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Abstract: The waveguide invariant is typically defined using of normal
modes or ray theory, but it can also be related to the wavenumber-integration
method for calculating the acoustic field in a waveguide. In this letter, the
Wiener–Khinchin Theorem is used to show that the autocorrelation of the
wavenumber-integration kernel, when plotted versus wavenumber difference
and frequency, contains striations that can be described by the waveguide
invariant.
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1. Introduction

A plot of acoustic intensity versus range and frequency in a waveguide with a broadband source
will contain striations that are characterized by the waveguide invariant � (Chuprov, 1982).
Such striations have been the basis for several methods of acoustic sensing in the ocean includ-
ing passive source localization (Thode, 2000), array processing (Tao and Krolik, 2008), time-
reversal focusing (Kim et al., 2003), and active sonar (Quijano et al., 2008).

Although the waveguide invariant is usually derived and interpreted using normal
modes (Brekhovskikh and Lysanov, 2003), ray theory can also be used to interpret the wave-
guide invariant (Chuprov, 1982; Gerstoft et al., 2001; Brown et al., 2005). The present analysis
relates the waveguide invariant to another common method for calculating the acoustic field in
a waveguide: wavenumber integration. It will be shown that under certain circumstances, the
waveguide invariant can be “seen” in a plot of the autocorrelation of the wavenumber-
integration kernel. This result has an intuitive interpretation because the autocorrelation of the
wavenumber-integration kernel represents horizontal wavenumber differences, which is what
the waveguide invariant is defined in terms of when using a normal mode description of the
acoustic field.

The present analysis is for a range independent waveguide with planar geometry so
that the wavenumber transform is a Fourier transform (as opposed to a Bessel transform for
cylindrical geometry). Because the usual derivation of the waveguide invariant ignores cylin-
drical spreading, assuming planar geometry is not a limitation.

2. The waveguide invariant and normal modes

Section 6.7.2 of Brekhovskikh and Lysanov, 2003 uses normal modes to derive the waveguide
invariant in a waveguide with a point source (cylindrical geometry). Here we present a similar
derivation, but we use a planar geometry. For planar geometry, the complex pressure can be
written as shown in Eq. 5.26 of Jensen et al., 2000.
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where x is the coordinate pointing directly away from the source and kxm��� is the horizontal
wavenumber for mode m at a temporal frequency of �. For notational convenience define

Bm � �m�zs��m�z�
1

kxm���
. �2�

The scalar acoustic intensity is then the pressure times its complex conjugate:

I�x,�� = p�x,�� · p̄�x,�� � ��
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Bmeikxm���x� · ��
n
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where the overline indicates a complex conjugate and �kmn���=kxm���−kxn���. Equation (4)
shows that the intensity at a fixed � is a sum of cosines, each of which has a spatial frequency in
the x coordinate that depends on the difference between a pair of modes’ horizontal wavenum-
bers.

In an ideal waveguide, the waveguide invariant states that �kmn����1/� for modes
far from cutoff, which implies that the x-coordinate spatial frequencies in the intensity depend
on � like 1/� (Grachev, 1993).

3. Relating the waveguide invariant to wavenumber integration

In the previous section it was shown that the x-coordinate spatial frequencies in the acoustic
intensity are determined by horizontal wavenumber differences. In this section, we relate the
wavenumber integration kernel to the x-coordinate spatial frequencies in the intensity I�x ,��,
which reveals a relationship between the wavenumber integration kernel and the waveguide
invariant.

To obtain the complex pressure p�x ,�� using wavenumber integration, the Helmholtz
equation for p�x ,�� is transformed into the wavenumber domain using the Fourier transform
pair [Eqs. 2.85 and 2.86 of Jensen et al., 2000]:

p�x� = �
−�

�

��kx�eikxxdkx, �5�

��kx� =
1

2�
�

−�

�

p�x�e−ikxxdx . �6�

The boundary conditions are then written as a function of kx, and the resulting equations are
solved in the kx wavenumber domain at a single temporal frequency to yield the wavenumber
kernel ��kx ,��, which represents the magnitude and phase of the spatial frequency compo-
nents kx of the complex pressure field at a particular temporal frequency �. ��kx ,�� is
then transformed (back) to the x domain using Eq. (5), yielding p�x ,��. The scalar
acoustic intensity can then be computed by multiplying the pressure by its complex conjugate:
I�x ,��=p�x ,�� · p̄�x ,��. Note that the wavenumber kernel ��kx ,�� for a cylindrical geometry
is identical to that for a planar geometry; only the integral transform used to obtain p�x ,�� from
��x ,�� is different.

