BEAMFORMING BASED ON SPATIAL-WAVELET DECOMPOSITION

Wen Xu, Te-Chih Liu, and Henrik Schmidt

Ocean Acoustics Group
Massachusetts Institute of Technology
77 Mass. Ave, Room 5-204
Cambridge, MA 02139, USA
wenxu@mit.edu, tcliu@mit.edu

ABSTRACT

This paper presents a general framework for spatial
wavelets processing in the context of a uniform linear
array. By defining the scale in terms of the spatial
sampling resolution, the spatial multi-resolution structure
inherent in the array signal has an explicit representation
based on the wavelet decomposition. Beamforming can
then be implemented on the subband data. The new
framework is applied to a real sonar target detection
problem, and the traditional time-delay beamformer
shows an improved computational efficiency. The
efficiency gain is proportional to the number of sensors
for targets near the broadside direction.

1. INTRODUCTION

Wavelets and filter banks are commonly used in time
sampling signal processing. From the wavelet function, a
set of orthonormal basis is generated by its translation and
dilation, and a multi-resolution signal representation is
then obtained by decomposing the given signal on this
time-scale basis [1]. In the array problem, the data
observations involve both temporal and spatial processes.
At any time instant, the signal field (acoustic wave field,
electromagnetic wave filed, etc.) is sampled at individual
sensors, 1.e., discrete space positions. At each sensor, the
arriving signal is sampled at discrete time points. There
exists essential similarity between the spatial-domain
signal process and time-domain signal process: space
sampling replacing time sampling and directional
spectrum replacing frequency spectrum. It is thus quite
natural to extend the concept of wavelets to the spatial
aspect of array signal processing.

Most current array processing methods are
implemented on the basis of a fixed, uniform spatial
sampling regardless of signal source directions. This is
not an optimum scheme for some source directions. Some
research work has realized the advantages of the varying-
sensor spacing scheme [2] [3]. Their basic idea is using
several sensor pairs with different spacing. The pair with a
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small spacing (less than half a wavelength) is used to
resolve the ambiguity, while the pair with a large spacing -
is used to obtain a high processing resolution. A multirate
noise eigenvector processing is also developed in the
context of the Beamspace Root-MUSIC implementation
[4], but without involving the source direction and thus
the spatial sampling resolution.

In this paper, a general framework for spatial
wavelets processing is outlined in the context of a uniform
linear array. This framework, first introduced in Ref. [5],
perfectly describes the multi-resolution (sampling)
structure inherent in the array signal. Beamforming can
then be implemented on each subband of the wavelet
decomposition. Advantages of the wavelet approach are
demonstrated through examples of multi-sensor sonar
imaging and target detection using both simulated and
experimental data.

2. SPATTAL WAVELETS SCALE AND
MULTIRATE SPATIAL SAMPLING

Wavelets techniques use the time-scale analysis instead of
time-frequency analysis. For time sampling signal, the
scale is defined based on the time sampling resolution. To
apply wavelets to an array problem, one of the key issues
is to understand the scale in an array signal.

A uniform linear array (ULA) with N point sensors is
shown in Fig. 1. The spacing between two adjacent
sensors is d. We assume that a plane wave propagates
from direction 6 with angular frequency w, and that the
signal field is fully coherent across the array. Thus the
received signal at each sensor is just a delayed version
with respect to the reference sensor. Ignoring the noise for
the time being, the received signal at sensor » is

" = g/l )
where A is the signal amplitude, ¢, is the initial phase at
the reference sensor, and 7, is the propagation time delay
from the reference sensor to sensor n. From the geometry
shown in Fig. 1, it can be easily seen by choosing the first
sensor as the reference sensor that 7,= (n-1)d sind/c (c is
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the wave propagation speed in the medium). If we add the
received signals from N sensors together, the total output
is

r = a0t} Sy jin-Dhdsing @
n=1
where k=w/c is the wavenumber and W, is the output
weight.

Figure 1: Configuration for a uniform linear array.

The summing term in (2) takes the exact form of a
windowed discrete Fourier transform. Hence, we have a
signal directional spectrum similar to the frequency
spectrum for a time sampling signal. The frequency in a
time signal spectrum corresponds to kd sind in the space
signal directional spectrum, which is a function of
direction 6. Thus a spatial filter is to combine the outputs
of the array sensors with complex gains and spatially filter
the field such that a signal from a particular angle or set of
angles is énhanced by a constructive combination and
noise from other angles is rejected by destructive
interference.

Figure 2: Spatial sampling spacings for the same phase
difference observation between two adjacent sensors and
different source directions: (a) near the broadside direction and
(b) near the endfire direction.

