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Abstract—This paper describes an investigation into the control of
autonomous mobile sensor platforms in a marine sensor network used
to provide monitoring of transitory phenomenon over a wide area. A
distributed network of small, inexpensive vehicles with heterogeneous
sensors allows us to build a robust monitoring network capable of real-
time response to rapidly changing sensor data. The major objective
of this paper is to describe a framework for adaptive and cooperative
control of the autonomous sensor platforms in such a network. This
framework has two major components, a sensor that provides high-
level state information to a behavior-based autonomous vehicle control
system and a new approach to behavior-based control of autonomous
vehicles using multiple objective functions that allows reactive control
in complex environments with multiple constraints. Experimental
results are presented for a 2-D target tracking application using a
network of autonomous surface craft in which one platform with a

simulated bearing sensor tracks a moving target and relays the target
state information to a second vehicle that is moving in a classification
mode. From these results, it is readily seen that there is the potential
for potent synergy from the cooperation of multiple sensor platforms
which can each view an event of interest from a different vantage
point.

I. INTRODUCTION

Autonomous oceanographic sampling networks are useful in

many cases where large volumes of ocean must be monitored for

transitory phenomena including not only the changing physical

properties of the ocean itself but perhaps also man-made phenom-

ena like the acoustic fields emitted by underwater objects of interest

[1].

Vehicles working in coordination offer distinct advantages. They

may each have different payloads, sensors, and endurance capabili-

ties. They may be able to share sensor data to perceive phenomena

a single vehicle itself may not be able to perceive alone. The use

of multiple vehicles also may allow one vehicle to stay at the

surface, with a higher bandwidth link to other robotic or human

operated vehicles, while one or more other vehicles operate under

the surface operating at varying depths to optimize their sensor-

oriented tasks.

We are motivated by the following scenario: two heterogeneous

vehicles are in operation, the first is fitted with a passive, bearings-

only towed sensor array and takes on the role of “tracking” other

moving underwater objects of unknown trajectory and type. The

second vehicle is fitted with a different sensor more appropriate

for detecting acoustic signatures of underwater objects and takes

on the role of “classifying” other underwater objects. The two

vehicles work together to track and classify underwater objects
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Fig. 1. Two heterogeneous unmanned marine vehicles are in operation together.
The first tracks the position and trajectory of unknown underwater objects using
a towed linear array, and communicates track solution information via acoustic
modem to a second vehicle with different sensors more suitable for classifying
underwater objects.

by communicating track solution information from the tracking

vehicle to the classify vehicle via acoustic modem. The latter

vehicle uses the track information to close position to the object

of interest to the benefit of its classification sensors. Each vehicle

optimizes its trajectory to balance their sensing responsibilities

alongside mutual relative position responsibilities.

While coordinated marine vehicles have their advantages, they

present challenges in their joint control to reach their combined

potential. Inter-vehicle communication, if possible, is limited in

bandwidth, and carefully allocated. Any kind of central continuous

control is likely infeasible. In multi-vehicle joint exercises involved

with sensing dynamic phenomena, it may not be practical or

effective to think in terms of a single vehicle state space to which

proper actions can be assigned a priori.

In this work we address these challenges by presenting a novel

architecture and set of vehicle behaviors and present experimental

validation of this work using three fully autonomous kayaks.

II. TECHNICAL APPROACH

In this section we present our general autonomy architecture

and how the particular components that reflect the contribution of



this work fit into that architecture. The outline for experimental

validation is also discussed.

A. The MOOS-IvP Autonomy Architecture

This work uses the MOOS-IvP architecture for autonomous con-

trol. MOOS-IvP is composed of the Mission Oriented Operating

Suite (MOOS), a open source software project for coordinating

software processes running on an autonomous platform, typically

under GNU/Linux. MOOS-IvP also contains the IvP Helm, a

behavior-based helm that runs as a single MOOS process and uses

multi-objective optimization with the Interval Programming (IvP)

model for behavior coordination, [2], [3]. See [4] and [5] for other

examples of MOOS-IvP on autonomous marine vehicles.

