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Abstract— Stochastic mapping is an approach to the
concurrent mapping and localization (CML) problem.
The approach is powerful because feature and robot
states are explicitly correlated. Improving the esti-
mate of any state automatically improves the estimates
of correlated states. This paper describes a number of
extensions to the stochastic mapping framework, which
are made possible by the incorporation of past vehicle
states into the state vector to explicitly represent the
robot’s trajectory. Having access to past robot states
simplifies mapping, navigation, and cooperation. Ex-
perimental results using sonar data are presented.

I. Introduction

The stochastic map, when first derived, was a
tremendous navigational innovation [20], [17]. By ex-
plicitly correlating the uncertainty in the estimates of
feature and robot states, and by using an extended
Kalman filter (EKF), several operations became pos-
sible. Estimates of individual features could be re-
fined without direct re-observation; an indirect re-
observation (such as an observation of a correlated
feature) would suffice. Similarly, estimates of feature
states could be refined by observing uncorrelated fea-
tures, reducing the uncertainty in the robot, and hence
reducing the correlated uncertainty in the desired fea-
tures. Additionally, the mobile robot navigation prob-
lem was able to be posed as a recursive estimation
problem.

Unfortunately, the original framework was incom-
plete. By not explicitly representing and correlating
useful robot positions through time, delayed decisions,
delayed updates, batch updates, mapping of partially
observable features, complex cooperation, and mo-
saicking were not possible. This paper builds on earlier
work presented in Leonard and Rikoski [15], which in-
troduced the concept of delayed decision making and
illustrated it with Polaroid sonar data from a B21 mo-
bile robot. The current paper extends this work by
presenting an inter-temporal/inter-spatial stochastic
mapping framework as a unified approach to feature-
based CML in a wide range of settings. New attributes
of this framework include use of an inter-temporal Ma-
halanobis distance, use of time-of-flight (TOF) mea-
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surements, cooperation with delayed communications,
and cooperation with a “robot of opportunity”.

II. The stochastic map

The stochastic map is built around a robot model, a
feature model, and a measurement model, referred to
as f(-), g(-), and h(.) respectively. The robot model
uses knowledge of the robot’s dynamics for state pro-
jection. The feature model uses feature observations
for mapping. The measurement model predicts ob-
servations of mapped features. The basic method as-
sumes static features but can be expanded to accomo-
date dynamic features.

A stochastic mapping algorithm uses these func-
tions, along with a filter, to estimate the state of the
world. Most implementations of the stochastic map
use an extended Kalman filter {20], [8], [10], [3]. The
EKF will be used for illustration in this paper, but is
not the only filter which could be used. For instance,
an unscented filter [11] or sequential Monte Carlo al-
gorithms {7], [21] could be chosen instead. For alter-
native approaches to CML that do not use a feature-
based representation, see Thrun [21], Choset and Na-
gatani [5], and Kuipers [14].

The basic stochastic mapping algorithm is summa-
rized as follows [20], [8]:

A. Stochastic mapping algorithm

while active mission do
%(klk—1) « f(%(k—-1]k—1), u(k)) {projection}
Q « u(k) {process noise covariance}
F, — %x(k — 1}k — 1) {projection Jacobian}
P = F,PFT + Q {projection}
z(k) « sensors(x(k)) {capture sensor data}
z(k) — h(x(kjk — 1)) {sensor prediction}
(a,~a) « (z(k), 2(k)) {data association}
V = Zy — Za {innovation}
Hy « (%(klk — 1),a) {measurement Jacobian}
R « z, {measurement covariance}
S = H,PHY + R {innovation covariance}
K = PH,”S~! {Kalman gain}
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14:  %(klk) = %(klk — 1) + Kv {Kalman update}
15: P =P — KSKT” {Kalman update}

R ) .
16:  x(k|k) = [g(i{(k!k),zﬁa)] {mapping}
172 Gy « (X(k|k),-a) {mapping Jacobian}
18:  R.ga « zZ_o {mapping covariance}
199 A=G,PGI +R.,
20 B=GiP r

P B .