It can be seen from (2) that the difference between the
received signals at two adjacent sensors is contained in
the phase term, 4¢ = kd sind. Basically, this phase term
determines the oscillation rate in a spatial signal. For a
given sensor spacing, if a signal comes from near the
broadside direction (@ = 0), the phase term approximates
zero. If a signal comes from near the endfire direction (6 =
+71/2), the phase term approximates +kd, the largest
possible value. Accordingly, as shown in Fig. 2, for a
source near the broadside direction, the signal oscillates
slowly across the array, and we can observe it in a large
scale, corresponding to large sensor spacing. In contrast,

for a source near the endfire direction, the signal oscillates
quickly across the array, and we have to observe it in a
small scale, i.e., small sensor spacing. Therefore, the scale
in a spatial signal is well defined based on the spatial
sampling resolution.

This can be further understood from the spatial
sampling criterion. To avoid phase ambiguity, a constraint
is imposed on the phase difference between the received
signals at two adjacent sensors:

]kdsin9|=|27”dsin9lSﬂ, 3)

where 1 is the wavelength. Then a spatial sampling
criterion states
A
Lo 4
2|sin@| @ ‘

From (4), the spatial sampling interval depends on the
signal direction. To satisfy this criterion for all physically’
resolvable directions within (-2, 72), the spacing
between two adjacent sensors must not be larger than half
a wavelength. However, for a direction component other
than @ = 772, the sensor spacing can be larger, and a
multirate spatial sampling technique is applicable.

As shown in Fig. 3, if we downsample a spatial signal
by M, the corresponding sensor spacing increases to Md,
if upsampling by M, the sensor spacing decreases to d/M.
Many standard multirate processing techniques, for
example the polyphase technique, can be applied to the
implementation of spatial filters. Note that the sensor

number is always finite, thus the spatial filter has a form
of FIR filter.
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Figure 3: Downsampling and upsampling in spatial domain.

3. SPATIAL FILTER BANKS AND MULTI-
RESOLUTION SIGNAL REPRESENTATION

Based on the above discussions, it is straightforward to
apply the wavelet theory to array signal processing. Let s

be a continuous space variable. The scaling function w(s)
and wavelet function w(s) satisfy [1]

B o s
Dilation equation: ¥(s)=2 X Hy[klw(2s—k) )
k=0 :

Wavelet equation: w(s) = 2%, H [kl (2s — k). (©6)
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H;[k] and Hy[k] are the low-pass and high-pass spatial

filter coefficients, respectively, and H;[0]+...+ A, [K] = 1.

The translation and dilation of the wavelet function

{wl(s)}={2’ '2y0(27 s k), k, Jj integer} @)
form a set of orthogonal basis in spatial L? space. The
scale level is set by j, and the normalized spatial sampling
step at that level is 27. Thus a spatial function, x(s), can be
analyzed and synthesized via the wavelet decomposition
and reconstruction:

Synthesis of a function: x(s) = Zb,{ W,{ ), (8)
j.k
Analysis of a function: b/ =] x(s)w,{ (s)ds , )

where {b{} is the coefficient set of the wavelet
decomposition at scale level j. Low-pass and high-pass
filter bank can be used to implement the above procedure:
anti-aliasing spatial filters and downsampling for analysis;
upsampling and anti-imaging spatial filters for synthesis,
as shown in Fig. 3. An example multi-level filter bank for
the wavelet decomposition is shown in Fig. 4. '
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Figure 4: Filter bank for wavelet decomposition.
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Figure 5: Space-spatial frequency resolution rectangles for
wavelets. d is the fixed, real sensor spacing.

One has to be aware that because of the different
underlying physics, the choice of the spatial filter differs
from the time-sampled signal counterpart. For example, if
a set of sources from continuous directions impinges on
the array, a linear-phase filter is needed. This conflicts
with the Orthogonality Condition [1] unless a Haar

wavelet is used. In addition, design of the boundary filter
and signal extension differs as well.

A multi-resolution structure is now valid for array
signal representation, as shown in Fig. 5. The
downsampling following the analysis filter changes the
adjacent sensor. spacing from A/2 to A and so on toward
the coarser levels. Then the array signal is divided into
different scales of spatial resolution (wavelet
decomposition). From the filter point of view, a long
spatial window is matched to a source near the broadside
direction and a short spatial window is matched to a
source near the endfire direction.

