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e In our analysis of random waveforms (stochastic processes) we emphasize differences in tem-
poral domain / frequency domain descriptions of deterministic waveforms versus random
waveforms. In particular a deterministic framework focuses on the actual waveform (realiza-
tion) itself, whereas a stochastic framework focuses on averages which involve realizations of

these waveforms:

Deterministic Signals

Random/Stochastic Signals

z(t)
Energy Spectrum: | X (f)|?
Energy

| latPar= [ 1x ()P

Periodic
z(t+T) =x(t)

LTT Systems
y(t) = x(t) * h(t)

Y ()P =1X(PIHS)I?

R, (1) = E{z(t+ 7)x*(t)}
Power Density Spectrum: S;(f)
Average Power

B{lo()P} = Ro(0) = [~ S,

Periodic
Ry(t1+T) = Ry(7)

LTT Systems
Ry(7) = Ry(7) * h* (=) % h(7)

Sy(f) = Sa(NIH()I?

The autocorrelation function R, (7) plays the role of the actual waveform z(¢) and the power
spectral density (PSD) function S, (f) plays the role of the energy spectra | X (f)|?.

e With a focus on averages of waveforms versus waveforms themselves, we note that to obtain
“good” averages requires sufficient amounts of data sharing identical statistical properties.
In practice the amount of available data is typically quite limited, and often only stationary
over finite intervals of time.

e PSD Estimation Problem: From a finite data record (of duration T) of at least WSS data,
estimate the power distribution over frequency.

e [t is of necessity in PSD estimation that an implicit assumption of first and second moment
ergodicity be made. In particular we assume that in the limit of large data record length the
following limits hold:

) 1 T/2
e = lm /_ mx(t)dt (2)
1 T/2
Ry(7) = lim — x(t)z* (t — 7)dt, (3)



and defining

xr(f) 2 [ P ey (4)
—T/2
we assume that
1
5.(7) = Jim B{ L1 (0} )

The quantity %|XT( f)|? is known as the periodogram. More said later.

Before we discuss two classical techniques of PSD estimation, we first review some important
properties of estimators in general. The goal is to specify what properties are desirable
properties for estimators.

Properties of Estimators
say a is an estimate of a deterministic but unknown parameter a

— In general the estimate @ is determine from some observed random data, that is @ =
f(RANDOM DATA), and therefore a is itself a random variable

The Mean squared error (MSE) is a common, and useful measure of performance. Note from
the following that it consists of contributions from two major sources:

MSE = E{|a—a|*}
= E{la- E{a} + E{a} — a|*}
= E{la- E{a}]’} + |E{a} — o + 2Re E{[(a — E{a}) (E{a} — a)"]} (6)
= E{la-E{a}l’} + |E{a} — af
= o2+ [Bias{a}|>.

Both the variance and bias of an estimator contribute to the overall MSE. Consequently,
analysis of estimators typically focuses on these two quantities as indicative measures of
performance. We illustrate some common properties of estimators involving the bias and
variance via a simple coin toss experiment.

Heads or Tails?

Consider the well-known coin flip experiment. Assume that the probability of heads is given
by p, and therefore that of tails is given by 1 — p. Consider the goal of estimating the
parameter p, the probability of heads.

Clearly this experiment is well modeled by a Bernoulli random variable z, with pdf

fa(wo) =p-d(xo —1) + (1 = p) - 6(20)- (7)



It has the following moments:
E{z} = 0-(1-p)+1-p=p
E{z?} = 0*-(1-p)+1*-p=p (8)
2

o, = p(l—p),

e Given n independent observations of this Bernoulli experiment zy, ..., z,, consider the fol-
lowing estimator of parameter p (sample mean):

> i (9)

and note that it has the following mean and variance:

E{ﬁn} = p
(10)
02 = p(1 —p) _ 0_925
Pn n n

e We say that p, is an unbiased estimator of parameter p because E{p,} = p. If E{p,} # p,
then we would say that p, is a biased estimator of parameter p.

o If E{p,} # p, but nll)rglo E{p,} = p, then we would say that p, is asymptotically unbiased.

