CML using multiple
submaps (Chong and Kleeman 1999a, 1999b). All of these
advanced sensors are based on the use of several sonar trans-
ducers in a careful configuration with known baselines. The
different echoes received by several transducers from a sin-
gle target allow the determination of the feature type and its
precise location. With accurate knowledge of the relative po-
sitions of transducers, a variety of powerful array processing
algorithms already developed for radar and underwater sonar
become possible (Johnson and Dudgeon 1993).

In some ways, the use of multiple transducers in a sonar ar-
ray is similar to the use of several cameras in classical stereo
vision: the use of different viewpoints with precisely cali-
brated baselines allows the computation of depth information
to permit estimation of the 3D structure of the environment
(Faugeras 1993). However, a great deal of research in the last
decade has shown that, using a single moving camera, it is
possible to determine both the camera motion and the en-
vironment structure (Hartley and Zisserman 2000; Faugeras
and Luong 2001). Ortín and Montiel (2001) present an inter-
esting example of the use of these techniques to determine
the 2D robot motion in an indoor environment using robust
techniques to find matchings in the sequence of images. This
parallelism with vision techniques raises a fundamental ques-
tion: is it possible to determine the vehicle motion and the
environment structure with a sonar scanner or a sonar ring?
In this paper, we aim to pose the problem of interpretation of
range-only data from multiple uncertain vantage points, and
to present an effective solution, using the Hough transform to
identify points and line segments, for the common scenario
of a land robot equipped with a ring of Polaroid sensors.

A somewhat related technique called triangulation-based
fusion (TBF) has been developed by Wijk and Christensen
(2000) for point objects only. In TBF, the basic operations are
the computation of circle intersection points and application
of angle constraints for multiple sonar returns obtained from
adjacent positions as the robot moves. This approach has been
documented with extensive experimental results, including
grid-based mapping, continuous localization using Kalman
filtering, and absolute relocation using particle filters in a large
indoor environment (Wijk 2001). In addition, the method has
been used for CML with point features (Zunino and Chris-
tensen 2001). We feel that the Hough transform approach
presented in this paper offers advantages over triangulation-
based fusion because it can directly identify specular planar
reflectors from sonar data, which is vitally important in typical
man-made environments with many smooth walls.
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1.3. Mapping Large Scale Environments

Stochastic mapping techniques to solve the continuous map-
ping and localization problem were first introduced by Smith
and Cheeseman (1986). The classical technique for updating
the state vector of a stochastic map and its covariance uses
EKF. Given that the full covariance matrix must be main-
tained to assure consistency, updating a full stochastic map of
n features is well known to be O(n2) (Castellanos et al. 1999;
Guivant and Nebot 2001). Many recent efforts have concen-
trated on reducing this computational complexity. Decoupled
Stochastic Mapping (Leonard and Feder 2000; Jensfelt 2001),
the Local Mapping Algorithm (Chong and Kleeman 1999b),
Suboptimal SLAM (Guivant and Nebot 2001), and the Sparse
Weight Filter (Julier 2001), reduce the computational com-
plexity of map updating to O(1) the first two and O(n) the
others, by obtaining a pessimistic solution. In contrast, Post-
ponement (Davison 1998; Knight, Davison, and Reid 2001)
and the Compressed Filter (Guivant and Nebot 2001) delay the
global map update, obtaining a suboptimal solution (subject
to linearization approximations made by EKF) and reducing
the amount of computations by a constant factor. With these
methods, the order of growth of complexity is still O(n2).

In this work we propose a new solution, denominated Map
Joining, a general procedure to consistently convey the infor-
mation of several independent stochastic maps. Map joining
is a very useful tool in many situations, including:

• Robot relocation. In this problem, also known as the
First Location problem, or the Kidnapped Robot prob-
lem, a global stochastic map of the environment where
the vehicle is navigating is available, but the location
of the vehicle is completely unknown. In this case, the
vehicle can build a local map of the environment, which
will be independent from the global map. If we identify
a feature in the local map whose location is available
in the global map, we can join the two maps. The re-
sult will be a global map which includes the vehicle
location.

• Multirobot map building. We can deploy a team of ve-
hicles to independently build maps of different areas of
an environment. Whenever we can determine that two
vehicles have included the same environment feature in
their maps, we can join their maps into a full map that
also includes the location of one vehicle with respect to
the other.

• Local map sequencing. In this paper we concentrate on
showing that map joining can be used to obtain a full,
consistent global map of any size from a sequence of
independent local stochastic maps of limited size. First,
we use classical stochastic mapping techniques to build
local maps along limited portions of the robot trajectory.
Then, we join each local map with the global map, find

matchings between global and local features, and fuse
them to update the global map. The computational com-
plexity of Local Map Sequencing is equivalent to that of
the Compressed Filter and Postponement, with the ad-
ditional advantage of updating local maps where errors
remain small, therefore reducing the harmful effects of
linearization errors. During the last steps of writing this
paper we have become aware of the independent devel-
opment by Williams (2001) of the Constrained Local
Submap Filter, a map building technique equivalent to
Local Map Sequencing.

The structure of this paper is as follows: Section 2 explores
the minimal necessary conditions allowing the determination
of robot motion and environment structure from range-only
sonar data, and presents a new technique for classification
of points and line segments from sonar data acquired from
multiple vantage points, using the Hough transform. Sec-
tion 3 presents a new technique for joining and updating two
submaps when performing CML, providing increased com-
putational efficiency and robustness. Section 4 illustrates the
application of these techniques to data acquired by a mobile
robot in an environment containing several loops, with spuri-
ous data from people walking near the robot. A side-by-side
comparison is provided between the map built from sonar and
a map built from laser scanner data. Finally, Section 5 draws
conclusions and discusses future research topics.

2. Robust Map Building With Sonar

2.1. The Structure and Motion Problem

In this section we will analyze the conditions under which
a sonar scanner or a sonar ring mounted on a vehicle gives
enough information to determine both the vehicle motion and
the environment structure. Finding a general solution to this
problem is an interesting research topic, beyond the scope of
this work. Our goal is to determine the potential of using the
sonar data to solve the CML problem, where an estimation of
robot motion is available through the use of odometry sensors.

