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Problem 1 - Correlation and matched filters 

Many radar, sonar and geophysical systems use coded signals and "matched filters" for 
detecting, localization and/or communication. In this problem we explore some aspects of 
their implementation and use. Fig. l a  illustrates a transmitter which sends a signal s ( t ) ,  
which is reflected off a target and observed at a receiver after a travel time Td. In general, 
there is also noise, n(t) ,  present, but we do not include it in this analysis. If we also ignore 
attenuation affects, we can often model the signal as 

The receiver consists of a matched filter which is a linear, time invariant system with an 
impulse response h(t) given by 

h(t) = s(-t) '  

a)  Consider Td to be zero initially. Find the receiver output and show that in general the 
receiver output is the autocorrelation of the signal s( t) .  If Td is non zero, describe an algo- 
rithm for estimating the travel time to the target, hence its range. 

b) The impulse response is non causal, i.e. it is nonzero for t < 0. We can alternately 
implement the causal impulse response h(t) = s(7T - t ) .  How would one modify the range 
estimation algorithm? 

c) In part (a) you presumably found an output signal which has a peak and some lower 
sidelobes. One of the objectives of good signal design is to  find signals which have good 
correlation properties and low sidelobe levels since the narrow main lobe leads to accurate 
travel time estimates and the low sidelobes minimize the possibility that a noise spike leads 
to selecting the incorrect peak. The signal in part (a) is a member of a family called ~ a r k e r  
codes which are often used because of their good correlation properties. Not all signals have 
such good properties. For example, consider reversing one of the "bits" in part (a) to form 
the signal in Fig. lb .  Find the matched filter response of this signal. 

The Barker code is an example of a coded signal. The maximum length of such codes 
is 13 digits. Other codes signals such as shift register codes, or M sequences, are used in 
sonar and radar can have much longer lengths. For example such sequences have been used 
extensively in ocean acoustic tomography and radar astronomy. 
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Problem 2 - I/Q demodulation 

One of the convenient practical ways of implementing a quadrature dernod- 
ulator is to use gates which are clocked at  42 the carrier frequency of the 
narrowband signal. In Fig. 1 we illustrate such a system. The signal which 
gates the "I" component is a square wave on for the first quarter of a periodic 
signal operating with a period T = l/ fo  while the gate for the " Q" compo- 
nent is on for the second quarter of the cycle. The pulses are T/4 long so 
the clocking needs to be at  4 fo. The gated signals are then low pass filtered 
for the quadrature components. 

a)  Show that the system operates as a quadrature demodulator. 

b) The signal s ( t )  has the Fourier transform 

with 

1 o elsewhere 

Find Sl(f )  and SQ(f). 
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Problem 3 - Polar representations of Gaussian random variables 

a) Let x l ,  x2 be independent, identically distributed, Gaussian random variables, N (0, a2) .  
Consider a polar representation of them given by 

4 = tan-'(xl, x2) 

where tan-' (x, y) is the four quadrant arctangent function. Determine the joint density of 
r,  4. Find the marginal densities for r and 4. 
b) Generalize the results to 3 dimensions where x l ,  x2, x3 are each independent, identically 
distrubuted Gaussian random variables, N (0, a2). Define 

2 1/2 8 = tan-'(x3, [x: + x2] ) 
4 = tan-' (xl,  x2) 

Find the joint density of r,  8 ,4 .  Show that the variables r, 8 , 4  are statistically independent. 
Express p,(R) in term of a x2 density and interpret pe(8). 

c) For the 2D case in part a consider the situation when the densities have means with 

m,, = m cos (4,), m,, = m sin(4,) 

Find the joint distribution for r, 4. Find the marginal densities for r and 4. This requires in- 
tegrals which lead to modified Bessel functions, (The amplitude density is known as a Rician 
density and is useful when both coherent and incoherent signal components are present.) 

d)  Now let the phase 4, be a uniformly distributed random variable over the interval 
0 < 4, _< 27r. Determine the density p,(R). 

These densities are quite important for analyzing the output of square law envelope detec- 
tors. Noise processes lead to the random components and the signal to  the mean components. 
The averaging of the phase is from a channel model with a known amplitude but random 
phase which is usually result of positional uncertainty. 



Problem 4 - Phase and group delay for surface gravity waves 

a) The transfer function between two locations separated by R is given by 

where g is the gravitational constant, R the separation and A a complsr 
constant. (sgn(x) is the sign function.) Determine the phase and group 
delays for an observer at R. 

b) What are the constraints on range R and bandwidth W for dispersion to 
be small, i.e. a deviation from a constant group delay of less than n/4. 

c) A wave generator introduces a narrowband signal at the source location 
of the form 

where fo is the center frequency with fo >> k and C is a constant. Determine 
the complex envelope for x(t) and its Fourier transform. 

d) The narrowband signal of part C is applied to the ocean surface as modeled 
by H( f )  in p& A. Determine an apprmimate expression for the output when 
dispersion can be neglected. Specialize the results to the case ((2nfo)/g)R = 
1001/2 fo and interpret the results. 

e) Determine the dispersion factor for the gravity waves and determine the 
limits upon k in part C 
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