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Benchmarks for Validating Range-Dependent Seismo-Acoustic
Propagation Codes

Joo Thiam Goh , Henrik Schmidt* , Peter Gerstoft , Woojae Seong

Abstract— The availability of fast and relatively low cost com-
puting power has resulted in radical changes to the role of seismo-
acoustic modeling. With the increase in the number of models
available, there is the inevitable question of how can one go about
validating all these numerical schemes. Recently, the issue of es-
tablishing reference solutions for range-dependent ocean acoustic
problems was addressed within the Acoustical Society of Amer-
ica. This has resulted in a set of well-defined benchmarks for
range-dependent fluid problems [ Finn B. Jensen and Carlo M.
Ferla, J. Acoust. Soc. Am., 87(4), 1499-1510,1990 |. However,
to date, there is no consistent set of benchmarks for the range-
dependent seismo-acoustic codes. In this paper, we present a
collection of problems intended for general use by the model-
ing community for validation of new computational schemes. A
number of new seismo-acoustic models are applied to produce
reference solutions for these benchmarks.
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I. INTRODUCTION

N ocean acoustics the recent shift in emphasis from deep to

shallow water and littoral environments has led to a signifi-
cant effort in developing environmental acoustics models incor-
porating improved treatment of the dominant phenomenon in
such environments — the bottom interaction.

The shallow water environment is an extremely complicated
waveguide bounded above by a rough sea surface and below by
an inhomogeneous, multi-layered elastic sea bed. Further, the
acoustic properties of the water column are affected by the close
proximity to the atmosphere, giving rise to a significant spatial
and temporal variability. The elastic sea bed adds another de-
gree of complication and it is only recently that modelers have
been able to account for its effect, to some degree. The ex-
istence of seismic interface waves, inhomogeneous waves, and
headwaves, and interference of multiply reflected waves are all
important phenomena and the energy carried by seismic waves
is not negligible compared to the water-borne field.

The most general approaches to modeling seismo-acoustic
bottom interaction are the direct numerical solutions to the
elastic and fluid wave equations. Thus, fluid-elastic interaction
problems have been handled using both finite difference meth-
ods (FDM) [1], and finite element methods (FEM) [2]. However,
since these methods rely on spatial and temporal discretizations
which are small compared to the wavelengths, they are normally
restricted to modeling short range propagation and scattering.
Even with today’s computers, the use of FDM and FEM to
problems involving ranges of hundreds or thousands of wave-
lengths, characteristic of ocean acoustics, is prohibitive.

The parabolic equation (PE) algorithm today is without doubt
the most popular and versatile approach to modeling range-
dependent ocean waveguides. However, in trying to extend the
PE theory to elastic media, two main problems arise. Firstly,
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the field is described by a vector (displacement) rather than a
scalar. Secondly, two different wave speeds exist in a solid and
in a heterogeneous media or at boundaries, there is continu-
ous conversion from one wave type to another. Furthermore,
elastic bottoms support a wide spectrum of propagation angles.
Therefore, even though several PE models have been proposed
for wave propagation in elastic media [3], [4], [5], [6], [7], [8], [9],
only a few of these models were actually implemented. Notable
implementations include those of Wetton and Brooke [7] and
Collins [8], [9]. Thus, for the most part, the parabolic theories
for elastic waves have not been adequately tested numerically,
particularly in two-way formulations. In addition to being lim-
ited to weak range dependence, a major drawback of the PE as
well as the discrete methods is the fact that the solutions are
not as easily interpreted physically. Thus, the modal structure
of the field can only be determined through post-processing [10].

For range-independent seismo-acoustic propagation model-
ing, SAFARI [11] is in widespread use for providing exact ref-
erence solutions. Since SAFARI is based on integral transforms
of the wave equation, it is not directly applicable to range-
dependent problems. To overcome this inherent limitation of
spectral approaches, Lu and Felsen [12] derived an adiabatic
transformation of the wavenumber integrals for weakly range-
dependent problems. However, their method works well only
for cases where the wave field is largely dominated by discrete
modes [13]. Its extension to the elastic case is also non-trivial —
if at all possible.