For the purpose of this analysis we will first consider the
case where data association is solved, i.e., we know which
environment feature has given each sonar return. Assume a
robot moves along k locations, and at each location observes
n geometric features with some of the sensors in a sonar ring.
Let us call r the degrees of freedom (DoF) of robot motion
and f the DoF. that determine each feature location. Without
loss of generality, we will use the first robot location as a
reference system. The number of unknowns is r(k − 1) for
the robot motion, plus nf for the feature locations. Given the
high angular uncertainty of the sonar returns, we will only
consider as data the nk range values given by the sonar sensor
from each robot location to each feature. Provided that no
degenerate situations arise, the system is solvable to find robot
motion and feature locations iff:
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nk ≥ r(k − 1) + nf (1)

i.e., iff:

n ≥ r
(k − 1)

(k − f )

or

k ≥ (f n − r)

(n − r)
.

In particular, we can also state two simple necessary
conditions:

k > f

n > r.

For example, consider the particular case of a robot moving
in 2D (r = 3), observing the distance to lines or points (f =
2). If data association is known, it is possible to compute robot
motion and feature location if the robot observes 4 features
for at least 5 steps.

Of course, with standard sonar sensors, the difficult part
is to solve the data association problem: finding groups of
returns coming from the same feature and determining the
feature type. When there is enough sensor information (the
> condition in eq (1) holds), the excess data can be used in
a hypothesis-verification scheme to obtain data association,
and solve the structure and motion problem.

2.2. The CML Problem

In this paper, we will concentrate on solving the CML prob-
lem: given a set of robot motions, measured by odometry
with some uncertainty, and a set of sonar measurements, solve
the data association problem and obtain the structure of the
environment together with a better estimation of the robot
trajectory.

If the robot motion and data association were perfectly
known, from eq (1), the condition to solve the structure prob-
lem would be:

k ≥ f. (2)

However, in order to robustly solve the data association
problem, we need to obtain sensor data from a number of
robot positions greater than the limit defined by eq (2). When
a feature is successfully matched for more than f robot loca-
tions, the excess data will be used to reduce the uncertainty
in robot and feature location.

When the amount of sensor data successfully associated
is large enough to also satisfy eq (1), the robot motion can
be completely determined from sonar data. In this case robot
uncertainty will approach sensor precision. Otherwise, the
robot uncertainty will only be marginally better than the bare
odometric uncertainty.

2.3. Sonar Modeling

The above analysis suggests that by moving the robot several
steps and using robot odometry, it should be possible to group
sonar returns and determine target type. An example data set
obtained with a 24 sonar ring along a simple motion (first
a turn and then a straight motion) is shown in Figure 2(a).
Each point represents the nominal position of a sonar return,
computed along the central axis of the transducer, using the
robot odometry. The dotted lines represent the ground truth
environment map. The walls at both sides of the robot trajec-
tory clearly show up as lines of sonar returns. However, some
other false lines appear in front of the robot. Usually these
false lines arise as a result of people moving in the robot’s en-
vironment, but also from some sonar artifacts such as sensor
cross-talk. The lower left corner appears as an ambiguous arc
of sonar returns. Other corners or edges appear as small lines
of returns. Also, many phantom returns arise from multiple
specular reflections. Simple segmentation techniques using
only the position of the nominal sonar returns (Grossmann
and Poli 2001) can successfully find groups of returns com-
ing from the same target (real or phantom), but they will surely
fail to distinguish between real and false targets and to identify
the feature type.

On the other hand, if we use a more detailed sensor model,
ambiguity can be significantly reduced. Figure 2(b) shows the
same data set where each return is depicted with an arc show-
ing the sonar angular uncertainty, i.e., showing all the possible
locations of the object surface actually producing the sonar
return. In this more meaningful representation, walls appear
as sets of sonar arcs tangent to the wall, while point features,
such as corners or edges, appear as sets of arcs intersecting
at the feature location. In contrast, false features produce sets
of incoherent sonar arcs and thus can be easily spotted. The
conclusion from this example is compelling and well known:
using a careful sensor model is crucial to adequately interpret
sonar returns.

This work is restricted to man-made indoor environments,
and we will use two types of geometric features, extracted
from the work of Leonard and Durrant-Whyte (1992): 2D
lines to represent walls, and 2D points to represent corners and
edges (Figure 3). A wall, provided that its surface is smooth,
will only produce a sonar return for sensor Sj when the per-
pendicular to the wall is contained in the sonar emission cone:

θSj − β

2
≤ θB

k
≤ θSj + β

2
,

where β is the visibility angle for walls. The distance actually
given by the sensor ρSj will correspond to the perpendicu-
lar distance from the sensor to the line. Conversely, given
the sensor location and the measured distances, all possible
lines giving such a return are tangent to the arc depicted in
Figure 3(a).

In a similar way, a point feature like a corner or an edge
will produce a sonar return for sensor Sj when it is located
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Fig. 2. Sonar returns along 40 robot positions, with a
reference map superimposed. (a) Corners and walls appear
as arcs and lines of sonar returns, respectively. But also false
lines can be seen as a result of people walking around the
robot, specular reflections and other sonar artifacts. (b) When
sonar returns are depicted with arcs showing its angular
uncertainty, walls clearly show up as sets of tangent arcs, and
corners as sets of intersecting arcs.

inside the sonar emission cone. The distance measured will
correspond to the distance between the point and the sensor.
All possible points giving the same return are located along the
arc depicted in Figure 3(b), where in this caseβ is the visibility
angle for point features. Although the visibility angles for
corners or for edges may be different (Leonard and Durrant-
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Fig. 3. Model of sonar sensor for (a) line features and (b)
point features.

Whyte 1992), in this work we do not attempt to distinguish
them, and we use the same value of β for all point features.

