Arctic Acoustics at MIT

Greg Duckworth

Dyer Symposium 14 June 2007

1

Preface

- 30 years since inception of the Arctic Program at MIT
- Changes
 - Arctic Ocean Basin has increased in size by 1-2 feet
 - Arctic ice cover has been dramatically changed by air and sea temperatures
- Arctic Acoustics Research
 - Scaled-back in mid-'90s due to fall of Soviet Union
 - Glimmers of new initiatives
 - International Polar year
 - Increased US Navy (surface?) operations may be needed—soon!
 - Much SHALLOW WATER \rightarrow Ira is on the mark, as usual

Outline

- Review accomplishments of Arctic Acoustics work at MIT
 ONR Sponsorship
- Subsequent work:
 - BBN/ONR AEAS Program Arctic Low-Frequency Active
- Show how it was done: a few pictures (if time permits)
 - Pre-GPS
 - Pre-Iridium/Globalstar
 - 1940's Airframes

– POST-DIGITAL!

MIT Arctic Program

- What I heard:
 - Dyer: We should do basin acoustics. The MED is a good basin.
 - ONR: Good idea, but we have another basin in mind...
- → Multi-faceted ONR Arctic Program:

		Ice Science	Oceanography	Crustal Geophysics	SONAR
	Ambient Noise acoustic seismic	х	х	х	х
	Reverberation basin meso-scale direct path	x	X	x	x
	Propagation loss stability structure	х	x	x	х
	Seismic reflection refraction	х	Х	Х	Х

Experimental Program

- CANBARX ('78)
- Fram II ('80)
- Fram IV ('82)
- MIZEX 83
- MIZEX 84
- PRUDEX 87
- CEAREX 89
- AREA 92

What is unique about the Arctic?

- It's cold (for now)
- Surface Duct
- Frozen rough surface
- Very stable water column
- Ice cracking noise

FIG. 5. Central Arctic sound speed profile obtained from CTD measurement taken at the ZIRCON camp.

Fram II Camp Layout (& hazards)

Ambient Noise: Ice Cracking

- Goals
 - Ambient noise statistics
 - Ambient noise understanding
 - Postulate and verify ice-cracking mechanisms and relation to sea-ice strength
 - Seismic noise from mid-ocean ridge
- Methods
 - Validate models for individual ice-crack events and aggregate spectral observations
 - Specific ice propagation studies with geophones and sources on the ice
 - Measure and localize earthquake events from the mid-ocean ridge
- Results

070614 GLD Dyer Symposium v2

Ambient Noise: Seismic

• Precision Localization of earthquakes in Rift zone to within 5 km.

Propagation Stability

- Goal
 - Determine the stability of the multi-path Arctic propagation channel
- Method
 - Transmit LF CW tones over 300 km paths
 - Receive on array and beamform
 - Measure fluctuation statistics
- Results
 - Stability greater than measurable with available
 25 dB SNR (15-40 Hz) and time windows

FIG. 4. Level in dB's re 1 μ Pa of the square of the amplitude of the tone versus time for record 1.

Basin Reverberation

- Goal
 - Probe the basin margins and everywhere in-between with a very-low-frequency active sonar → estimate backscatter strength
- Method
 - 8-10 Hz active sonar. 24 element 2-D logarithmic array (1 km aperture)
 - 440-1600 lbs TNT source at 800' depth
 - > 1 hour listen time for 2500 km range
- Results: Backscatter strength + a new feature!

Basin Reverberation

- Seamount "G. Leonard Johnson"
 - 73.2 N 139.0 W

Jakobsson, M., N.Z. Cherkis, J. Woodward, R. Macnab, and B. Coakley. New grid of Arctic bathymetry aids scientists and mapmakers; Eos, Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.

Seismic Reflection / Refraction

- Goal
 - Understand the crustal structure of the Arctic basins down to the mantle
- Method
 - Reflection: Air gun / SUS
 - Refraction:
 - Fly transects away from array at camp with helicopter
 - Drop 25-100 kg charges @ 800' depth
 - Velocity analysis and inversion
 - Exploit extensive multiple arrival structure
- Results
 - Well-constrained sediment / igneous crust velocities down to mantle

Reflection Section

Seismic Refraction Results

Refraction Migrations

Sediment Refraction

Fig. 6.15) The 16 Hz velocity spectrum of the data and the normal mode and WKBJ predictions. See the text for a discussion of this plot.

070614 GLD Dyer Symposium v2

Post-MIT: Arctic LFA (Low Frequency Active)

225 m

- Goal
 - Design and Test LFA Sonar for the Arctic
- Method
 - Exploit Surface Ducted Energy
 - Low dispersion
 - Low backscatter (low grazing angle)
 - Continuous coverage (no CZs)
- Results
 - LFA Performance (classified)
 - Surface Backscatter model
 - Ice Deformation Tracking
 - Potential for coherent clutter subtraction demonstrated

Typical Camp Layout: ZIRCON (AREA-92)

Reverberation Analysis

 $rl(t) = esl \sum_{\substack{\text{groups}\\\text{out}}} \sum_{\substack{\text{groups}\\\text{in}}} \left[tg1_m(r_{mn}(t)) a_{mn} ss_{mn} tg2_n(r_{mn}(t)) \right] + nl$

Backscatter Strength Results

 Inversion Results and 2-D elastic perturbation theory in reasonable (3 dB) agreement

Fun with acoustics: Ice Floe Tracking

- Goal
 - Examine the stability of ping-to-ping clutter returns
 - Determine potential for coherent clutter subtraction
- Method
 - Track Individual Scattering Patches using ping-to-ping / beam-to-beam coherence
- Results
 - Can measure the deformation of the ice sheet for a radius of 150-200 km

Ice Floe Tracking

• Floes can be tracked

Uniform strain rate model

- 4 hour strain shown
- Coherence threshold at 0.15 / 250 DOF

Conclusions

- Acoustics is a fundamental tool for Arctic Geophysics and Ice Science
- Sheds light (sound!) on all areas
 - Ice properties and kinematics
 - Oceanography
 - Crustal structure and seismicity
- MIT contributed greatly to this work
 - Techniques
 - Results
- I am eternally grateful that I was in the right place at the right time
 - I apologize for much great work not represented today, and for the cursory and simplistic presentations of much of what was represented!