21: P= B A] {mapping}
222 k=k+1

23: end while

A summary of our notation is as follows:

X state estimate

P covariance

u control input

7 observations

z predicted observations

a observed /predicted measurement associations
—a unassociated

Zq associated observations

Z-a unassociated observations

B. Stochastic mapping limitations

In essense, stochastic mapping is elegant. In prac-
tice, it is limited. No framework is provided for map-
ping partially observable features. Decisions must be
made instantaneously; if information is not used im-
mediately, it is lost. Delayed decisions using implic-
itly correlated inter-temporal observations require ap-
proximations because observations cannot be explic-
itly correlated. Time-of-flight observations made by a
moving robot also require approximations due to the
navigational uncertainty accumulated between trans-
mission and reception. There is not a clear unification
of stochastic mapping and mosaicking.

Although cooperative mapping with perfect com-
munication is a direct extension of stochastic map-
ping, cooperation under less ideal circumstances is
not. Much as delayed decisions are not accomodated
in the single vehicle case, delayed communications are
not accomodated in the multiple vehicle case. No
framework is provided for the twin problems of coop-
eration with unrecoverable communications dropouts
and cooperation using robots of convenience. The
discontinuity in the flow of information exhibited in
these two problems makes it difficult to estimate a sec-
ondary robot’s state and use its information. Rather
than try to recover the secondary robot’s state, of-
ten it makes more sense to remap it. Unfortunately,
stochastic mapping provides no framework for initial-
izing partially observable dynamic features.
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By subtly modifving the stochastic mapping frame-
work to maintain inter-temporal correlations, solu-
tions to these problems become possible.

III. Inter-temporal stochastic mapping

Because the EKF is a recursive filter, the previous
state estimate is replaced by the prediction. The terms
in the projection Jacobian Fyx corresponding to static
states are the identity matrix, meaning those terms
are unchanged.

A fixed-lag Kalman smoother uses future informa-
tion to refine its estimate of past states [1]. During
projection, state estimates within the lag interval are
treated as static terms, in a similar manner to static
features in conventional stochastic mapping; they are
not changed. However, the state which is one timestep
too old is automatically discarded through a clever
matrix operation. Looked at another way, a fixed-lag
Kalman smoother performs two operations in one: a
feature is added and another is deleted.

Given the desirability of inter-temporal correlations,
the filter form we propose can be thought of as a vari-
able lag/variable point smoother. Rather than main-
tain a fixed history, the robot maintains estimates of
useful states. It is not necessary for the states to be
sequential, nor is it necessary for there be a fixed num-
ber. The robot should save states which are useful,
discarding all others. Useful states generally possess
unused measurements which the robot intends to use
at a later.

Under this framework, projecting a vehicle state is
the same as adding a feature. Useless or less useful
states are discarded in the same way that unneeded
static features are removed from a map.

A. Inter-temporal stochastic mapping
algorithm

while active mission dko .
2: x(klk—-1) = [f(;‘((:(_ 1|kl|_ 1),11)1(k))] {project}}
3: Q « u(k) {process noise covariance}}
4: Fy « %x(k — 1|k — 1) {projection Jacobiani}
5. A=F,PFT+Q{{}
6: B =F.P {17}
7 P= g ]i } projectionf}
8: z(k) « sensors(x(k)) {capture sensor data}
9: z{k) < h(x(k|k — 1)) {sensor prediction}
10:  (a,—a) < (z(k), z(k)) {data association}
11: v =24 — Z, {innovation}



122 H, « (%(k
132 R « z, {measurement covariance}
14: S =H,PHI + R {innovation covariance}
15 K =PH,”S™! {Kalman gain}
16:  k(k|k) = %(k|k — 1) + Kv {Kalman update}
172 P =P — KSK” {Kalman update}
Sl x(k|k) -
18: - %k(k|k) = [g(f{(klk),z-.a)} {mapping}
19: Gy « (%(k|k), 7a) {mapping Jacobian}
20: R_, « z_, {mapping covariance}
21 A =GxPGI +R-a
222 B =GP

P .
23: [B A} {mapping}

24: [ Pl %(klk) {divide states 1}

25: [gp

-26:  X(k|k) = %, {save only pending states {}
212 P =Py, {save only pending covariance 1}
28 k=k+1
29: end while

1 nonrecursive projection

1 garbage collection

Xp states with pending data (keep)

X, states with exhausted data (remove)

P,p covariance of pending states (keep)

P.. covariance of exhausted states (remove)

P, pending/exhausted correlation (remove)

o

] «— P{divide covariance 1}

IV. Delayed decision making and
delayed mapping [15]

Given inter-temporal stochastic mapping, it is no
longer necessary to either immediately use measure-
ments or discard them. Rather, a robot can make
decisions at its leisure. Once a decision is made, the
information is used to update the robot state from the
timestep of the observation. The present robot state
estimate is improved through forward smoothing.