2.4. Sonar Data Association With Hough Transform

With the sonar model presented above, associating sonar re-
turns to line and point features may be stated as finding groups
of sonar arcs all tangent to the same line, and groups of sonar
arcs intersecting on the same point, respectively. Given the
large amount of spurious data coming from moving people,
specular reflections and sonar artifacts, classical robust tech-
niques such as RANSAC (Fischler and Bolles 1981; Hart-
ley and Zisserman 2000) or the Hough transform (Ballard
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and Brown 1982; Illingworth and Kittler 1988) seem very
appropriate.

The Hough transform is a voting scheme where each piece
of sensor information accumulates evidence about the pres-
ence of certain features compatible with the actual measure-
ment. Voting is performed in a discretized parametric space,
known as the Hough space, representing all possible feature
locations. The most voted cells in the Hough space should cor-
respond to the features actually present in the environment.
By keeping track of the votes, it is very easy to obtain the
groups of sensor data coming from each feature detected.

We have found that this technique is particularly well suited
to efficiently solving the 2D sonar data association problem,
for the following reasons:

• The location of point and line features can be easily de-
scribed with two parameters, giving a 2D Hough space
in which the voting process and the search for maxima
can be done quite efficiently.

• The sonar model presented above can be used to restrict
the votes generated by each sonar return to be located
along the corresponding transformed sonar arc.

• Since each sonar return emits a constant number of
votes, the whole Hough process is linear with the num-
ber of returns processed.

• Being a voting scheme, it is intrinsically very robust
against the presence of many spurious sonar returns.

One of the key issues of its practical implementation is
choosing the parameters defining the Hough space and their
quantization (Illingworth and Kittler 1988). In our implemen-
tation, the Hough transform is applied to the sonar returns ob-
tained along short trajectories (around 1-2 m of total travel), in
order to keep the odometry errors small. Lines are represented
in a base reference B, located in the central robot position, us-
ing parameters θB and ρB defining the line orientation and its
distance to the origin (see Figure 3(a)). In the case of points,
we have chosen to use a polar representation relative to the
same reference B (see Figure 3(b)), instead of a cartesian rep-
resentation, because the discretization of this Hough space
represents more accurately the precision obtained in point lo-
cation from range sensors. This also has the advantage that the
line and point Hough spaces are very similar. The quantization
of the Hough voting table was tuned to approximately match
the typical accumulated odometry errors during the trajectory
(around 3-5 cm in position and 2-5o in orientation).

With this definition of the Hough space, the basic voting
algorithm for lines is as shown in Figure 4, where δθ is the
angular quantization of the Hough space. The voting algo-
rithm for the case of points can be easily derived from that of
lines by changing the geometric definition of ρB and θB , as
illustrated in Figure 3(b). Figure 5 (left) shows the resulting
voting tables for the example trajectory of Figure 2.

for i := 1 to num positions do
for j := 1 to num sensors do
compute sensor location xB

Sj
= (xSj

, ySj
, θSj

)T

for θ
Sj

k := −β/2 to β/2 step δθ do
;compute line parameters and vote

θB
k := θSj

+ θ
Sj

k ;

ρB
k := ρSj

+ xSj
cos(θSj

k ) + ySj
sin(θSj

k );
vote(θB

k , ρB
k , i, j);

od
od

od

Fig. 4. Basic Hough voting algorithm for sonar lines.

Next, the two voting tables are searched for local maxima
having a number of votes above a certain threshold. However,
in real indoor environments, an ambiguity usually arises: some
groups of sonar returns give maxima in both tables, meaning
that they could be interpreted as a line or as a point feature.
A typical example can be seen in the figure around ρ = 2.1
and θ = −150◦. This problem can be successfully solved by
sorting all maxima by the number of votes received, and using
a winner-takes-all strategy. In our example, the point hypoth-
esis wins and gets all votes, discarding the line hypothesis. A
different case can be seen at ρ = 0.6 and θ = 90◦, where the
line hypotheses wins and takes some votes, but there are still
enough sonar returns left to also obtain a point hypothesis.
However, there are some singular cases where the ambiguity
between point and line cannot be decided: a sonar sensor mov-
ing perpendicular to a wall, or in a straight line towards a point
would get exactly the same returns. To avoid this problem a
further verification is made: to accept a point or line feature
we require to have sonar returns taken from sensor positions
spread around the point or along the line, respectively.

In Figure 5 we can see the point and line features identi-
fied, with their corresponding sonar data groups. Despite the
large amount of spurious data, our method was able to suc-
cessfully detect two line features corresponding to walls and
two point features corresponding to a corner and an edge. This
perceptual data grouping technique yields a robust interpre-
tation of the sonar data in terms of point and line features, in
the sense of it being insensitive to the presence of spurious
measurements.

3. Consistent Stochastic Mapping Using
Sequences of Local Maps

In classical stochastic mapping, the environment information
related to a set of elements F = {B, F0, F1, . . . , Fm} is
represented by a global map MB

F = (x̂B

F,PB

F), where:
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Fig. 5. Hough voting tables for lines and points, and groups of sonar returns corresponding to the most voted line and point
features.

x̂B

F =



x̂B
F0

...

x̂B
Fm


 ; PB

F =



PB
F0F0

· · · PB
F0Fm

...
. . .

...

PB
FmF0

· · · PB
FmFm


 . (3)

The state vector x̂B

F contains the estimated location of the
vehicle F0 and the environment features F1 . . . Fm, all with
respect to a base reference B. In the case of the vehicle, its
location vector x̂B

F0
describes the transformation from B to F0.

In the case of an environment feature f , the parameters that
compose its location vector x̂B

Ff
depend on the feature type (see

the appendix). Matrix PB

F is the estimated error covariance of
x̂B

F.
Instead of building one global map from the beginning,

we propose to build a sequence of local maps of limited size,

and later join them together, to obtain the global map. This
process is explained next.

3.1. Local Map Building

Each local map can be built as follows: at a given instant t0,
a new map is initialized using the current vehicle location as
base reference B. Then, the vehicle performs a limited mo-
tion (say p steps) acquiring sensor information about m en-
vironment features. At each step k, the local map is updated
with standard stochastic mapping techniques (Castellanos and
Tardós 1999), using the vehicle motion estimated by odome-
try, the sensor observations, and a data association hypothesis,
relating measurements with map features.