2 &

e Note the normalized variance o 0}% /o2 = 1/n. Tt is a function of parameters we can

n

control/design.

e Confidence Intervals:

— When n is large we can approximate the pdf of p,, via the central limit theorem as

p(l_p)> ’ (11)

ﬁn ~ N (pa
n

from which one can compute an « level confidence interval given by

Pr (M < Ta> - a. (12)

Ton

— Given an estimate p,, we can say with 100 - a% certainty that the true value of the
parameter p will fall in the interval

[ﬁn _Taal/)\n +Ta]- (13)
Hence, the name confidence intervals.

e Note from the above approximate pdf for p,, or simply from the fact that p, is unbiased
with a variance that approaches zero as n increases, that le Pr(|p, —p| > €) = 0. When
n o0

this limit holds for an estimator we say that p, is a consistent estimator of parameter p.



Given two different unbiased estimators pl = fi(z1,...,z,) and p2 = fa(x1,...,2,) of the
same parameter p, we say that pl is more efficient than p2 if 0'2\1 < 0'2\2.
P P

The most efficient unbiased estimator among all possible estimators is the one which obtains
the Cramér-Rao Lower Bound (CRB) on unbiased estimators. It can be shown that for any
unbiased estimator p of parameter p that

oBnp(p) < o (14)

An unbiased estimator p, which obtains the CRB, i.e. 0;2)\" = 0% pp(p) is said to be an
efficient estimator.

If 0';2)\ > 0% pp(p) for finite n, but lim 0127 = 0% pp(p), then p, is said to be asymptotically

l n—00
efficient.



Blackman-Tukey Method / Indirect Method

The Blackman-Tukey (BT) Method of Power Spectral Density Estimation can be summarized
in three steps:

1. Estimate R,(7) = Ry(7 : T).
2. Apply window wy(7).

3. Fourier Transform:
Q N D —j2nfT
Se(f:T)= wo(T)Rz(7: T)e dr. (15)
—00

Note that the BT method is often called the Indirect method of PSD estimation because
one first computes the autocorrelation function estimate R, (7), then transforms to the fre-
quency domain. This is to be contrasted with methods which directly transforms data to
the frequency domain prior to any estimation.

Assume z(t) is a real zero mean Gaussian process. Let xzp(t) be x(t) observed for a finite
duration 7"
a(t), —T/2<t<T/2

rp(t) = (16)
0, Otherwise.

Consider the following estimate of the process autocorrelation:

~ / o)
Ro(r:T) = %/Z;x(t)x(t )t = %/OO pr(t)zr(t — 7)dt (17)
Note that
Ralr:T) = mon(r) * aip(—m) 55 X0 (H)X(F) = 51Xr (/)P (18)

Thus, BT with no window coincides with classical periodogram.

Note that EI(T : T') is a function of a stochastic process. Hence, it is itself a random process.
It has a mean function ny (7:7T) and covariance function K5 (71,72 : T').

Ultimately, we are interested in the statistics (mean and covariance) of the resulting PSD
estimate S;(f : T'). We will find, however, that the mean and covariance of R, (7 : T') need
be determined first.

It is straight forward to show (see figure 1) that the mean function is given by

il

T) - Ry (7). (19)

nﬁx(T :T) = E{}ABI(T : T)} = (1
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Figure 1: Time shifted waveforms of R, (7 : T')

Hence, the bias is given by
BIAS; = E {ﬁzx(T : T)} — Ry(r) = — Ry (7). (20)

Note that

— R,(7 : T) is biased for finite 7, but approximately unbiased for |r| < T.
— Asymptotically unbiased for all 7 as T — oo.

e By definition the covariance function of this autocorrelation function estimate is given by

K~

7 (r1,72:T) = (21)

E { {f?x(n :T) — <1 — %) -Rx(n)} [ﬁx(Tz :T) — (1 — %) ‘Rx(TZ)]}

=B {Rn DR - (1= ) (122D mmymm). @)

The product of functions is given by

~ ~ T/2 T/2 1
Ro(r1 : T)Ry(rs : T) = / dtl/ dty - — - w(t)a(t — m)s(t)o(ty — ). (23)
1 —T/2 T9—T/2 T

Making liberal use of the following moment formula for Gaussian random variables,

E{zizorsrs} = E{x122} E{z3z4} + E{z123} E{®o74} + E{z124} E{T073} (24)



we can find the desired expectation, and obtain the following expression for the covariance
function of the autocorrelation estimate

T/2 T/2
Kp (rym i T) = / dty / dt (25)
T1—T/2 To—T/2
1
Xﬁ . [Rx(tl — tg)RI(tl — t2 —T1 + 7'2) + Rx(tl — tg + TQ)Rm(tl — tg — 7'1)] .