A MOOS community contains processes that communicate

through a database process called the MOOSDB, as shown in

Fig. 2(a). MOOS ensures a process executes its “Iterate” method

at a specified frequency and handles new mail on each iteration

in a publish and subscribe manner. The IvP Helm runs as the

MOOS process pHelmIvP (Fig. 2(b)). Each iteration of the helm

iPWMControlleriGPS

pMOOSBridge

pLogger

pTracker

iMicroModem

pNav

MOOSDB

2Hz 20Hz

5Hz

40Hz 4Hz

pHelmIvP

8Hz

5Hz

10Hz

(a) A MOOS Community

behavior

behavior

behavior

MOOSDB

Information

IvPFunction

IvPFunction

IvPFunction

Solver

IvP

Action

pHelmIvP

(b) The pHelmIvP process

Fig. 2. The IvP Helm runs as a process called pHelmIvP in a MOOS
community. MOOS may be composed of processes for data logging (pLogger),
data fusion (pNav), actuation (iPWMController), sensing (iGPS), communication
(pMOOSBridge, iMicroModem), and much more. They can all be run at different
frequencies as shown.

contains the following steps: (1) mail is read from the MOOSDB,

(2) information is updated for consumption by behaviors, (3)

behaviors produce an objective function if applicable, (4) the

objective functions are resolved to produce a single action, and (5)

the action is posted to the MOOSDB for consumption by low-level

control MOOS processes. The behaviors responsible for control in

the tracking and classification vehicles are discussed in Section IV.

B. Autonomous Bearings-Only Object Tracking

The tracking vehicle in this work uses a set of tracking algo-

rithms that run in a single MOOS process called pTracker (see

Fig. 2(a)). This process subscribes to target bearing data from the

MOOS database as input to the tracking algorithms. The bearing

data is either produced by another MOOS process interfaced with

a physical bearings-only sensor, or the bearing data is produced by

an alternative MOOS process that simulates bearings-only sensor

data. The pTracking MOOS process then produces and posts track

solution information to the MOOSDB to be consumed by any other

MOOS process including an inter-vehicle communications process

like pMOOSBridge or iAcousticModem for consumption by an-

other platform working in coordination. More on the algorithms

for the pTracking process is given in Section III.

C. Validation with Experimental Data

Experimental validation of this work is presented using three

autonomous kayaks rather than actual underwater vehicles. This is

largely due to the convenience of using lightweight surface craft as

proxies to the larger AUV’s which are more expensive and time-

consuming to operate.

III. BEARINGS-ONLY OBJECT TRACKING

In order to track a moving object from a set of discrete sensor

observations, one must first decide on the kinematic model used

to describe the object’s motion. In this work, a constant-velocity

model was chosen because it is one of the simplest to describe

mathematically and because estimating the motion of a constant

velocity target using a bearings-only sensor is a classical problem

in target motion analysis. Also termed ”passive localization” or

”passive ranging” this problem arises, for example, when trying to

estimate the motion of a submarine moving at constant velocity

from another submarine observing the target using a linear towed

array sensor.

A. State Estimator Derivation

In formulating this problem, we follow a classical analysis as

given in [6]. Consider a Cartesian coordinate frame having an

object with position [xt[n] yt[n]]T and constant velocity [ẋt ẏt]
T

being tracked by a bearing sensor on a sensor platform with posi-

tion [xp[n] yp[n]]T moving in the same plane with measurement
observations taken at the discrete time intervals n = 0, 1, . . . , N .