Because stochastic mapping contains only one esti-
mate of the robot state, %,.(k|k), the measurement pre-
diction function can be rewritten as h(X,(k|k), Xy (k)),
where X;(k)) is the estimated state of the static fea-
ture or features. (If the features were dynamic, their
state estimates would be tied to specific timesteps,
requiring the expanded notation Xy(k|k)).) If past
robot states are saved in the state vector, it is pos-
sible to use a measurement function of the form
h(x,(k — j|k), %;(k)), where j is the arbitrary lag of
some saved robot state.

Delayed mapping requires the same modification
to the mapping function. Stochastic mapping uses a
function of the form g(%,(k|k),zs(k)), where z;(k) is
an observation of a new feature at timestep k. Inter-
temporal stochastic mapping allows for a more gener-
alized initialization of the form g(X,( ¢),z5(k —
7))

Of course, because all the required information re-
mains in the state vector, the most generalized version
of the functions are the same, the measurement func-
tion is still h(k(k|k)), and the feature initialization
function is still g(x(k|k),z).

V. Batch Updates [15]

Often when making delayed decisions, for the robot
to explain a measurement it is necessary to understand
an entire sequence of measurements. Once a sequence
is understood, it is desirable to incorporate that en-
tire sequence at once. By updating several temporally
correlated robot states in one update, batches of mea-
surements can be added to the map.

Given the ability to make a delayed decision, a batch
update is simply an update involving a large number
of delayed decisions. Because there may be measure-
ments from many timesteps contained in the batch,
the innovation will be a vector of innovation vectors

v(k)
v(k—1)
v= . .
v(k —J)

VI. Time-of-Flight Observations

A robot making a TOF measurement will transmit
a signal at one time, and receive a return at another. If
the robot is in motion, it is necessary to model how the
robot moves between transmission and reception. By
explicitly maintaining estimates of the robot’s trans-
mission and reception states, TOF measurements can
be used more accurately.

The measurement function for a TOF observation
is h(%,(tz]k),X+(rz]k)), where %X, (tzk) and X,(rz|k)
are the robot’s states at transmission and reception,
respectively.

This approach would be useful, for example, in long
baseline (LBL) navigation of underwater vehicles [16].
In operations such as the deep ocean, where there are
large separations between acoustic transponders, the
distance moved by a vehicle between transmission and



reception of an acoustic signal is substantial. The in-
corporation of delayed states provides a framework for
accounting for this motion and achieving higher pre-
cision.

VII. Mapping partially observable fea-
tures [15]

Certain features are not fully observable given cer-
tain sensors. Using a TOF sonar, no features are ob-
servable from a single measurement or vantage point.
It is necessary to combine observations from multiple
vantage points to map features using such a sensor.

For instance, a feature requiring two vantage points
to be observed would have an initialization function of
the form g(Xf‘(k—jIk)» zf(k—j)’ i’l‘(k_ ”k)7 zf(k —l))a
where j and [ are arbitrary delays.

VIII. Inter-temporal Mahalanobis
distance '

The Mahalanobis distance is a statistic which is
commonly used for data association. Essentially, it de-
termines which isoprobabilistic surface of an n dimen-
sional ellipsoid a given innovation lies upon. Given
the measurement function h(-) and the measurement
Jacobian Hy, the expanded and contracted forms of
the Mahalanobis distance are:

7’ = (z—hx)" (HLPH{ +R)'(z - h(%)) (1)

,YZ — VTs—l,'/

2)

The Mahalanobis distance is used most frequently in
stochastic mapping to perform nearest neighbor gat-
ing [8], [18]. Observations of individual features are
compared against predicted observations of individual
features to try to determine correspondence.

Delayed gating allows future information to smooth
the robot estimate for a given timestep, resulting in a
more precise gate.

More generally, numerous observations taken
through time of individual features can be tested to
see whether or not they fit broader hypotheses. In
this case, an expanded v of the form used in the batch
update would be used.

Most generally, observations taken throughout time
of more than one feature can be tested to establish a
metric for the broadest form of hypotheses.
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IX. Cooperation with Delayed
Communication

Cooperative stochastic mapping with perfect com-
munications requires adding robots to the state vec-
tor. Although there are numerous technical issues to
overcome, from a stochastic mapping perspective it is
relatively straightforward.