For sonar data, classification and assignment for measure-
ments become much easier if it is possible to consider sets
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of data obtained from multiple vantage points. Better perfor-
mance will be achieved if one can delay difficult decisions un-
til enough redundant information has been obtained to make
the decisions easier. In this work, we perform a Hough trans-
form along the vehicle locations of each local map to associate
observations to map features. The EKF prediction and updat-
ing algorithms are run after the vehicle has completed the
motion, to estimate its current location and the location of en-
vironment features. The detailed formulation of our approach
includes three steps:

1. Map initialization: as the base B of the local stochastic
map is the vehicle location before the first motion, the
map for time t0 is initialized with perfect knowledge of
the vehicle location: x̂B

R0
= (0, 0, 0)T , PB

R0R0
= 0. The

Hough transform provides initial estimates for the m

feature locations x̂B
Fj,0

, which are incorporated into the
local map:

x̂B

F0
=




x̂B
R0

x̂B
F1,0

...

x̂B
Fm,0


 ; PB

F0
=



PB
R0R0

· · · 0
...

. . .
...

0 · · · PB
Fm,0Fm,0


 .

(4)

As is standard EKF practice, in order to avoid optimistic
estimations, we use a non-informative prior, associating
a large initial covariance PB

Fj,0Fj,0
to each feature. This

means that the prior estimations given by the Hough
transform are only used as initial values for the lin-
earization of the EKF equations. As their precision is
quite good, linearization errors will be small.

2. Robot motion: the vehicle motion from position k − 1
to position k is estimated by odometry:

xRk−1
Rk

= x̂Rk−1
Rk

+ vk

E[vk] = 0

E[vkvT

j
] = δkjQk, (5)

where vk (process noise) is assumed to be additive, zero-
mean and white. That is, all the vk are mutually inde-
pendent (Jazwinski 1970). After this motion, the robot
location will be:

xB

Rk
= xB

Rk−1
⊕ xRk−1

Rk
, (6)

where ⊕ represents the composition of transformations
(see the appendix). Thus, given the local map MB

Fk−1
=

(x̂B

Fk−1
, PB

Fk−1
) at step k − 1, the predicted local map

MB

Fk|k−1
at step k is obtained as follows:

x̂B

Fk|k−1
=




x̂B
Rk−1

⊕ x̂Rk−1
Rk

x̂B
F1,k−1

...

x̂B
Fm,k−1




PB

Fk|k−1
= FkPB

Fk−1
FT

k
+ GkQkGT

k
, (7)

where:

Fk =




J1⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0 · · · 0

0 I
...

...
. . .

0 · · · I




Gk =




J2⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0
...

0


 ,

where J1⊕ and J2⊕ are the Jacobians of transformation
composition (see the appendix).

3. Feature observations: at instant k the sonar sensors
give distance measurements zk,i with i = 1, . . . , s.
The Hough transform gives a hypothesis Hk =
[j1, j2, · · · , js] associating each sonar return i with its
corresponding feature Fji (ji = 0 indicates that return
zk,i has been considered spurious). For each associated
measurement, the theoretic distance from the sensor i
to feature Fji is a nonlinear function hiji of the vehicle
and feature location, that are contained in the map state
vector xB

Fk

. The full set of associated features is given
by:

zk = hk(xB

Fk
) + wk

hk =




h1j1

h2j2

...

hsjs


 , (8)

where wk (measurement noise) is assumed to be addi-
tive, zero-mean, white and independent of the process
noise:

E[wk] = 0

E[wkwT

j
] = δkjRk

E[wkvT

j
] = 0. (9)
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Linearization around the current map estimate yields:

zk � hk

(
x̂B

Fk|k−1

)
+ Hk

(
xB

Fk
− x̂B

Fk|k−1

)

Hk = ∂hk

∂xB

Fk

∣∣∣∣∣(
x̂B
Fk|k−1

) . (10)

Measurement zk is furthermore verified using Joint
Compatibility (Neira and Tardós 2001), and used to
obtain a new estimation of the state using the standard
EKF update equations:

x̂B

Fk
= x̂B

Fk|k−1
+ Kk(zk − hk(x̂B

Fk|k−1
))

PB

Fk
= (I − KkHk)PB

Fk|k−1

Kk = PB

Fk|k−1
HT

k
(HkPB

Fk|k−1
HT

k
+ Rk)

−1. (11)

In this way, after processing the p steps, the resulting
stochastic map MB

Fp

includes an estimation of the feature

locations, as well as their correlations. It also includes an esti-
mation of the current vehicle location, where odometry errors
have been corrected by the use of sonar returns.

Two important properties of this local map building process
should be pointed out:

1. The local map MB

Fp

is independent of any prior estima-

tion of the vehicle location because it is built relative to
the initial vehicle location B = R0.

2. Map MB

Fp

depends only on the sequence of odometry

readings uk and sensor data zk obtained during the p

steps:

D1...p = {
u1 z1 . . .up zp

}
uk = x̂Rk−1

Rk
(12)

and the data association hypotheses:

H1...p = {
H1 . . .Hp

}
. (13)

Strictly speaking, given that the motion and measure-
ment eqs (6) and (8) are nonlinear, the EKF is the best
linear minimum mean-square error (MMSE) estimator
(Bar-Shalom and Fortman 1988), that gives an approx-
imation of the conditional mean:

x̂B

Fp
� E

[
xB

Fp
| D1...p, H1...p

]
. (14)

It is fairly clear that two independent robots mapping the
same environment will produce two statistically independent
maps. Under the common assumption that process and mea-
surement noise are white random sequences, the above two
properties assure that two local maps built with the same robot

from disjoint sequences of steps are functions of independent
stochastic variables. Therefore, the two maps will be statisti-
cally independent and uncorrelated (Papoulis 1991).

This fact has a very important consequence: during local
map building, we do not need to compute the correlations be-
tween features in the current local map and features in any
other local map, because they are known to be zero by con-
struction. Thus, the cost of local map building is independent
from the size of the global map.