In order to relate the waveguide invariant to the wavenumber integration kernel
��kx ,��, we seek to establish a relationship between ��kx ,�� and the x-coordinate spatial

frequencies in the intensity I�x ,��. This relationship is provided by the Wiener–Khinchin Theo-
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rem (Weisstein, 2009a, 2009b), which will now be used to show that the magnitude of
x-coordinate spatial Fourier transform of I�x ,�� can be calculated from the autocorrelation of
the wavenumber kernel. Note that although the Wiener-Khinchin Theorem is well-known for its
use in statistical spectrum estimation, our application is purely deterministic.

The autocorrelation of the wavenumber kernel is:

C��kx� = �
−�

�

�̄�kx���kx + �kx�dkx, �7�

where the overline indicates a complex conjugate. Following the standard derivation of the
Wiener–Khinchin Theorem, insert Eq. (6) into Eq. (7) and perform a series of algebraic ma-
nipulations (Weisstein, 2009a, 2009b):
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Equation (9) shows that the autocorrelation of the wavenumber kernel is proportional to the
x-coordinate spatial Fourier transform of the scalar acoustic intensity I�x�. If one were to de-
compose I�x� into all of its spatial frequencies components, the relative magnitude of those
spatial frequencies could be determined by the autocorrelation of the wavenumber kernel.

This result can be related to the normal modes description of the acoustic intensity
given in Eq. (4). The wavenumber kernel ��kx� has peaks at values of kx corresponding to the
modal horizontal wavenumbers. Thus the autocorrelation of ��kx� will be large at �kx values
corresponding to the differences in the modal horizontal wavenumbers—precisely the
x-coordinate spatial frequencies of I�x ,�� shown in Eq. (4).

The peaks (local maxima) of the autocorrelation of the wavenumber kernel correspond
to the modal horizontal wavenumber differences ��kmn����, so the peaks’ dependence on fre-
quency will be the same as �kmn���’s dependence on frequency. Because the waveguide invari-
ant describes �kmn���’s dependence on frequency, the waveguide invariant also describes how
the peaks of the autocorrelation of the wavenumber kernel depend on frequency. The next sec-
tion analyzes this further.

4. An ideal example

The waveguide invariant is well understood for an ideal waveguide because the horizontal
wavenumbers can be calculated analytically. For mode pairs in an ideal waveguide where both

modes are far from cutoff, �kmn��� is approximately proportional to 1/�, which corresponds to
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�	1 [Eq. 6.7.34 of Brekhovskikh and Lysanov, 2003 and Grachev, 1993]. So one would expect
the �kx location of the peaks in C��kx ,�� for an ideal waveguide to depend on � like 1/�. We
now show that this is indeed the case.

The wavenumber kernel for an ideal waveguide is [Eq. 2.143 of Jensen et al., 2000]

��kx,�� � 

sin kzz sin kz�D − zs�

kz sin kzD
, z 
 zs

sin kzzs sin kz�D − z�
kz sin kzD

, z � zs,� �10�

where kz=��� /c�2−kx
2 and D is the depth of the waveguide. ��kx ,�� has poles when kzD=m� for

positive integers m, or equivalently at kx values corresponding to the modal horizontal wavenum-
bers. Those poles will then depend on frequency in the same manner as the modal horizontal wave-
numbers will, and so the �kx location of the peaks of C��kx ,�� will depend on � in the manner
predicted by the waveguide invariant ��1/��.

