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Sonar, Radar and Seismic

Signal Processing

Problem Set 3

Issued: October 23, 2006
Due: November 6, 2006

Please note that Quiz I will be distributed on November 6, 2006 and will be due on November
20, 2004. Also, this problem set involves more than routine Fourier transforms operations
relating correlation functions and power spectral densities, so each problem may require a
bit more time.
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Problem 1: Detection of Gaussian signals in Gaussian noise.

The deflection metric d2 is often used for specifying the performance when detecting a gaus-
sian signal imbedded in gaussian noise. For this, we have two hypotheses, H0 and H1. On
the noise only hypothesis we have

r = w

where w is an N dimensional, complex gaussian random vector whose components are each
complex, gaussian with mean 0 and variance σ2

w. The components are statistically indepen-
dent. On the signal present hypothesis, H1, the observation vector is given by

r = s + w

where s is a N dimensional complex, gaussian, random vector whose components are each
complex, gaussian random variables with mean 0 and variance λn, n = 1, N .

The deflection statistic is given by
L = |r|2

and the deflection metric is given by

d2 =
[(E(L|H1) − E(L|H0))

2]

σ2
L

1) Find the detection metric d2

2) Consider that the total power is the signal is constrainted such that

N∑

n=1

λn = Es

Find the optimal choice of N.

Please note that these are complex, gaussian vectors! Also, note that this metric d2 is an
usefuk approximation for the perforance of a detection system when λn/σ2

w < 1. A little
more work with this allows us to determine the performance of a radar/sonar system.
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Problem 2: 2nd moments with a non Gaussian process

In this problem we consider a process which “switches” between two types of waveforms.
We construct this with a model

y(t) = s(t)a(t) + (1 − s(t))b(t)

where

s(t) is the Telegrapher’s wave which switches between [0, 1] at Poisson intervals with rate
λ;

a(t) and b(t) are wide sense stationary, zero mean, random process with correlation functions

Ra(τ ) = Pa cos(2πfaτ )e−(
|τ |
T

)

Rb(τ ) = Pa cos(2πfbτ )e−(
|τ |
T

)

Recall that the Telegrapher’s wave has an autocorrelation given by

Rs(τ ) =
1

4
(e−λ|τ | + 1)

1) Is the process y(t) wide sense stationary? If so, determine the spectral density function,
Sx(ω).

2) For illustration purposes assume fb ≈ 10fa, 1 >> Tλ, fa, fb >> 1/T and λ << fa

Sketch the spectral density function with parameters well labeled and an illustrative sample
function of the ensemble. This is to test your understanding of the physical consequences of
the model. 1

1This is a more realistic model of the Telegrapher’s signal where the audible signal switched between two
different tonals. Note all the transforms can be done analytically, but a sketch of the PSD might help you.
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Problem 3: Difference equations (You will need Matlab for this problem)

We have used the notation

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k]

for representing difference equations. In this problem M=N=4. For convenience we represent
the coefficients in column vector form where

b = [ 0.0675 0.0000 −.1349 0.0000 0.0675 ]

a = [ 1.0000 −1.9425 2.1192 −1.2167 0.4128 ]

i) Plot H(ejω). Note this includes the both magnitude and phase.

ii) The phase and group delays through a digital processor is defined in the same manner as
for a continuous time filter. Plot both delays versus frequency.

iii) Implement the difference equation when the input, x[n] is the unit impulse sequence. (You
stop the recursion when the response is less than one percent of its maximum response.)

iv) Use the polynomial root finder in MATLAB to determine the poles and zeros of the
difference equation.
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Problem 4: Transforms to the discrete domain: (This is an example of how to reconcile
continuous and discrete time processes.)

Consider a variant of our well known friend the damped harmonic oscillator with

H(s) =
sωo

s2 + 2δωos + ω2
o

with the resonant period given by To = 2π
ωo

i) Determine the corresponding difference equation when the derivative operations are given
numerically as

dx(t)
dt

→ x[n+1]−x[n−1]
2∆T

d2x
dt2

→ x[n+1]−2x[n]+x[n−1]
2∆T 2

ii) Plot the solution to the difference equation and compare it to the impulse response of the
continuous time system for ∆T = .001, .01, .1 x To.

iii) Consider the samples data and bilinear mappings to the Z plane for the same values of
∆T . Find the pole/zero loci and the DTFT. Which mapping come closer to representing
the fundamental properties of the continuous system such as peak response, decay rate, and
group delays.

Much of this problem can be down analytically, but the exact pole/zero locations, the transfer
function and the group delay eventually need to done numerically.
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Problem 5: Blackman-Tukey (indirect) Spectral Estimation

We want to examine the properties of Blackman-Tukey spectral estimation using the Hermite
weighting given by: 2

w(τ ) = e−
1
2
( τ

M
)2

[
1 + (

τ

TH
)2

]

i) Determine the window, W (f), the transform of w(τ ). You may assume that M << T , so
that end effects in the integration may be ignored.

ii) Consider the problem of estimating the power spectral density when the process is a
bandlimited white process given by:

Sx(f) =

[
P

2W
|f | < W

0 |f | ≥ W

Discuss the resolution of this spectrum in terms of the normalized quantities M · W and
TH · W .

iii) Calculate the window coefficent, Cw, such that the variance in estimating a smooth power
density spectrum may be espressed as

σ2
Ŝ(f |T )

S2(f)
= Cw

M

T

Plot this variance as a function of TH. (You will find the normalized quantity TH

M
a more

convenient quantity.)

2The transforms required below are tabulated in several mathematical handbooks.
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