Making the change of variables:

t = ti—t (26)
we obtain the slight simplication
K- ( -T)—l/T (1—M>R (8 Ralt — (m1 — 72)]dt +
rom:T) =% | 7 ) Be(t) Ry T —T2
T+71o
/ ( ) Ru(t)Ralt — (11 + )]t (27)
T T+

If we in addition assume that R;(7) = 0 for |7| > T./2, which is often the case in the absence
of tonals, and that T, < T', then we can make the useful approximation:

Kp (ri,72:T) / Ro(t)Rylt — (11 — 1)) + Ra(t)Ralt — (1 + )] dt. | (28)

Note that the covariance function for the estimate }Aim(T : T') depends on the true covariance
function R;(7) and time shifted versions shifted by the difference of lags (7 — 72) and the
sum of lags (71 + 72).

An expression for the variance of the estimate fzx(T : T') is easily obtained by setting 71 = 79:

O'%I(T :T) = Kﬁ‘ 7,7:T) / R2(t) + Ry (t) R, (t — 27) dt (29)

Since we assume that that R, (7) = 0 for |7| > T, /2, we can make the following approximation
for the covariance of R, (7 : T') away from the origin (see figure 2):

T/ Ru()Ralt — (11 — 7)]dt, 47 > T,

%/oo Ry(t) {Ru[t — (11 — m2)] 4+ Ryt — (11 + )]} dt, |11+ 7| <T.
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Figure 2: 71, 79—plane

Similary, we can approximate its variance away from the origin as well:
7 Bwd=g [ sind. Inl> 12
— 00 — 00
0% (1:T) ~ . (30)
R. 1o
7| RO+ OB =200t || < T2

Recall that the BT estimate of the PSD is obtained by Fourier transforming the estimated
autocorrelation function:

S.(f:T) = /oo wo(r) - By (r : T)e 2717 iy (31)

— 00

The mean of this estimate is shown to be

> 7]

wo(7) < _ —> Ry(r)e— 1277 4z

(N =E{S(:n} = [ -

—o0

(32)
= / w(T) Ry (7)e 92T dr = [m W(v — f)Sz(v)dv.

—00

Hence, the expected value of the BT PSD estimate is not the true PSD of the process S;(f),
but rather a smoothed/averaged version of Sy(f).

In light of this, it is useful to adopt certain properties of the window function w(7):



1. Assume window function of duration M, i.e. w(r) =0 for |7| > M/2.

2. Assume window is an even function: w(7) = w(—71) = W (f) = W(—f).

3. Assume that w(0) =1 = /_0:0 W(f)df =1.

e Concerning the bias of this estimate recall first the sifting property of the Dirac Delta impulse
function:

S:(N) = [ S:w)éf —vidv = [ 8,016 - P (33)

Thus, the bias is expressed as

B{S.(f: D)} = 8:l5) = [ Wlw =) =6 = P Sulw)dr (9

—00

e The last window function property guarantees that if the true spectrum S;(f) is constant
over the window bandwidth (locally smooth), i.e. S;(f) appears to be a flat/white-noise like
process relative to the window bandwidth B,,, then the estimate is unbiased:

B{S.(r: D)} = [T W= NS, =5.() [~ W= Ndv =50 (3)

e Note from eq(34) that we can reduce the overall bias in the BT PSD estimate by making
W (f) look more like an impulse 6(f). This requires that we increase the window length M.

e Concerning the covariance function of the BT PSD estimate, note that

S+ 1) = B8 T [Sulfo+ 1) = BASuf2: T} = (30
/_o:o w(Tl)e*jZWflTl dr /_o:o w(7_2)efj27rf27—2d7_2
X |Ry(ry : T) — (1 - %) Rx(n)] {fgw(ﬁ . T) — (1 _ %) Rm(ﬁ)] .

