Arctic Acoustics at MIT

Greg Duckworth

Dyer Symposium
14 June 2007
Preface

• 30 years since inception of the Arctic Program at MIT

• Changes
 – Arctic Ocean Basin has increased in size by 1-2 feet
 – Arctic ice cover has been dramatically changed by air and sea temperatures

• Arctic Acoustics Research
 – Scaled-back in mid-’90s due to fall of Soviet Union
 – Glimmers of new initiatives
 • International Polar year
 • Increased US Navy (surface?) operations may be needed—soon!
 – Much SHALLOW WATER → Ira is on the mark, as usual
Outline

• Review accomplishments of Arctic Acoustics work at MIT
 – ONR Sponsorship

• Subsequent work:
 – BBN/ONR AEAS Program Arctic Low-Frequency Active

• Show how it was done: a few pictures (if time permits)
 – Pre-GPS
 – Pre-Iridium/Globalstar
 – 1940’s Airframes
 – POST-DIGITAL!
MIT Arctic Program

• What I heard:
 – Dyer: We should do basin acoustics. The MED is a good basin.
 – ONR: Good idea, but we have another basin in mind…

• → Multi-facetated ONR Arctic Program:

<table>
<thead>
<tr>
<th>Acoustical Tools</th>
<th>Ice Science</th>
<th>Oceanography</th>
<th>Crustal Geophysics</th>
<th>SONAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Noise</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reverberation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Propagation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Seismic</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Experimental Program

- CANBARX ('78)
- Fram II ('80)
- Fram IV ('82)
- MIZEX 83
- MIZEX 84
- PRUDEX 87
- CEAREX 89
- AREA 92
What is unique about the Arctic?

- It’s cold (for now)
- Surface Duct
- Frozen rough surface
- Very stable water column
- Ice cracking noise

FIG. 5. Central Arctic sound speed profile obtained from CTD measurement taken at the ZIRCON camp.
Fram II Camp Layout (& hazards)

- Cracks / Leads
- Horizontal 2-D array
- Science Hut
- Living / Mess
- Pressure Ridges
- Polar Bears
Ambient Noise: Ice Cracking

- **Goals**
 - Ambient noise statistics
 - Ambient noise understanding
 - Postulate and verify ice-cracking mechanisms and relation to sea-ice strength
 - Seismic noise from mid-ocean ridge

- **Methods**
 - Validate models for individual ice-crack events and aggregate spectral observations
 - Specific ice propagation studies with geophones and sources on the ice
 - Measure and localize earthquake events from the mid-ocean ridge

- **Results**

[Images of Ambient Spectrum, Horizontal Directivity, and Ice Stress Distribution]
• Precision Localization of earthquakes in Rift zone to within 5 km.
Propagation Stability

- **Goal**
 - Determine the stability of the multi-path Arctic propagation channel
- **Method**
 - Transmit LF CW tones over 300 km paths
 - Receive on array and beamform
 - Measure fluctuation statistics
- **Results**
 - Stability greater than measurable with available 25 dB SNR (15-40 Hz) and time windows

Phase Variation
- 0.2 cycles

Amplitude Variation
- < 1 dB

Amplitude Distribution
- Rician

Doppler Spread
- < 0.8 mHz
Basin Reverberation

• Goal
 – Probe the basin margins and everywhere in-between with a very-low-frequency active sonar → estimate backscatter strength

• Method
 – 8-10 Hz active sonar. 24 element 2-D logarithmic array (1 km aperture)
 – 440-1600 lbs TNT source at 800’ depth
 – > 1 hour listen time for 2500 km range

• Results: Backscatter strength + a new feature!