Changing the Base Reference of a Stochastic Map

Suppose that we choose to change the base reference of a
map MB

F = (x̂B

F,PB

F) from B to Fj , where reference Fj is
associated to the vehicle, or to any map feature. Using the
composition and inversion operations (see the appendix), the
resulting state vector would be:

x̂
Fj

F =




x̂
Fj

F0

...

x̂
Fj

B

...

x̂
Fj

Fm




=




�x̂B
Fj

⊕ x̂B
F0

...

�x̂B
Fj

...

�x̂B
Fj

⊕ x̂B
Fm



. (15)

To make this operation reversible, we have incorporated
the location of the former base reference B with respect to Fj

in the new state vector, replacing the location of feature Fj .
The covariance of x

Fj

F can be obtained as follows:

P
Fj

F = J
Fj

B PB

F J
Fj

B

T

, (16)

where

J
Fj

B = ∂x
Fj

F
∂xB

F

∣∣∣∣∣
(x̂B
F

)

=




J00 · · · J0j · · · 0
...

. . .
...

...

0 · · · Jjj · · · 0
...

...
. . .

...

0 · · · Jmj · · · Jmm




Jjj = J�
{

x̂B
Fj

}
Jij = J1⊕

{
�x̂B

Fj
, x̂B

Fi

}
J�
{

x̂B
Fj

}
i = 0, . . . , m, i �= j

Jii = J2⊕
{
�x̂B

Fj
, x̂B

Fi

}
i = 0, . . . , m, i �= j.

A particular case of this transformation, which produces a
stochastic map relative to the vehicle reference (j = 0), was
proposed by Castellanos and Tardós (1999).

3.3. Local Map Joining

Given two uncorrelated local maps:

MB

F = (x̂B

F,PB

F) ; F = {B, F0, F1, . . . , Fn}
MB ′

E = (x̂B ′
E ,PB ′

E ) ; E = {
B ′, E0, E1, . . . , Em

}
,
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where a common reference has been identified:

Fi = Ej,

the goal of map joining is to obtain one full stochastic map:

MB

F+E =
(

x̂B

F+E,PB

F+E

)
containing the estimations of the features from both maps,
relative to a common base reference B, and to compute the
correlations appearing in the process. This can be done in two
steps:

1. Change the base reference of map MB ′
E from B ′ to Ej ,

using eqs (15) and (16), obtaining:

M
Ej

E =
(

x̂
Ej

E ,P
Ej

E

)
.

2. Given that the features from the first map are expressed
relative to reference B, to form the joint state vector
xB

F+E we only need to transform the features of the
second map to reference B using the fact that Fi = Ej :

xB

Ef
= xB

Fi
⊕ x

Ej

Ef
. (17)

The estimation of the joined map is thus computed as follows:

x̂B

F+E =
[

x̂B

F
x̂B

E

]
=




x̂B

F
x̂B
Fi

⊕ x̂
Ej

E0

...

x̂B
Fi

⊕ x̂
Ej

Em


 . (18)

The covariance PB

F+E of the joined map is obtained from the
linearization of eq (17), and is given by:

PB

F+E

= JF PB

F JF
T + JE P

Ej

E JE
T

=
[

PB

F PB

F JT
1

J1 PB

F J1 PB

F JT
1

]
+
[

0 0
0 J2 P

Ej

E JT
2

]
,(19)

where:

JF =
∂xB

F+E
∂xB

F

∣∣∣∣∣(
x̂B
F

, x̂
Ej

E

) =
[

I
J1

]

JE =
∂xB

F+E

∂x
Ej

E

∣∣∣∣∣(
x̂B
F

, x̂
Ej

E

) =
[

0
J2

]

J1 =




0 · · · J1⊕
{

x̂B
Fi
, x̂

Ej

E0

}
· · · 0

...
...

...

0 · · · J1⊕
{

x̂B
Fi
, x̂

Ej

Em

}
· · · 0




J2 =




J2⊕
{

x̂B
Fi
, x̂

Ej

E0

}
· · · 0

...
. . .

...

0 · · · J2⊕
{

x̂B
Fi
, x̂

Ej

Em

}

 .

Obtaining vector x̂B

F+E with eq (18) is an O(m) operation.
Given that the number of non-zero elements in J1 and J2 is
O(m), obtaining matrix PB

F+ E with eq (19) is an O(nm+m2)

operation. Thus when n � m, map joining is linear with n.

3.4. Matching and Fusion after Map Joining

The map resulting from map joining is statistically consis-
tent, but may contain features that, coming from different
local maps, correspond to the same environment feature. To
eliminate such duplications and obtain a more precise map
we need a data association algorithm to determine correspon-
dences, and a feature fusion mechanism to update the global
map. Determining correspondences between features in two
successive local maps is a fairly simple problem, because the
relative location uncertainty is small. Classical techniques,
such as the Nearest Neighbor (Castellanos et al. 1999; Feder
et al. 1999), will successfully solve this problem. However,
to find matchings in loop closing situations, a more robust
method is required.

We use the Joint Compatibility Branch and Bound (JCBB)
algorithm (Neira and Tardós 2001). JCBB combines a branch-
and-bound search technique with a powerful test to determine
the joint compatibility of a set of matchings, taking all fea-
ture correlations into account. This method is guaranteed to
provide the largest set of correspondences that are jointly con-
sistent. By favoring the hypothesis with the largest consensus,
robustness of data association is significantly improved. Ex-
periments will show the superiority of this algorithm in loop
closing situations.

Next, we explain the details of feature matching and fusion
for global map updating. For simplicity, let x = xB

F+E and P =
PB

F+E represent the state and covariance of the joined map. Let
us consider also that referencesF0 andE0 represent the vehicle
location in each corresponding map. Let H = {j1, · · · , jm}
be a hypothesis that pairs each feature Ei coming from the
local map with a feature Fji coming from the global map.
When ji = 0, feature Ei is considered new. The condition
that features Ei and Fji coincide can be expressed by an ideal
measurement equation without noise:

zi = hiji (x) = 0. (20)

Thus, the state estimation can be updated using a modified
version of the EKF update equations, with z = 0 and noise
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covariance R = 0. Since hiji is usually non-linear, lineariza-
tion around the current estimation is necessary:

hiji (x) � hiji (x̂) + Hiji (x − x̂),

where:

Hiji = ∂hiji

∂x

∣∣∣∣
(x̂)

= [
0 · · · HFji

· · · HEi
· · · 0

]

HFji
= ∂hiji

∂xFji

∣∣∣∣∣
(x̂)

HEi
= ∂hiji

∂xEi

∣∣∣∣
(x̂)

.