Hence, taking the expectation one obtains

o0

Kg (f1,f2:T) = / dr /700 dry w(Tl)w(TQ)e_ﬂwfme_jQmeKE (r1,m2:T),  (37)

or explicitly
00 00 , _ T/2 T/2
K§ (f17f2 . T) = / dTl/ dry w(Tl)w(7_2)67]27rf17'16*]27rf27'2/ dtl/ dts (38)
o —50 —00 Tl—T/Z TQ—T/Q

1
Xﬁ “[Ry(t1 — t2)Ry(t1 — to — 71 + 72) + Ry (t1 — to + 7o) Ry (t1 — to — 11)] .



Recalling the Fourier relationships

Ro(t — 1)) = / S, (f)er2m T =) g

Ry(ti —ta— 11+ 1) = / Sy(f)el?mlti—tz=mitm2) gp
—00
(39)
w .
Rw(tl —ty + 7’2) = / Sw(f)6327rf(t1*t2+7'2)df
—00

oo .
Roli—ts=m) = [ Supersio=tmg,
—0o0
we can write the covariance function as

00 , _ T/2 T/2
dﬁ/ dro w(Tl)w(TZ)eﬁZ”flﬁ67327”0272/ dtl/ dty  (40)
o T2 ~T/2

o0

Kg (fuf:T) = [

— 00

1 o0 o0
><—2/ dVl/ dve Sy (1) Sy (1)
T° J-x —00

% I:ejQWVl(tl—t2)—j271'1/2[(t1—t2)—(7'1—7'2)] + ej?ﬂ'lll[(tl—tQ)-I—TQ]—j?TrVQ(tl—tz—Tl):| .

Making the change of variables:

t =t

T o= t—t (41)

we can simply somewhat to obtain

o0

Kg (fuf:T) = [

— 00

S . . 00 00
dﬁ/ dTs w(Tl)w(TZ)eﬁZ”flﬁefﬂﬂfﬂ?/ dl/l/ dvo Sy (1) S (1v2)

T/2 T 1 ¢ ) : ,
« dt dr— I:e‘]ZFT(VlfVQ)e]ZTrVQ(Tl77‘2) + 6]27TT(V171/2)6]27T(V172+V27'1):| )
—rj2 Jor T?

Noting the integration

1 T/2 T . 1
—2/ dt/ eI T(=v2) = 9gine [20T (11 — 13)] ~ —8(1y — 1), (42)
T J-1/2 T T

where the approximation of the sinc function as an impulse of the same area is made under
the assumption that S;(f) is locally smooth relative to the window bandwidth B,,. Using
this approximation and the sifting property of the impulse function we obtain
0 §2(y 00 L a
Kg (f1.f2:T) 2/ #d’// w(r)e PPN dn (43)

— 00 — 00

x/ [w(Tz)e_jz”(f2_”)T2 + w(72)6_j2w(f2+y)72] dry.

— 00

Recognizing the integrals in 7; as Fourier transforms we obtain

Ks,idoi D)= [ SS0WH =) W= 0) + W+ v)ldv. ()

10



Making the change of variable v — f; —v and recalling that W (f) =

W (—f), the covariance

function for the BT PSD estimate can be written in a form analogous to that obtained for
the covariance function of the estimated autocorrelation function:

K:g\gﬁ(flan :

1) 1 [ SR = W) Wl — (i = )] + Wl = (1 + o)l dve | (45)

Clearly, the covariance of BT PSD estimates are functions of W(f) and shifted version of
W (f) involving the difference (f; —

f2) and the sum (f1 + f2).

uf;+r-f2 :Bw L3 |f’_;.
Si+fy=-8, I, - £ > B, ’ ,
|£+.A|= B, )
S lesleBe | W ABL
B,
|- A= B, S |/ - .A|>B,
- B —
i+ A8, P RV RV AR} 5
’ —B;\ )
<B, - \f +f2|<B
‘f Al If f|>B
|uf;+f2|>Bw

The assumption of locally smooth PSD leads to S2(f —
we obtain the approximations (see figure 3):

Ks,\z(fl,fg : T) ~

(

Figure 3: f1, fo—plane

0, if |f1 & fo| > By and

Sa(f1) [
—Tl /_OOW(V)W

The variance of the BT PSD estimate is given by

v — (f1 = fo)ldv, if | fi — f2| < By and

V)W (v) =~ S2(f)W (v), from which

|f1 + fo| > By

2 )
Sx;fl) [m W)Wy —(fi = )]+ Wlv—(fi + fo)l}dv, |fi £ f2] < By

o2 (f:T) =

g (f,f:T) ~

r LS

W2(v) + W)W (v — 2f)] dv

(46)

11



and we similarly approximate it as

SQ / W2 Sz(f) /_ Q(T)d’]', |f| > Bw/2
U%r(f :T) =~ )
szgf) /_oo WQ(V) + W)W (v — 2f)dv, If| < Buw/2