Unfortunately, perfect communication is rare. It
can be expected that communications will occasion-
ally be delayed. By applying delayed decision making
to the multiple robot case, it is possible to use infor-
mation despite transmission lags.

X. Cooperation with Communications
Dropouts or Robots of Opportunity

It is not always possible for one robot to transmit
to another every facet of its history. At some point,
there will be two vaguely familiar robots with partially
correlated maps who wish to cooperate.

The robots could use covariance intersection to
merge their maps, but a lot of information would be
lost. A robot would probably prefer to keep its map,
but use information that another robot could gather.

In this case, it would make more sense for each robot
to remap the other robot as a dynamic feature. Using
this approach, there is no difference between cooper-
ation after a communications dropout, and using a
robot of convenience.

If robot 1 can directly observe robot 2, it can map
the second robot as a new feature. Alternatively, if
robot 2 can observe objects in robot 1’s map, it is
possible to map robot 2 with respect to those features
and hence, indirectly, with respect to robot 1. If only
the position of robot 2 can be observed, by observing
several positions throughout time, robot 2’s dynamic
states can be observed. This is demonstrated in a
simple experiment below.

XI. A simple experiment

An experiment was conducted using a robotic
gantry to emulate the motion and sensing of an un-
derwater vehicle. A 500 KHz binaural sonar was
used [13], [12], [2], [19]. To show mapping of par-
tially observable features, bearing information was dis-
carded.

Two objects were placed in the tank, a metal tri-
angle and a point like object (a fishing bobber). The



gantry was moved through two trajectories, emulating
the motion and sensing of two vehicles, All processing
was post processing. Data association was done by
hand since it is not the focus of this paper.

The goal of the experiment was for one robot (robot
1) to map the environment using a robot of opportu-
nity (robot 2). The entire experiment was conducted
from robot 1’s perspective.

Both robots could make range only observations of
features. Because the gantry actually stopped at each
position, it was not necessary to estimate the trans-
mission and reception positions separately for the em-
ulated robots. Both robots had simulated compasses
and velocity logs. Both dead reckoned using their own
state estimates.

Robot 2 only transmitted its range measurements
and control inputs, it did not communicate its bear-
ing and velocity observations. Given the transmitted
measuremments, its state was not fully observable from
a single position.

From robot 1’s perspective, it initially dead reck-
oned through its entire trajectory (see Figure 1).
Upon completing this trajectory, robot 1 had a state
vector and covariance matrix which contained only
robot states, one estimate for each position.

Combining information from multiple vantage
points requires the explicit correlation of the uncer-
tainties of the various vantage points. In Figure 2,
the correlation coefficients for the x components of
the trajectory are plotted. Each line represents the
correlations between one timestep and all other saved
timesteps. Because this is a short dead reckoned tra-
jectory, each curve has only one maxima; more com-
plex trajectories may have nurmerous local maxima.

Having an entire trajectory of positions, robot 1
starts to construct its map. Because the robot uses
a range only sensor, features must be observed from
multiple vantage points to be mapped. By combin-
ing two range measurements, the robot can observe
the point object at the bottom of its map (Figure 3).
Similarly, by intersecting two more arcs the bottom
corner of the triangle is mapped. By finding the line
tangent to an arc (the range measurement) and pass-
ing through a point (the corner), the robot maps the
wall. By intersecting one last arc with the line (the
wall), the robot maps the top corner. Using these ob-
servations, the point object and the side of the triangle
are initialized (Figure 4).

After initializing the features, all other observations
are used for a batch update (Figure 5). Mapping and
navigation are improved substantially.

Next, robot 1 tries to use information from robot 2.
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Fig. 1. Dead reckoned trajectory of robot 1. The red line is the
true trajectory, the black is the dead reckoned trajectory.
The black ellipses represent the 99% confidence interval for
each position. The red triangle is an aluminum sonar tar-
get, the black dot is fishing bobber which was treated as a
pointlike object.

Unfortunately, it has no estimate of the state of robot
2.

It is determined that robot 2 has observed features
in robot 1’s map. From the ranges to the point object
and the bottom corner of the triangle, robot 2’s first
two positions can be observed (Figure 6). Those two
positions are initialized into the map, their initializa-
tion function is of the form g(xy ,,2r2), meaning that
robot 2 is added to robot 1’s map using its own obser-
vations of robot 1's features (Figure 7).