Vector hiji (x̂) represents the innovation of the pairing be-
tween Ei and Fji . The joint implicit function of hypothesis H
is hH(x) = 0, where:

hH(x) =



h1j1(x)
...

hmjm(x)


 � hH(x̂) + HH(x − x̂)

HH = ∂hH
∂x

∣∣∣∣
(x̂)

=



H1j1

...

Hmjm


 .

The validity of H can be determined using an innovation
test on the joint innovation hH(x̂) as follows:

D2

H = hH(x̂)T
(

HHPHT

H

)−1

hH(x̂) < χ 2
d,α
.

The value of α is the desired confidence level, and d =
dim

(
hH

)
. This innovation test is used inside the Joint Com-

patibility Branch and Bound algorithm to search for the hy-
pothesis with the largest set of compatible matchings. Once
this hypothesis has been found, it can be used to obtain a
new estimate x̂′ of the state vector and its covariance P′, by
applying the modified EKF update equations:

x̂′ = x̂ − KhH(x̂)

P′ = (
I − KHH

)
P

K = PHT

H

(
HHPHT

H

)−1

.

Once the matching constraints have been applied, the cor-
responding matching features become fully correlated, with
the same estimation and covariance. Thus, one of them can
be eliminated.

3.5. Local Map Sequencing

Map joining is used in Local Map Sequencing to obtain a full
consistent stochastic map of any size by joining a sequence of
local maps of limited size. In order to satisfy the conditions
under which map joining can be used, we proceed as follows:

1. Using the initial robot location as base reference, say
B1, we perform a limited motion sequence of k1 steps
acquiring odometry and sensorial information:

D1...k1 = {
u1 z1 . . .uk1 zk1

}
. (21)

We use this information to build a standard stochastic
map of limited size MB1

F1
= (x̂B1

F1
,PB1

F1
), which includes

the final robot location R1 and the set of perceived fea-
tures F1 (Figure 6(a)). Formally, the map estimation
obtained is:

x̂B1

F1
� E

[
xB1

F1
| D1...k1 , H1...k1

]
. (22)

2. Using the current vehicle location as base reference
B2 (Figure 6(b)), we perform some motion to obtain
measurements:

Dk1+1...k2 = {
uk1+1 zk1+1 . . .uk2 zk2

}
. (23)

With this information we obtain a new map MB2

F2
=

(x̂B2

F2
,PB2

F2
), where:

x̂B2

F2
� E

[
xB2

F2
| Dk1+1...k2 , Hk1+1...k2

]
. (24)

3. Given that no sensorial information has been shared to
build both maps:

D1...k1 ∩ Dk1+1...k2 = ∅. (25)

Thus, vectors x̂B1

F1
and x̂B2

F2
are uncorrelated. Addition-

ally, we know that the last vehicle position in map 1 is
the base reference of map 2: i.e., B2 = R1. This cor-
respondence gives us the second condition that allows
us to join both maps into map MB1

F1+F2
(Figure 6(c)),

where:

x̂B1

F1+F2
� E

[
xB1

F1+F2
| D1...k2 , H1...k1 , Hk1+1...k2

]
.

(26)

It might be the case that the same environment feature
has been perceived by the vehicle along the two trajec-
tories. In Figure 6(c), features S3 and S5 correspond to
the same environment wall (the same applies to features
S4 and S6). This means that both local maps provide
two statistically independent estimations of the feature
location, relative to each local base reference. When
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Fig. 6. (a) Local map MB1

F1
with four features, P1, P2, S3 and S4, with respect to reference B1; (b) local map MB2

F2
with

two features, S1 and S2, with respect to reference B2; (c) both maps are joined to obtain MB1

F1+F2
; (d) map MB1

F1:2
af-

ter updating by fusing S3 with S5, and S4 with S6. Uncertainty is depicted by the 2σ bounds for point and segment tip locations.

both maps are joined, the estimations are no longer un-
correlated, since they are expressed in the same base
reference B1. However, their correlation has been cor-
rectly calculated in eq (19).

An interesting detail that can be observed in Figure 6(c)
is that there is no overlapping between the segments
coming from each map. This is because of the circular
disposition of the sonar sensors in the B21 robot used in
the experiments and the fact that sonars receive returns

in directions orthogonal to the wall (Figure 3(a)): the
gap between two segments approximately corresponds
to the perpendicular projection on the wall of the robot
motion between step k1 and step k1 + 1. During the
matching process, this gap is considered acceptable to
match and fuse both segments.

4. To avoid this feature duplication, matching takes place
after map joining, producing a matching hypothesis
H1:2, which is used to obtain the updated map MB1

F1:2
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(Figure 6(d)), where:

x̂B1

F1:2
� E

[
xB1

F1:2
| D1...k2 , H1...k1 , Hk1+1...k2 , H1:2

]
.

(27)

After s steps of repeating this process, we have a full
stochastic map MB1

F1:s
, with the initial vehicle position as base

reference.

3.6. Computational Efficiency of Local Map Sequencing

Assume that a vehicle navigates in an environment of n fea-
tures, and that each feature is perceived by the vehicle from k

different locations. In full stochastic mapping, the cost related
to this feature is O(n) when it is included in the map, plus
O(n2) for map updating each time it is re-observed (Castel-
lanos and Tardós 1999), giving a total cost of O((k − 1)n2).

In contrast, using Local Map Sequencing, assume that each
feature appears in q different local maps. The cost of includ-
ing and updating the feature in each local map does not in-
crease with n, and therefore it is negligible. Its inclusion in
the full stochastic map will costO(n)when the first local map
where the feature appears is joined, plus O(n2) for each full
map update where the feature reappears, giving a total cost of
O((q − 1)n2).