Define the following Window Factor:

il [T wreya = - / © WA (r)dr (47)

The normalized /standardized variance is given by

o (f:T) 1 [o©
o = Sng ~ /_Oo W2() + W)W (v — 2f )dv. (48)

Note that it is exclusively a function of parameters we can control/design. At dc (f =0) we
have

02 (0:7)
o= 5= ~ o MCu (49)
S2(0) T

and removed from dc (|f| > B, /2) we have

2 (f:T)
02:(7 f / W2(v C“’. (50)

Hence, the window factor C\, and the length of the window M affect the variance/stability
of our PSD estimate. Note that one can decrease the variance of the spectral estimate by
reducing the window length M or choosing a window with smaller window factor C,,.

Note the trade-off in the bias and variance of the BT PSD estimate Sy(f : T).

— Increasing the window duration M or the window factor C, reduces the bias but in-
creases the variance.

— Decreasing the window duration M or the window factor C, increases the bias, but
reduces the variance.

Often in spectral analysis it is of interest to resolve (identify as separate) closely spaced tones
in the PSD. To this end we define the resolution factor as

S (flan )
JOCN

1>

RES(f1, f2)

(51)

= 5 [ WEWl = (= 2+ WOW D (1 + fo)ldv

12



Away from the origin we obtain

“ideal”

RES(f, /)= o7 [ WeWl— (- flar %" Cu-dolfi— o). (52

where 0g(f = 0) = 1 and do(f # 0) = 0. Ideally we would like RES(f1, f2) to approximate
this function.

We say that tones at frequencies fi; and fy are resolvable if RES(f1, f2) ~ 0. Clearly, the
window function bandwidth B, is the significant design parameter determining achievable
resolution.

— Thus, to improve resolution we want to reduce B, ~ 1/M, or equivalently increase
the window length M (recall that larger M also reduces bias of BT PSD estimate, but
increases its variance).

Given a window function of bandwidth B,,:

— If | f1 — f2| < By, then tones are unresolvable.

— If | f1 — f2| > By, then tones are resolvable.
Sidelobe leakage can be important when spectrum consists of closely spaced tones of differing
strengths. The effect of sidelobe leakage can be adjusted/designed through proper choice of

window function. See Art’s notes example 4 and F. Harris paper Table I for tabulated values
of peak sidelobe levels of various windowing functions, as well as mainlobe widths.

13



Fourier Method / Direct Method

The BT Method (Indirect Method) estimated the process autocorrelation function from the
data record, and subsequently windowed and transformed to the frequency domain to obtain
the spectral estimate. In the Direct Method the data record is immediately windowed and
transformed to the frequency domain. The spectral estimate is obtained by local averaging
in the frequency domain.

It is emphasized that the assumptions on the windows used for the Direct Method will differ
from those we made for windows applied using the BT/Indirect Method. In addition our
definition of the window factor Cy, will also differ. More said later.

Consider the transform of the windowed data record:
A [ —jorft
Xu(f:T)= w(t)z(t)e " dt. (53)
— 00
It is interesting to interpret this data from a filtering perspective. Let h(t) = w(—t)e/?fot,
and note that

oo

Y=o = =(t) * h(t)|;=o = / w(r)z(r)e P2T0Tdr = Xy (fo : T) (54)

—o0

i.e. the windowed data can be interpreted as the output of the filter h(¢) sampled at time
zero. Consider, for example, w(t) = 1/T for |t| < T/2. The frequency response is given by

H(f) _ % /7;1//22 ej27r(f0—f)t = sinc |:27T(f0 — f)g] ; (55)

a bandpass filter with center frequency fp and 3dB bandwidth B,, ~ 1/T.

Consider figure 4, which ilustrates that disjoint frequencies of a random process are uncor-
related. In light of the filtering interpretation of the windowed data, note that frequencies
separated by at least B, ~ 1/T are uncorrelated.

Assuming that the true PSD S;(f) is a relatively smooth function of frequency it is sensible
to define the spectral estimate

N

So(f:T)= Y hy

n=—N

2

Xw<f+%:T>

; (56)

where the weights h, allow some flexibility in the averaging. It should be clear why this
estimator is often termed the smoothed periodogram.

Averaging correlated samples does improve the statistical stability of estimate, and can at
times worsen it. Thus, averaging samples any closer than 1/7 is not considered.