The state equations for the target motion can be written in discrete

time as

xt[n] = xt[0] + ẋtt[n] (1)

yt[n] = yt[0] + ẏtt[n] (2)

Given (1) and (2) we define the state parameter vector

x̂t , [xt[0] yt[0] ẋt ẏt]
T , [x0 x1 x2 x3]

T (3)

All of the parameters in the state parameter vector are assumed to

be statistically independent. The measurements are target bearings

relative to the sensor platform given by

z[n] = h[n, x] + w[n] (4)

where

h[n, x] , tan−1
yt[n] − yp[n]

xt[n] − xp[n]
(5)

and w[n] is the measurement noise assumed to be a Gaussian white
noise sequence with variance q. Our sensor makes a sequence of

bearing measurements which we combine into a single measure-

ment vector Z .

Given our assumption of a constant velocity target, estimating

the parameters in (3) from a sequence of observations completely

defines the target motion. A number of techniques are available

to perform the parameter estimation. The maximum likelihood

estimator was chosen in order to form the optimal estimate (in

a least-squares sense).



B. The Likelihood Function

Given the Gaussian noise assumption for our measurement, we

define the negative log-likelihood function as

λ(x) ,
1

2q

N
∑

n=1

[z[n] − h[n, x]]2 (6)

The maximum likelihood estimate is then formed by

x̂ = arg min
x

λ(x) (7)

The state parameter vector which satisfies (7) is the maximum

likelihood estimate. The minimization required to satisfy (7) was

accomplished using the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm, a quasi-Newton method requiring the first derivatives of (6)

with respect to the state parameters. The derivatives (with irrelevant

constants removed) necessary for the minimization are

∂λ(x)

∂x0

=

N
∑

n=1

2(z[n] − h[x, n])(yt[n, x] − yp[n])

(xt[n, x] − xp[n])2 + (yt[n, x] − yp[n])2
(8)

∂λ(x)

∂x1

=

N
∑

n=1

−2(z[n]− h[x, n])(xt[n, x] − xp[n])

(xt[n, x] − xp[n])2 + (yt[n, x] − yp[n])2
(9)

∂λ(x)

∂x2

=
N

∑

n=1

−t[n]
∂λ(x)

∂x0

(10)

∂λ(x)

∂x3

=
N

∑

n=1

−t[n]
∂λ(x)

∂x1

(11)

C. The Cramer-Rao Lower Bound

The Cramer-Rao lower bound (CRLB) stipulates that the vari-

ance of our parameter estimates cannot be lower (on average) than

a certain value determined by the shape of the likelihood function.

The derivation and proof of the CRLB can be found in a number

of textbooks on estimation theory including [6]. Formally, we say

that

E
[

(x̂(Z) − x)2
]

≥ Iy(x)−1 (12)

where Iy(x) is known as the Fisher information matrix (FIM). The
elements of the FIM are measures of the amount of “information”

available about each parameter. Given our measurement vector Z

and the Gaussian noise assumption, the diagonal elements of the

FIM for this problem are

hx0[n, x] =
N

∑

n=1

[

−(yt[n] − yp[n])

(xt[n] − xp[n])2 + (yt[n] − yp[n])2

]2

(13)

hx1[n, x] =
N

∑

n=1

[

(xt[n] − xp[n])

(xt[n] − xp[n])2 + (yt[n] − yp[n])2

]2

(14)

hx2[n, x] =
N

∑

n=1

[t[n]hx0]
2

(15)

hx3[n, x] =

N
∑

n=1

[t[n]hx1]
2

(16)

In this analysis, we won’t consider the cross-correlations in the

FIM as significant in terms of how we approach the analysis of the

preferred sensor platform motion. The Cramer-Rao lower bound on

the variance of each of our parameters is then found by inverting

the FIM. By examining the elements of the FIM, several important

issues can be noted. First, it is readily apparent that the number of

observations N in our observation vector Z is a critical parameter

determining the variance of our parameter estimates. Second, it is

also apparent that the relative positions of the sensor and target

over time also play a critical role as is explored in section III-D.