Therefore, Local Map Sequencing cuts processing time by
a factor of (k − 1)/(q − 1). In our experiments, each feature
has been observed from a mean of k = 77 locations, in a mean
of q = 2.3 local maps, giving an asymptotic speedup factor
of around 58.5.

4. Experimental Results

Experiments were carried out using a B21 mobile robot
equipped with a SICK laser scanner and a ring of 24 Po-
laroid sensors (the enclosure sensors were used). The robot
carried out a guided trajectory in the “Compton Gallery,” a
12 m × 12 m exhibition gallery at MIT. Several people were
visiting the gallery during the experiment. The total trajectory
of the robot, which included several loops, was around 101 m,
lasting around 18 minutes, with an average speed of 9.2 cm/s.
During the robot motion, the laser sensor and the sonar ring
acquired range scans at average frequencies of 2.28 Hz and
3.72 Hz, respectively. Figure 7(a) shows the raw sonar re-
turns obtained during the first 10 minutes of the trajectory.
Two important facts should be noticed in the figure:

• Although the environment structure is still perceptible,
there are huge amounts of spurious data coming from
moving people, specular reflections and other sonar
artifacts.

• Robot odometry suffered a severe drift, probably due
to the carpeted floor of the Compton Gallery. In the
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Fig. 7. (a) Sonar returns obtained during the first 10 minutes
of the experiment. (b) Lines and points detected using the
Hough transform.
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upper right corner, after a travel of some 35 m, the
accumulated error is about 3.9 m and 21o; when the
robot is closing the loop, in the lower left corner, the
error is about 2.4 m and 22o.

The grouping scheme described in Section 2 was applied to
the sonar returns obtained along short sequences of 40 robot
steps, with a separation of 5 cm between them. The lines
and points detected are shown in Figure 7(b). The small dots
along the robot trajectory represent the locations where the
Hough transform was applied. Most lines detected correspond
to the walls, while point features correspond to corners, edges,
picture frames and other objects placed on the walls. The
majority of spurious sonar returns were successfully rejected
by our grouping scheme.

For every sequence of 40 steps, a local stochastic map with
points and lines was built, using the technique described in
Section 3.1. The data associations given by the Hough trans-
form were also stochastically verified by testing the joint com-
patibility between the returns and their corresponding map
features (Neira and Tardós 2001). Each local map was built
relative to the robot location at the beginning of the sequence.
Using the techniques described in Section 3, a global stochas-
tic map was built by joining every new local map as it was
available. Then, the largest set of jointly compatible pairings
between the new features coming from the local map and
those of the global map was obtained. This set of pairings
was used to update the global map. The sonar grouping, local
map building, map joining, matching and updating processes
were repeated along the robot trajectory, obtaining a growing
global map.

The robustness of our approach is exemplified by the loop
closing operation shown in Figure 8. Due to the big odom-
etry errors accumulated, simple data association algorithms,
such as the Nearest Neighbor, would incorrectly match the
signaled point with a point feature previously observed in the
pillar. Accepting an incorrect matching will cause the EKF
to diverge, obtaining an inconsistent map. On the other hand,
our joint compatibility algorithm takes into account the rel-
ative location between the point and the segment (Neira and
Tardós 2001) and has no problem in finding the right asso-
ciations. The result is a consistent and more precise global
map.

The final global map obtained at the end of the experi-
ment is shown in Figure 9(a). For comparison purposes, the
laser scans obtained every 5 cm along the same trajectory
were processed to extract straight segments, and the same
map joining approach was used to build a segment map of the
environment (Figure 9(b)). Comparing both figures, it is clear
that the laser sensor is able to obtain a more detailed map.
The laser map suffers from a small magnification error, prob-
ably due to a systematic error in range measurements. The
compensation of this error with a suitable calibration tech-
nique would produce a map more precise than the sonar map.
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Fig. 8. Global stochastic maps in a loop closing situation.
(a) Before loop closing, a local map with features signaled
with an arrow has been joined to the global map. (b) The two
features have been correctly matched with the corner and the
lower wall, and the global map has been updated.
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Nevertheless, the sonar map obtained is consistent with
ground truth and is complete and precise enough to be re-
liably used for navigation purposes.

To further analyze the consistency of our approach, we
obtained a ground truth solution for the robot trajectory by
matching the segments obtained from laser and the true envi-
ronment map, measured by hand. Figure 10 shows the errors
in robot location, relative to this ground truth, during the sonar
map building process. We can clearly see that most of the time
errors remain inside their 2σ uncertainty bounds.

Regarding computational efficiency, all techniques pre-
sented run faster than real-time for this environment. In our ac-
tual implementation, for each sequence of 40 steps (about 2 m
travel), typical computing times on a Pentium III at 600 MHz
are: 300 ms for sonar grouping, 1.5 s for local map building,
and up to 1 s for fusing the local map with the global map (join-
ing, matching and updating). The first two processes use local
information and their computing times are independent of en-
vironment size. The computing time for map fusion grows
with the number of features in the global map. Although its
asymptotic complexity is quadratic, the moderate size of the
final map in our experiment (63 features) makes the increase
to be almost linear, dominated by the cost of the matching
operation. For bigger environments, the quadratic cost of the
global map update would become dominant.

5. Conclusion

This paper has presented several new techniques for mobile
robot navigation and mapping with sonar. Our results include
a new method for detection of points and line segments from
sonar data and new techniques for joining and combining sev-
eral stochastic maps. Results have been presented for the im-
plementation of these methods using data from a standard
ring of Polaroid sonars mounted on a B21 mobile robot. The
results are compared to a map produced from laser scanner
data for exactly the same environment. To our knowledge,
this constitutes the first published side-by-side comparison of
laser and sonar maps produced via CML.