It is desired to examine the bias and variance of this spectral estimate gx( f:T). Several
related statistics, however, must be found first. Note that X,,(f : T') has zero mean

E{Xu(f:T)} = [ O:O w(t) B{w(t)ye 2t dt = 0. (57)

14
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Figure 4: Disjoint frequencies are uncorrelated

Its covariance is given by

KX“’(fl’f2 : T) = FE [Xw(fl : T)X,::)(fQ : T)]
= /jo /:’o E[x(tl)g;*(tz)]w(tl)w*(tZ)e—jZW(fltl—f2t2)dt1dt2 (58)

00 00 .
= / / Rx(tl — tQ)w(tl)’w*(t2)€7]2ﬂ(htl7f2t2)dt1dt2.
—o00 J—00

To simplify, make the change of variables

t = 1
T = tl—tQ.

15



This leads to
Kx,(f1,f2:T) = / [/ R,( )e 727#2%[7} e I2mhitti2nfat gy

- /OO w(t) [/00 Se(V)W*(f2 — y)e—J%(fz—V)td,j] e i2mfit+j2m fat gy
= / S f2 — y)dy /_oo w(t)e*j%r(flﬂ/)tdt (60)
= / Se(W)W (f1 —v)W*(f2 —v)dv

= /O:O Se(fi =)W W)W v — (f1 — f2)]dv.

Using familiar arguments we obtain the approximation

03 |f1_f2|>Bw
Kx,(fi,fo: T (61)
fl/ W(W)W*v — (f1 — fo)ldv, [fi — fo| < By
e The variance of X,,(f : T) is given by
0%, (F:T) 2 Kx,(f.f:T)
(62)

| Ss =W e)dr = $u(8) [ W)
e The variance of | X, (f : T)|? is by definition given by
Kix, (1. f2: T) 2 E{Xu(f1 : T)PIXu(fo - )2} = E{|Xu(fr : 7)) E{|Xu (2 : 7))

or expanded

K otnfe: T = [ 7 [ [ dnddtdts Bla(ts()ow)at)} — (63)

w(ty)w* (to)w(ts)w* (ty)e I2Nlti=t)=i2nfolla=ta) _ g o (8 £ T)Kx, (fa, fo: T).

Recall the moment formula for Gaussians

E{x(tl)x(tz)x(tg)x(t4)} = Rx(tl - tg)Rx(tg — t4) (64)

+Rm(t1 — tg)Rm(tg — t4) + Rw(tl — t4)Rm(t2 — t3).
By comparing this to eq(58) we obtain
Kix,p2(fi, f2: 1) = Kx, (f1, fr : T)Kx, (fo, fo : T) + (65)

Kx,(fi,f2:T)Kx,(=fi,—f2:T) +

KXw(f17_f2 : T)KXw(_flafZ : T) _KXm(f17f1 :T)KXw(f27f2 : T)

16



Noting that Ky, (—f1,—f2:T) = KX (f1,f2 : T), we obtain the useful result

Ky, p2(fi,f2: T) = |Kx, (f1. fo: T)|* + Kx,, (f1, = fo : T)Kx,, (= f1, f2 : T). (66)

e Recalling eq(56), note that the mean of the PSD estimate is given by

~ N n
E{S.(f:1)} = ¥ hn-o§w<f+f:T>
n=—N

(67)

1

3 s (o) [ wors

If we assume that the true PSD is locally smooth across the bandwidth By 2 2N/T, i.e.
Sz(f +n/T) = Sy(f), then to obtain an unbiased estimator of the PSD requires that

/jo v)|2dv - Zhn_l (68)

e In our analysis of the BT/Indirect method of PSD estimation we adopted the window con-
straint that w(0) = 1. This guaranteed approximately unbiased spectral estimates where
Sz(f) is locally smooth relative to the window function bandwidth B,,. For the Fourier/Direct
Method an approximately unbiased spectral estimate is obtained by satisfying eq(68). We do,
however, for the Direct Method adopt the following unit area convention for the windowing
function:

/°° w(t)dt = 1= W (0). (69)

—00

e Note that if we excite the following linear time-invariant (LTT) system with white noise n(t)

n(t) — | W(f) | — y(t) (70)

where R, (7) = Ny - §(7), then the average output power is given by
E(ly} = No [ [W(w)Pdv. ()
—00