D. Parameter Observability

A well known constraint in tracking a constant-velocity target

from a moving sensor platform is that, if the sensor platform

also moves with constant velocity, the target motion parameters

are unobservable. Therefore, the sensor platform must undergo

an acceleration with respect to the target. A simple change of

course can satisfy this condition. The degree to which the sensor

motion improves the observability and, hence, the variance of the

parameter estimates can be quantified by the condition number J

of the FIM [6]. If J is too large, the FIM is ill-conditioned and

the parameters are unobservable. Even if the FIM is invertible,

the parameters may be marginally observable depending on the

actual value of J . The vehicle behaviors described in section IV

are designed to produce a well-conditioned FIM.

IV. THE IVP HELM AND VEHICLE BEHAVIORS

Here we describe the use of multi-objective optimization with

interval programming and the primary behaviors used in this

experiment. For further examples of this approach, although with

different missions and behaviors, see [4], [5].

A. Behavior-Based Control with Interval Programming

By using multi-objective optimization in action selection, be-

haviors produce an objective function rather than a single preferred

action ( [2], [7], [8]). The IvP model specifies both a scheme for

representing functions of unlimited form as well as a set of algo-

rithms for finding the globally optimal solution. All functions are

piecewise linearly defined, thus they are typically an approximation

of a behavior’s true underlying utility function. Search is over the

weighted sum of individual functions and uses branch and bound

to search through the combination space of pieces rather than the

decision space of actions. The only error introduced is in the dis-

crepancy between a behavior’s true underlying utility function and

the piecewise approximation produced to the solver. This error is

preferable compared with restricting the function form of behavior

output to say linear or quadratic functions. Furthermore, the search

is much faster than brute force evaluation of the decision space,

as done in [8]. The decision regarding function approximation

accuracy is a local decision to the behavior designer, who typically

has insight into what is sufficient. The solver guarantees a globally

optimal solution and this work validates that such search is feasible

in a vehicle control loop of 4Hz on a 600MHz computer.

To enhance search speed, the initial decision provided to the

branch and bound algorithm is the output of the previous cycle,

since typically the optimal prior action remains an excellent

candidate in the present, until something changes in the world.

Indeed when something does change dramatically in the world,

such as hitting a way-point, the solve time has been observed to be

up to 50% longer, but still comfortably under practical constraints.

Although the use of objective functions is designed to coordinate

multiple simultaneously active behaviors, helm behaviors can be

easily conditioned on variable-value pairs in the MOOS database



to run at the exclusion of other behaviors. Likewise, behaviors

can produce variable-value pairs upon reaching a conclusion or

milestone of significance to the behavior. In this way, a set of

behaviors could be run in a plan-like sequence, or run in a layered

relationship as originally described in [9].

B. The Orbit Behavior

The Orbit behavior is designed to provide a patrol capability

in which the vehicle will orbit a fixed point while waiting for an

event to occur. Given an orbit center, the behavior dynamically

determines a list of waypoints to form the orbit. Parameters to this

behavior allow the choice of clockwise/counter-clockwise orbits as

well as the number of waypoints in the orbit path and the vehicle

speed. The objective functions for this behavior are identical to the

standard waypoint objective functions described in IV-G.

(xp, yp)

(a) The ArrayTurn behavior

(x̂t, ŷt)

(xp, yp)

(b) The ArrayAngle behavior

Fig. 3. The ArrayTurn and ArrayAngle Behaviors are both one-dimensional over
over course and bimodal. The ArrayTurn behavior is responsible for turning the
vehicle upon a target detection in order to clear the left/right ambiguity on the line
array. The ArrayAngle behavior is responsible for keeping the line array as close
as possible to broadside with the target given other motion constraints.

C. The ArrayTurn Behavior

The ArrayTurn behavior (see Fig. 3(a)) is designed to provide

a vehicle turning motion such that sensor platforms with acoustic

line arrays can determine which side of the array the target is on.