Many early implementations of navigation and mapping al-
gorithms that used a first-order representation of uncertainty
suffered the criticism of “brittleness” (Lozano-Perez 1989).
When incorrect decisions are made concerning the origins
of measurements, dramatically erroneous results can be pro-
duced. These issues motivated the development of methods
for sensor data interpretation that can make delayed decisions,
such as multiple hypothesis tracking (Cox and Leonard 1994),
to achieve better classification of measurements. The methods
presented in this paper can effectively make delayed decisions
about the assignment of individual measurements to achieve
robustness despite the difficulties inherent in sonar data. The
voting scheme used to aggregate data from multiple vantage
points, acts analogously to methods in computer vision such
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Fig. 9. Global maps obtained using (a) sonar and (b) laser.
Small dots along the robot trajectory represent the locations
where map joining and updating was performed.
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Fig. 10. Errors in robot location during the sonar map building
process. Dotted lines represent 2σ uncertainty bounds.

as RANSAC that use the principle of consensus to resolve
data association ambiguity. We believe that in the future it
should be possible to generalize the concept behind the voting
scheme used in this paper to provide a more generic capability
for computing structure-from-motion from acoustic sensors
in more complex environments (i.e., three-dimensional and
underwater).

We anticipate that the techniques presented here for join-
ing and combining multiple submaps in CML will be useful
in the development of new computationally efficient methods
for large-scale CML. By performing the operations of data
association and feature initialization in local submaps, sensi-
tivity to linearization errors in the state estimation process is
reduced. Indeed, it is possible to pose the problem such that all
operations for creation of local submaps could be performed
without Kalman filtering, for example using nonlinear least-
squares minimization techniques that have effectively been
employed for the structure from motion problem in computer
vision (Hartley and Zisserman 2000).

In the example in this paper, all maps were combined rel-
ative to a single, globally-referenced coordinate frame. In sit-
uations with sufficiently large angular errors, it will be im-
possible to consistently reference all submaps to a common
reference frame using a first-order representation of uncer-
tainty. For this situation, we envision that effective solutions
can be developed using a representation consisting of a net-
work of different coordinate frames, each related through a
sequence of approximate transformations. The techniques of
joining and combining submaps are expected to be invaluable
as a means of building and maintaining the components of the
map. A variation of such an approach might be to adopt the
semantic spatial hierarchy proposed by Kuipers (2000), with
local maps serving as vertices in a very large-scale topological
graph of the environment.

Appendix: Transformations, Points and Lines
in 2D

Two basic operations used in stochastic mapping are transfor-
mation inversion and composition, which were represented
by Smith et al. (1988) using operators � and ⊕:

x̂B

A
= �x̂A

B

x̂A

C
= x̂A

B
⊕ x̂B

C
.

In this work, we generalize the ⊕ operator to also repre-
sent the composition of transformations with feature location
vectors, which results in the change of base reference of the
feature. The Jacobians of these operations are defined as:

J�
{
x̂A

B

} = ∂
(�xA

B

)
∂xA

B

∣∣∣∣∣
(x̂A

B
)
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J1⊕
{
x̂A

B
, x̂B

C

} = ∂
(
xA
B

⊕ xB
C

)
∂xA

B

∣∣∣∣∣
(x̂A

B
, x̂B

C
)

J2⊕
{
x̂A

B
, x̂B

C

} = ∂
(
xA
B

⊕ xB
C

)
∂xB

C

∣∣∣∣∣
(x̂A

B
, x̂B

C
)

.

Transformations in 2D

In 2D, the location of a reference B relative to a reference
A (or transformation from A to B) can be expressed using a
vector with three DoF.:

xA

B
=

 x1

y1

φ1


 .

The location of A relative to B is computed using the in-
version operation:

xB

A
= �xA

B
=

 −x1 cosφ1 − y1 sin φ1

x1 sin φ1 − y1 cosφ1

−φ1


 .

The Jacobian of transformation inversion is:

J�{xA

B
} =


 − cosφ1 − sin φ1 −x1 sin φ1 − y1 cosφ1

sin φ1 − cosφ1 x1 cosφ1 + y1 sin φ1

0 0 −1


 .

Let xB
C

= [x2, y2, φ2]T be a second transformation. The
location of reference C relative to A is obtained by the com-
position of transformations xA

B
and xB

C
:

xA

C
= xA

B
⊕ xB

C
=

 x1 + x2 cosφ1 − y2 sin φ1

y1 + x2 sin φ1 + y2 cosφ1

φ1 + φ2


 .

The Jacobians of transformation composition are:

J1⊕{xA

B
, xB

C
} =


 1 0 −x2 sin φ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sin φ1

0 0 1




J2⊕{xA

B
, xB

C
} =


 cosφ1 − sin φ1 0

sin φ1 cosφ1 0
0 0 1


 .

Point Features

If we consider a point feature P , we can represent its location
with respect to reference B in cartesian coordinates:

xB

P
=
[

x2

y2

]
.

The composition operation to obtain the location of the
point with respect to reference A is as follows:

xA

P
= xA

B
⊕ xB

P
=
[

x1 + x2 cosφ1 − y2 sin φ1

y1 + x2 sin φ1 + y2 cosφ1

]
.

The Jacobians for transforming points are:

J1⊕{xA

B
, xB

P
} =

[
1 0 −x2 sin φ1 − y2 cosφ1

0 1 x2 cosφ1 − y2 sin φ1

]

J2⊕{xA

B
, xB

P
} =

[
cosφ1 − sin φ1

sin φ1 cosφ1

]
.

Line Features

The location of a line feature L relative to reference B can be
represented using the perpendicular distance from the origin
of reference B to the line, and the line orientation:

xB

L
=
[

ρ2

θ2

]
.

The composition operation to obtain the location of the
line with respect to reference A is as follows:

xA

L
= xA

B
⊕ xB

L

=
[

x1 cos (φ1 + θ2) + y1 sin (φ1 + θ2) + ρ2

φ1 + θ2

]
.

The Jacobians for transforming lines are:

J1⊕{xA

B
, xB

L
} =

[
cos (φ1 + θ2) sin (φ1 + θ2)

0 0

−x1 sin (φ1 + θ2) + y1 cos (φ1 + θ2)

1

]

J2⊕{xA

B
, xB

L
} =

[
1 −x1 sin (φ1 + θ2) + y1 cos (φ1 + θ2)

0 1

]
.
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