Following Harris’ development (see paper), the equivalent noise bandwidth (ENBW) can be

obtained from
o0 o0
Ng/ W ()2 dv NO/ W () [2dv

B = =) - { /Oooow(T)dTr. "
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Normalizing by B, Ny ~ Ny/T (noise power per sample) we obtain the ENBW

ENBW =

—T/ |d1/—T/ |dT—C (73)

e Note above that we have redefined the window factor for the Direct Method. Harris has
tabulated these for various window functions (see Table I), which is useful for design.

e Note that for unbiased spectral estimates we want to choose weights h,, such that

N
T
> b= (74)
n=—N C

w

e Concerning the covariance function of the spectral estimate eq(56), note that
A ~ ~ ~ ~
K5 (f1,f2: 1) = E{S:(f : D)8u(f2: D)} = B{Su(fr : )} E{Su(fa: D)} (75)

Using this definition it is straight forward to show that

K5 (fi,f2:T) Z Z hohmKx, 2 <f1+—,f2+— ) (76)

—Nm=—N

Recall from eq(66) that

2

Kyx, 2 <f1+ ot T>:‘wa <f1+%,f2+%:T> + (77)

T

(f1+ —fz—— T)wa <—f1—%,fz+%:T>.

Making the familiar arguments note that

K:S'\m (fl,fg : T) ~ 0 if

2N
fl_f2+T‘>Bw. (78)
e The variance of the Direct Method spectral estimate is given by
a%x(f:T) 5 (f,f:T) Z Z hnhm K| x,, |2<f+ ,f+— ) (79)

—N

where

2
+ (80)

Kx, <f+ﬁ,—f—

e (1 ot or) <[ (1 o )
m.,
T T

T)KXw (—f—%,er%:T).



e Note that if

N N
‘f+ﬂ > B,/2 and B, 2 — < Bu,

then
n m n m

and therefore

N N
U%m (f:T)~ Z ZN hon b pnm ()7 = hTRﬂh

n=—N m=—

where

Prm(f) Kx, <f+%f+%:T>

— S.(f) /O:o W (v)W* [u— (" _Tmﬂ dv

and [Rp]n,m é |,0nm(f)|2

If S;(f) is spectrally smooth over By, = 2N/T and B,, ~ 1/T, then

Prm(f) = r
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Note on Confidence Intervals

e Confidence intervals are useful for communicating the possible nearness/closeness of an esti-
mated parameter to the true value of the parameter.

e Recall that if z ~ CNp(0,1Ip), that is complex circular Gaussian, then it follows that
& d
121" =1z = x5, (86)
i=1

where XQB is known as a complex chi-squared statistic. It has a probability density function
given by

Fe, (a) =a™"te /(N —1)! a>0. (87)
e Recall that the windowed tranformed data record is given by
N ;
Xo(f:T) 2 / w(t)a(t)e 2t dt, (88)

and the resulting spectral estimate by

N 2
N n
Self:T)= > hn Xw<f+?:T> (89)
n=—N
If we assume that z(t) is a zero mean Gaussian process, then it follows that
Xoy(f :T) ~ CNy [0,0%, (F: 1)), and [Xy(f : D) ~ 0%, (F: 1) - (90)

Recall from eq(61) that samples of X,,(f : T') at frequency separated by more than B,, ~ 1/T
are uncorrelated, and hence independent. Thus, we argue that

Sy(f:T)< fj By - 0% <f+9-T>- X (91)
T . e n Xw T nX1-

Assuming S, (f) is spectrally smooth we obtain

N
§x(f :T) = w Z b, - nX%- (92)
n=—N

e Confidence intervals can be obtained from this stochastic representation.

e Note that if h, = h =T/[(2N + 1)Cy], then

gx(f:T) 4 2
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Direct Method: Segmented

The segmented Direct Method divides the data record z7(t) into L segments of equal duration
Ty,. Each segment is processed separately, then combined (averaged) to generate the resulting
spectral estimate.

L N 2

~ n
LU T =Y hy Xw<f+T—:TL> (94)
L
I=1n=—N
Note that
N L-Cy &
L
n=—N
Hence, for asymptotically unbiased estimates we require
N
Ty,
hp = . 96
n;N "= (96)

Can show that variance of S,(f : T') has similar form as unsegmented Direct Method with

()= 82(0) [ Wlw* o= (B2 | e e v, (97)
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