This behavior requires tight integration with the acoustic sensor

which signals when the left/right ambiguity has been cleared. The

objective function for this behavior is one-dimensional over course

and bimodal, with the modes centered around the two possible

course choices which are ninety degrees from the vehicle’s course

when the behavior is activated. The mode that is centered at the

course closest to the vehicle’s current course is weighted in order to

prevent frequent oscillation between the two modes. Fig. 4 shows

a plot of the objective function for the ArrayTurn behavior for a

course fix of zero degrees and a current course of fifty degrees.

Note how the mode closest to the current course has an increased

weight relative to the other course choice.

D. ArrayAngle Behavior

The ArrayAngle behavior (see Fig. 3(b) is designed to hold a

vehicle course such that sensor platforms with acoustic line arrays

will have the array as close as possible to broadside with the

target given the other constraints on vehicle motion. The objective

function for this behavior is one-dimensional over course and

bimodal, with the modes centered around the two possible course

choices that keep the array oriented at broadside with respect to

the target. The mode that is centered at the course closest to the

vehicle’s current course is weighted in order to prevent frequent

oscillation between the two modes. Fig. 5 shows a plot of the
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Fig. 4. Objective function for the ArrayTurn behavior. This figure shows a plot of
the objective function for the ArrayTurn behavior for a course fix of zero degrees
and a current course of fifty degrees. Note how the mode closest to the current
course has an increased weight.

objective function for the ArrayAngle behavior for a target bearing

of zero degrees and a current course of minus fifty degrees. Note

how the mode closest to the current course has an increased weight

relative to the other course choice.
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Fig. 5. Objective function for the ArrayAngle behavior. This figure shows a plot
of the objective function for the ArrayAngle behavior for a target bearing of zero
degrees and a current course of minus fifty degrees. Note how the mode closest to
the current course has an increased weight.

E. CloseRange Behavior

The CloseRange behavior is designed to close the distance to a

target being tracked by the on board sensor subject to a minimum

approach distance. The behavior produces objective functions that

are three-dimensional over course, speed, and time and rates

actions favorably that have a smaller closest point of approach

(CPA).

F. Classify Behavior

The Classify behavior used in this demonstration is active on

the classify vehicle and is identical to the CloseRange behavior

described in IV-E with the exception that the target track informa-

tion is provided from an external source (in this case the tracking

vehicle), instead of an on board sensor.

G. The Waypoint Behavior

The waypoint behavior is configured with a set of waypoints

and produces objective functions that favorably rank actions with



smaller detour distances along the shortest path to the next way-

point. This behavior is used by the target vehicle in the exper-

iments. Furthermore, a vehicle can be configured with multiple

instances of the same behavior type, and every vehicle is typically

configured with an instance of this behavior having a single way-

point just off the dock, conditioned on both a “mission=complete”

or “return=true” condition for returning all vehicles upon mission

completion or recalling them mid-mission should the need occur.

H. The OpRegion Behavior

The OpRegion behavior is configured with a single polygon

and will result in an all-stop signal (THRUST=0) to the low level

controllers if the vehicle leaves the operation area.

V. EXPERIMENT SETUP AND RESULTS

Experimental validation of the architecture and algorithms for

autonomous bearings-only tracking, was conducted using two

autonomous kayaks as the tracking and classify vehicles, and a

third kayak as a moving object to be tracked and classified. The

kayaks are proxies for autonomous underwater vehicles (AUV’s)

used in upcoming follow-on experiments.

A. Simplifying Assumptions

Three simplifying assumptions were made. First, as a proxy

for the towed array bearings-only sensor, the GPS position of

the sensed vehicle was communicated over an 802.11b wireless

connection to the sensing vehicle. The sensing (tracking) vehicle

converted (diminished) this information into bearings-only sensor

data. The second simplification was the use of the 802.11b wireless

connection as a proxy for communications via acoustic modem.