4. BEAMFORMING
4.1 True-Time Delay Bandpass Beamformer

As mentioned in Section 2, signals from individual
sensors are combined to generate the array output. In
order to steer an array in a particular direction, given the
plane wave signal model, different time delays should be
provided for different sensors so that signals coming from
the desired looking direction are enhanced by coherent
combination. A typical implementation is true-time delay
bandpass beamformer [6] and three main processes are
involved. First, the bandpass signal is demodulated to
obtain its complex envelope, denoted by an in-phase
component (I) and a quadrature component (Q). Second,
each complex envelop is delayed accordingly based on
signal time-delay 7,. Finally, the complex envelope is
rotated in phase. These procedures are usually realized
using FIR interpolation filters. Fig. 6 gives the block
diagram of this beamformer, where A/D is the analog-to-
digital converter.
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Figure 6: Block diagram of the time-delay beamformer.
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4.2. Wavelet Approach

Recall that an array signal can be decomposed by
applying the wavelet transform and that each subband
samples the received signal field within corresponding
angular intervals without ambiguity. It is thus natural to
implement the beamforming on each subband of the
wavelet decomposition. Fig. 7 describes such a modified
beamformer operated on the first subband. Note that the
wavelet operation in spatial domain does not change the
operation in time domain.
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Figure 7: Block diagram of a modified time-delay beamformer
with the wavelet decomposition.
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Figure 8: Illustration of the virtual sensor position and the
corresponding resolvable region.

The wavelet transform can be efficiently realized
using the filter bank shown in Fig. 4. Passing the signal
into low pass/high pass filter and downsampling the
output by 2, 2m signal channels at level j are reduced to m
channels at level j-1, and the time delay for each channel
is modified accordingly at each scale for the
corresponding looking direction. In this multi-resolution
scheme, as the array signals are broken into a coarser level
in spatial domain, the corresponding resolvable region
changes from *sin™(7/(27d)) at level j to +sin” (z/(270"Vd))
at level j-1. The idea can be considered as moving the
sensors into some virtual positions with the associated
time delay and resolvable region, as illustrated in Fig. 8.

4.3 Advantages of the Wavelet Approach

At least two points make the wavelet scheme attractive.
The first one is the computational efficiency. Using a
multi-resolution signal representation, extra computational
effort is required by the wavelet processing, but it is
linearly proportional to the sensor number. In contrast,
due to the reduced dimensionality of the subband data, the
computational load for the beamforming operation is
reduced significantly. For example, denote the sensor
number N as 2%, which can form L+1 subbands in space
domain, N; as the number of time-sampled points at each
sensor, and Ny as the length of the interpolation filter in
time domain. If the beam falls into subband,j =0, ..., -L,
the wavelets approach reduces the computational load for
beamforming  processing by the amount of

(2L ~alti ) NyN ; multiplications while maintaining the

same amount of additions. Fig. 9 shows an example of the
computational efficiency at different subband levels of a
128-element ULA, which includes NyN additional filter
bank operations. The computational load drops
dramatically at level -6 in contrast to level 0 which
corresponds to the original sampling step d. The benefit is
more significant as the data sampling size increases.
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Figure 9: Comparison of the computational load at different
subband stages. N,=4096, N,=128.

Second, direct processing of a subband automatically
rejects noise and unwanted signals from other directional
subbands, providing potentials for a better performance.
This is illustrated in Fig. 10, in which the single-to-noise
ratio at the beamformer output is computed at different
subband stages using the simulated data under the same
configurations in Fig. 9.

5. EXAMPLE

In this section, we apply the wavelet-based beamformer to
perform the seabottom target detection. The sonar data are
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taken from the GOATS (Generic Ocean Array
Technology Sonar) 2000 experiment [7]. A uniform linear
array of 8 omnidirectional elements is mounted on an
autonomous underwater vehicle, collecting the acoustic
data. The senor spacing is half a wavelength at frequency
of 8 KHz. The wavelet decomposition using the Haar
wavelet is first applied to the original sampled data. The
beamformer processing is then implemented on each
subband data for the corresponding looking direction with
N; = 4096 and N, = 8. The beamformer forms a 9-beam
image due to the resolution limitation of the physical array
aperture. The resulting target images with and without the
wavelet decomposition, respectively, are given in Fig. 11.
A strong target is seen in both images. However, the two
images are slightly different at each beam except the
endfire one, which shows the suppression of spatial
broadband ambient noise toward the lower stage subband
using the wavelet approach. The computational load is
reduced as well by the wavelet approach.
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Figure 10: Comparison of the SNR at different subband stages.
Solid line: with wavelet decomposition; dashed line: without
wavelet decomposition.
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Figure 11: Example sea-bottom target images.

6. CONCLUSION

In this paper, wavelets and filter banks are applied to the
array problem. Proceeding from a definition of the scale, a
general framework for the application of wavelets to array
signal processing is developed. Within this framework,
the traditional time-delay beamformer can be
implemented on data subbands available via the wavelet
decomposition. Simulations and experimental data
processing show improvements in performance over a
standard approach. These improvements include better
signal-to-noise ratio and reduced computational load. For
the targets near the broadside direction, the efficiency gain
in computation is proportional to the number of sensors.
To generalize the wavelet approach to other beamformer
methods such as the focused beamformer and to the case
with broadband signal, many other issues need to be
further investigated, for example, design of the wavelet
filter.
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