To visualize this dependence, a plot of ��kx ,�� is shown in Fig. 1(a) along with its
autocorrelation in Fig. 1(b). The black lines in Fig. 1(b) correspond to a few potential striation
paths predicted by the waveguide invariant with �=1 (lines with �kx�1/�). It can be seen that
there are striations in Fig. 1(b) that do not match up well with the black lines. This discrepancy
appears to contradict the analysis in the previous section. But if we remember that � is only
approximately equal to 1 for mode pairs where both modes are far from cutoff, or equivalently
when kx is close to k, then the discrepancy makes sense because the wavenumber kernel con-
tains horizontal wavenumber components that are close to cutoff and thus are not well described

Fig. 1. �Color online� All subfigures are for a 100 m deep ideal waveguide with zs=16 m and z=73 m, and are in
units of dB re: an arbitrary reference. �a� ���kx ,���, the wavenumber kernel as a function of horizontal wavenumber
and frequency. �b� �C��kx ,���, the autocorrelation of wavenumber kernel shown in subfigure �a� as a function of
wavenumber difference �kx and frequency �. The black lines are example striation paths corresponding �=1 �lines
with �kx�1 /��. �c� Same as subfigure �a�, but only including kx values far from cutoff � 2

3k
kx
k�. �d� �C��kx ,���,
the autocorrelation of the wavenumber kernel shown in subfigure �c�. The black lines are example striation paths
corresponding �=1 �lines with �kx�1 /��, and match the actual striation paths more closely than those in subfigure
�b� because subfigure �d� only includes kx values far from cutoff.
by �=1. To address this issue, Fig. 1(c) shows the wavenumber kernel using only kx values close

st. Soc. Am. 128 �1�, July 2010 Cockrell and Schmidt: Waveguide invariant and wavenumber integration

 18.38.0.166. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Cockrell and Schmidt: JASA Express Letters �DOI: 10.1121/1.3453768� Published Online 24 June 2010

J. Acoust. Soc

Downloaded 24 Jan 2011 to
to k �specifically, 2
3k
kx
k� and Fig. 6(d) shows the resulting autocorrelation along with black

lines corresponding to �=1. The striations in Fig. 1(d) match very well with the black lines because
only horizontal wavenumbers that are far from cutoff are included.

5. Relevance

Many applications of the waveguide invariant require an assumption about the value of �. It is
often correct to assume that �	1 in shallow-water waveguides, but this assumption is not
always valid (Chuprov, 1982). Consequently, numerical modeling is sometimes used to deter-
mine the approximate value of � in a given environment (Rouseff and Spindel, 2002). Although
this can be done by simulating the acoustic field itself, more insight can often be gained by
calculating more fundamental quantities such as the modal horizontal wavenumbers or the ray
parameters (horizontal slowness, cycle distance, etc.—see Eqs. 11–15 of Gerstoft et al., 2001),
which can be related to the value of the waveguide invariant.

However, normal modes and ray theory are not conducive to describing the acoustic
field in some environments, such as those involving attenuating elastic media (especially if one
is interested in the acoustic field inside of the elastic media). In those cases, understanding how
the wavenumber-integration kernel relates to the waveguide invariant may allow one to gain
insights that would be difficult to obtain otherwise.

For example, the concepts described in this letter may be useful for studying the effect
that surface ice has on the value of �. The striations in a plot like Fig. 1(d), but generated for an
ice-covered waveguide rather than an ideal one, could reveal whether it’s reasonable to assume
�=1 in such an environment. More specifically, one could use a plot like Fig. 1(d) to determine
if hydrophones sitting on surface ice (or embedded in the seafloor) would record the same
range-frequency waveguide invariant striations that a hydrophone in the water column would
record.

6. Summary

The waveguide invariant implies a specific dependence of the acoustic intensity’s x-coordinate
spatial frequencies on the temporal frequency �. When the geometry of the problem is planar,
the wavenumber integration transform is a Fourier Transform, and so the Wiener–Khinchin
Theorem can be used to relate the autocorrelation of the wavenumber kernel to the x-coordinate
spatial frequencies in the acoustic intensity. A 2-d plot of the autocorrelation of the wavenumber
kernels versus “wavenumber lag” �kx and temporal frequency � exhibits striation patterns that
can be explained by the waveguide invariant.

The relationship between the waveguide invariant and wavenumber integration is not
as direct as the waveguide invariant’s relationship to normal using modes or ray theory. How-
ever, the relationship described in the present analysis may be useful in certain situations be-
cause wavenumber integration can be used in waveguides that are difficult to model using nor-
mal modes or ray theory.
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