The third simplifying assumption concerns the classify vehicle,

which is not fitted with sensors suitable for classifying another

marine vehicle. As a proxy for this aspect of the scenario, the

classify vehicle will solely aspire to close the range between itself

and the object of interest once it starts receiving track-solution

information from its robotic counterpart.

B. The Marine Vehicle Platforms

The autonomous surface crafts used in this experiment are based

on a kayak platform (Fig. 6). Each is equipped with a Garmin 18

GPS unit providing position and trajectory updates at 1 Hz. The

vehicles are also equipped with a compass but the GPS provides

more accurate heading information, and is preferred, at speeds

greater than 0.2 m/s. Each vehicle is powered by 5 lead-acid

Kill Switch

802.11b Antenna

Cool Water Circulated
Cooling System

Main vehicle computer

in Watertight Enclosure

Fig. 6. The kayak-based autonomous surface craft.

batteries and a Minn Kota motor providing both propulsion and

steerage. The vehicles have a top speed of roughly 2.5 meters per

second. See [10] for more details on this platform.

C. Behavior Configurations

The three vehicles were configured with the following behav-

iors and pre-conditions. A condition is a “variable=value” pair

in the MOOS Database. A mission is started by broadcasting

“deploy=true” to all vehicles and ended when the “return=true”

message is broadcast. A broadcast is over 802.11b and changes a

particular MOOS variable in the database resident on the vehicle.

The broadcast could also be made via acoustic modem. All vehicle

helms were configured with the OpRegion behavior as a safety

measure. This behavior is active upon mission startup indicated

by “deploy=true”.

The tracking vehicle helm was configured with an Orbit behavior

which is active immediately upon mission startup indicated by

“deploy=true”. The Orbit behavior is conditioned on not receiving

bearing sensor data, i.e., “sensor data=inactive”. It was also con-

figured with ArrayTurn, ArrayAngle, and CloseRange behaviors.

These three behaviors are conditioned on the vehicle receiving

bearings-only sensor data, indicated by “sensor data=active” in the

MOOS Database.

The classify vehicle helm was also configured with an Orbit

behavior that activated at mission startup. Additionally, the helm

on this vehicle was configured with a Classify behavior which

went active when target track solution data was received from

the tracking vehicle. The Classify behavior was configured to

deactivate itself when the CPA to the target vehicle reached 30

meters.

The target vehicle was configured to follow a simple set of

waypoints, and was further configured to communicated its GPS

position to the sensor vehicle. This communication only ocurred

when the target vehicle was within a certain specified region

referred to as the “Sensor” region (Fig. 7). Deployment of the

target vehicle was done via human command over wireless link

when the other two vehicles had been on-station for an arbitrary

sufficient time.

D. Experimental Results

Fig. 7 shows the vehicle motion for an experimental “track and

classify” mission with autonomous kayaks (see Fig. 6) with one

tracking kayak, one classify kayak, and one target kayak. The

objective of this mission is for the tracking vehicle to acquire and

track the target vehicle while relaying target track solutions to the

classify vehicle which then executes a simulated classification run.

In (a) the track vehicle and classify vehicle are deployed and

executing their Orbit behavior to loiter in two separate regions. In

(b) the target vehicle is deployed and has just entered the “sensor

region” where it begins to transmit its position data to the track

vehicle. The track vehicle has just activated its ArrayTurn behavior

for determining which side of the sensor array the target is on.

In (c) the track vehicle has just sufficiently resolved the left-right

ambiguity and has begun transmitting track solutions to the classify

vehicle. The classify vehicle has begun its CloseRange behavior to

facilitate classification of the target. The track vehicle has activated

its CloseRange and ArrayAngle behaviors. In (d) both the track

and classify vehicle are dominated by CloseRange behaviors to the



target. In (e), the classify vehicle has performed the classification

of the target and both vehicles are returning a back to their loiter

regions. In (f) both vehicles are back on-station and awaiting any

further unknown objects or vehicles to come through its sensor

field. The target vehicle has returned to the dock.