- Reverb Map
- Ice Camp
- Unexpected Return
Basin Reverberation

- Seamount “G. Leonard Johnson”
 - 73.2 N 139.0 W

Seismic Reflection / Refraction

- **Goal**
 - Understand the crustal structure of the Arctic basins down to the mantle

- **Method**
 - Reflection: Air gun / SUS
 - Refraction:
 - Fly transects away from array at camp with helicopter
 - Drop 25-100 kg charges @ 800’ depth
 - Velocity analysis and inversion
 - Exploit extensive multiple arrival structure

- **Results**
 - Well-constrained sediment / igneous crust velocities down to mantle
Seismic Refraction Results

Refraction Migrations

Compressional

Pole Abyssal Plain
Crustal Velocity Structure

Shear

Key: Invert all direct and multiple arrivals to make up for the sparse shooting geometry
Sediment Refraction

341 km shot geometry

Sediment Velocity Structure

Also inverted for sediment Q (loss factor) and surface scattering loss

22 Sediment Penetrating Multiples

Velocity Analysis → tau-p inversions

Fig. 6.15] The 16 Hz velocity spectrum of the data and the normal mode and WkId predictions. See the text for a discussion of this plot.
Post-MIT: Arctic LFA (Low Frequency Active)

• Goal
 – Design and Test LFA Sonar for the Arctic

• Method
 – Exploit Surface Ducted Energy
 • Low dispersion
 • Low backscatter (low grazing angle)
 • Continuous coverage (no CZs)

• Results
 – LFA Performance (classified)
 – Surface Backscatter model
 – Ice Deformation Tracking
 – Potential for coherent clutter subtraction demonstrated
Typical Camp Layout: ZIRCON (AREA-92)

VLA

HLA

Science Hut

Living / Mess

Shot Drop

WHOI Array Tracking Pingers

JACKPOT Echo-repeater camp

1 km
Reverberation Analysis

$$rl(t) = c_{sl} \sum_{\text{out}}^{m} \sum_{\text{in}}^{n} \left[t_{g1_m}(r_{mn}(t)) \alpha_{mn} \gamma_{mn} t_{g2_n}(r_{mn}(t)) \right] + nl$$

$$\gamma_{mn} = \alpha (\sin \theta_m \sin \theta_n)^\gamma$$

Unknowns: nl, α, γ

<table>
<thead>
<tr>
<th>Group</th>
<th>Grazing Angle at Surface (degrees)</th>
<th>Normal Modes Included</th>
<th>Group Speed (m/s)</th>
<th>Turning Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Surface Duct</td>
<td>8.4 +/- 2</td>
<td>1-2</td>
<td>1442</td>
<td>210 +/- 100</td>
</tr>
<tr>
<td>2 = Mid Depth</td>
<td>12.5 +/- 1.3</td>
<td>3-17</td>
<td>1457 +/- 1.5</td>
<td>1527 +/- 506</td>
</tr>
<tr>
<td>3 = deep RSR</td>
<td>17.5 +/- 0.63</td>
<td>20-40</td>
<td>1465 +/- 1.4</td>
<td>3937 +/- 327</td>
</tr>
</tbody>
</table>
Backscatter Strength Results

\[s_{mn} = \alpha (\sin \theta_m \sin \theta_n)^\gamma \]

- Inversion Results and 2-D elastic perturbation theory in reasonable (3 dB) agreement
Fun with acoustics: Ice Floe Tracking

- **Goal**
 - Examine the stability of ping-to-ping clutter returns
 - Determine potential for coherent clutter subtraction
- **Method**
 - Track Individual Scattering Patches using ping-to-ping / beam-to-beam coherence
- **Results**
 - Can measure the deformation of the ice sheet for a radius of 150-200 km
Ice Floe Tracking

- Floes can be tracked
- 4 hour strain shown
- Coherence threshold at 0.15 / 250 DOF

Uniform strain rate model
Exx = -.00015 /h Eyy = 0.00013 /h
(-30m/h @ 200km +25m/h @ 200km)
Conclusions

• Acoustics is a fundamental tool for Arctic Geophysics and Ice Science

• Sheds light (sound!) on all areas
 – Ice properties and kinematics
 – Oceanography
 – Crustal structure and seismicity

• MIT contributed greatly to this work
 – Techniques
 – Results

• I am eternally grateful that I was in the right place at the right time
 – I apologize for much great work not represented today, and for the cursory and simplistic presentations of much of what was represented!