Next, using the two positions, the initial heading
and velocity of robot 2 are mapped. Using this in-
formation, along with the control inputs, a dead reck-
oned trajectory for robot 2 is established (Figure 8).
Because neither compass nor velocity observations are
available, and because the initial estimates of velocity
and heading for robot 2 are imprecise, the trajectory
is imprecise and has large error bounds.

Having a dead reckoned trajectory for robot 2 and
robot 2’s measurement set, robot 1 then maps the
backside of the triangle and performs a batch update
to get an improved map and an improved estimate of
where robot 2 traveled (Figure 9) .

The error bounds for robot 2 do not exhibit the
growth profile that is normally seen. Normally, since
the robot starts with an initial position estimate and
then moves, the uncertainty grows with time. In this
case, since the second robot is mapped and local-
ized with respect to previously mapped features, the
smoothed estimate of its trajectory has the least un-
certainty in the middle (Figure 10).
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Fig. 2. Correlation coefficients between the x components of
robot 1’s trajectory. Each line represents the correlations
between a specific timestep and all other timesteps.
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Fig. 3. Set of observations used to initialize the side of the

triangle and the point object. Two observations are needed
to initialize the point target, two more are needed to initial-
ize the corner of the triangle. Given the constraint of the
corner, only one measurement was needed to map the wall.
Given the wall, only one more measurement was needed to
map the top corner of the triangle.

XII. Conclusion

We have developed an inter-temporal framework for
stochastic mapping. By expanding the state vector to
include estimates of prior vehicle states, the robot can
delay utilizing the information from those states until
later. This allows the robot to delay decisions, update
batches of measurements, use time-of-flight observa-
tions, and map partially observable features. More-
over, we feel that the availability of explicit correla-
tions between robot states will lead to more advanced
inter-temporal data association algorithms. Applying
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Fig. 4. Initial map. 99% confidence intervals for the corners
and the point object are shown.
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Fig. 5. Map after a batch update. Note the improved con-
fidence intervals for the features and the robot (green el-
lipses).

this framework to the cooperative problem, groups of
robots can do anything a single robot can do while
overcoming delayed communications or unrecoverable
communications dropouts. Robots of opportunity can
also be used.

An important issue for future work is to effec-
tively manage computational resources to explore the
trade-offs between the number of delayed states and
real-time performance. Additionally, future work in
this area would include the investigation of more ad-
vanced estimators, as well as the development of inter-
temporal perception. Of course, the EKF is only an
approximation. The use of Guassians to represent un-
certainty and the linearization of the nonlinear func-
tions f(-), g(-), and h(:) can cause difficulties, espe-
cially in the presence of high data association ambi-
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Fig. 6. Adding in the second robot. The true trajectory for

robot 2 is the red line on the left. Observations of the
bottom corner of the triangle and of the fishing bobber are
reversed to find the first two vantage points.
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Fig. 7. First two position for robot 2 are mapped. Using these
two positions is is possible to estimate the initial heading
and velocity. Confidence intervals for robot 2’s positions
shown in blue.

guity. However, the dimension of the state space for
feature-based CML is so great that there are no com-
putationally efficient alternatives currently available.
For example, sequential Monte Carlo algorithms [7],
[21] incur an exponential increase in computational
resources for high-dimensional state estimation prob-
lems for which independence assumptions cannot be
made. For feature-based CML, independence cannot
be assumed [4], [6].

An interesting idea for future work is to combine
stochastic mapping with mosaicking [9]. In Fleis-
cher’s PhD thesis [9], a smoothed EKF approach to
the mosaicking problem was presented. His frame-
work was very similar to that of our inter-temporal
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y. in meters

x,in meters

Fig. 8. Using the estimated initial heading and velocity for
robot 2, along with its control inputs, a dead reckoned tra-
jectory is constructed. With poor initial estimates of head-
ing and velocity, and no compass or velocity measurements
for updates, the trajectory is very imprecise.

y. in meters.

X, in meters

Fig. 9. Using information from robot 2, robot 1 is able to
map the back side of the triangle, which it otherwise could
not observe. After the batch update its estimate of robot 2
improves considerably. Updated trajectory robot 2 shown
in green (mostly on top of true trajectory).

stochastic map. He approached the mosaicking prob-
lem by using images to make observations of inter-
temporal robot states. Because his mosaicking ap-
proach and our stochastic mapping framework have
the same backbone, we feel that the two can be com-
bined into a single unified framework.
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