Fig. 8 depicts the target position estimates produced by the

MOOS process pTracker overlaid onto the actual target track. It is

readily seen in the figure that the initial estimates were poor due to

a small value for N as discussed in section III-D. As the number of

observations increases, a convergence of the estimate near to the

actual track can be seen. Of special note is the large increase in

convergence labeled “Vehicle Turn” in the figure. This is the point

at which the sensor vehicle’s CloseRange behavior became active

and made a sharp course change between the positions shown

in Fig. 4(c) and 4(d). Some increasing error can be seen in the

estimates near the end of the experiment for two primary reasons.

First, this highlights the difficulty in trying to use a single bearings-

only sensor to track a target of nearly the same or faster speed. In

this configuration, the target is ahead of and moving away from

the sensor and it is difficult to position the sensor to produce a

better FIM as discussed in section III-D. Second, this error is due

to a need to further optimize the vehicle behavior parameters to

produce a better FIM.

VI. CONCLUSIONS

In this work we have demonstrated a method for sensor-

adaptive control of autonomous marine vehicles in an autonomous

oceanographic sampling network and shown its suitability for

controlling multiple, cooperating heterogeneous sensor platforms.

The results show that our proposed method combining a behavior-

based, multiple objective function control model with a sensor

providing high-level state information about the process being

sampled is a viable method for adaptive sampling of transitory

ocean phenomena in which fast reaction time is necessary. For

example, a group of autonomous surface craft could provide area

monitoring with some vehicles carrying radar sensors that then

vector vehicles with optical sensors toward any potential targets.

In complex environments where such vehicles may have to contend

with unknown situations like obstacle avoidance while still main-

taining sensing performance, the state space for the vehicle control

is much too large for a world-model approach and a behavior-

based approach such as described in the paper is indicated. This

approach does not come without penalty, however. The parameter

tuning and weighting needed for multiple, interacting behaviors to

provide reasonable performance under complex conditions is not

trivial at this stage.
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Fig. 7. A rendering of the experimental results. In (a) the track vehicle and classify vehicle (both autonomous kayaks, see Fig. 6) are deployed and executing their
Orbit behavior to loiter in two separate regions. In (b) the target vehicle is deployed and has just entered the “sensor region” where it begins to transmit its position data
to the track vehicle. The track vehicle has just activated its ArrayTurn behavior for determining which side of the sensor array the target is on. In (c) the track vehicle
has just sufficiently resolved the left-right ambiguity and has begun transmitting track solutions to the classify vehicle. The classify vehicle has begun its CloseRange
behavior to facilitate classification of the target. The track vehicle has activated its CloseRange and ArrayAngle behaviors. In (d) both the track and classify vehicle are
dominated by CloseRange behaviors to the target. In (e), the classify vehicle has performed the classification of the target and both vehicles are returning back to their
loiter regions. In (f) both vehicles are back on-station and awaiting any further unknown objects or vehicles to come through its sensor field. The target vehicle has
returned to the dock.
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Fig. 8. This figure depicts the target position estimates produced by the MOOS process pTracker overlaid onto the actual target track. It is readily seen in the figure
that the initial estimates were poor due to a small value for N as discussed in section III-D. As the number of observations increases, a convergence of the estimate near
to the actual track can be seen. Of special note is the large increase in convergence labeled “Vehicle Turn” in the figure. This is the point at which the sensor vehicle’s
CloseRange behavior became active and made a sharp course change between the positions shown in Fig. 4(c) and 4(d). Some bias can be seen in the estimates near
the end of the experiment due to a need to further optimize the vehicle behavior parameters to produce a better FIM as discussed in section III-D.
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Fig. 9. Target localization error. This figure shows the error between the target position estimates and the actual target location as a function of mission run time. The
point on the figure labeled “Vehicle Turn” corresponds to the point in the mission labeled “Vehicle Turn” in Fig. 8.