Recently, two new modeling approaches were developed for
solving the elastic wave equation in range-dependent environ-
ments. Both divides the environment into horizontally strat-
ified sectors, coupled along vertical interfaces. Another com-
mon feature is the use of wavenumber integration for generat-
ing the Green’s functions for the sectors. The main difference
is the handling of the coupling of seismic energy at the verti-
cal interfaces between these range-independent sectors. One,
in principle exact, method - the socalled spectral super-element
approach - solves the coupled integral equation using a high-
order panel-boundary-element formulation [14], [15]. The other,
approximate approach solves the reflection/transmission prob-
lem locally at a discrete number of depths, yielding a distribu-
tion of virtual panel sources [16]. Both methods use standard
wavenumber integration to compute the forward and backward
scattered field within the sectors. The testing and validation of
these new codes as well as the elastic PE has been hampered by
the lack of benchmarks with associated reference solutions as
well as the availability of other general-purpose seismo-acoustic
propagation codes.

This paper presents a series of canonical benchmark prob-
lems, providing the elastic equivalents of the ASA benchmarks
now used extensively as a standard by the modeling community
[17]. The benchmark problems presented here is a subset of the
very extensive list of benchmark problems used by the authors
in recent years for validating new seismo-acoustic models [18].

Each individual benchmark problem presented here has been
selected to emphasize a specific critical issue. Thus, for exam-
ple, one of the problems emphasizes robustness of the backscat-



ter solutions for low-contrast, lateral discontinuities. As the
other extreme, another problem tests the accuracy of the var-
ious models in handling strong compression/shear coupling at
elastic interfaces.

Some of the modeling approaches have extreme difficulty han-
dling one class of problems, but performed very well for others.
In addition, there is no unique yardstick for modeling perfor-
mance. Thus, for some applications, accuracy is crucial, while
for others, computational efficiency is the dominant require-
ment. Consequently, this paper does not attempt in any way
to objectively compare model performance. In other words, the
results are not the outcome of a “shoot-out” among the various
models. The objective of this paper is solely to present a series
of benchmark problems which future new modeling approaches
may be applied to for validation and verification.

II. THE NUMERICAL MODELS

Several different numerical models have been applied to the
benchmark problems. On the other hand this is not to be con-
sidered a competition among all existing seismo-acoustic mod-
els, and the list is far from complete.

Our solutions been obtained with the finite element parabolic
equation code by Collins [9], the boundary element code (BEM)
by Gerstoft and Schmidt [19], the spectral super-element code
by Goh and Schmidt [15] and the virtual source algorithm
(VISA) by Schmidt [16],

The detailed description of the various models are given else-
where, but for completeness we here briefly outline the main fea-
tures characterizing the models and their fundamental strengths
and limitations.

A. FEPES - Finite Element PE

FEPES is an elastic PE code for time harmonic sound prop-
agation in an ocean overlying a sediment that supports both
compressional and shear waves. It incorporates the split-step
Pade solution as well as a self starter which properly excites
interface waves [8]. FEPES handles all elastic wave types in-
cluding interface waves and for range independent problems, it
is both arbitrarily accurate and unconditionally stable. FEPES
contains an energy-conservation correction which helps improve
the accuracy of the PE method for range dependent prob-
lems. In FEPES, a range-dependent ocean environment is ap-
proximated by a sequence of range-independent regions. The
range-independent elastic PE is used to propagate the solu-
tion through these range-independent sectors. An amplitude
correction, based on energy-flux conservation, is then applied
at the vertical interfaces separating each range-independent re-
gion, thereby obtaining an approximation to the field transmit-
ted across the vertical interface. Even though the elastic PE is
efficient, it is accurate only for gradual range dependence. In
particular, it may break down if the range variation in the elas-
tic properties is large, i.e. in problems involving large contrasts
across the vertical interfaces. The FEPES code was only used
for solving test problem D1.

B. BEM - Boundary Element Model

The boundary element method (BEM) of Gerstoft and
Schmidt [19] treats propagation and scattering in an environ-
ment with two coupled, stratified regions, separated by an ar-
bitrarily shaped contour. The contour is divided into a number
of discrete boundary elements with assumed linear field vari-
ability. With both coupled regions assumed plane stratified,
the Green’s functions are computed by wavenumber integration
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using SAFARI. This eliminates all boundary integral contribu-
tions from the interfaces in the stratification, leaving only the
finite region contour in the boundary integral representation.
Once the boundary element equations are solved, the scattered
field is computed using SAFARI Green'’s functions again. The
BEM code was developed for problems concerning scattering
from elastic objects in a stratified seabed and discrete ice cover
features such as keels and ridges. However,the general con-
tour shapes allowed make this approach applicable to canon-
ical range-dependent propagation problems involving a single,
discrete feature, such as a discrete change in bathymetry or
medium characteristics. The BEM model has been thoroughly
validated, and for problems where it is applicable its solution
can be considered the reference solution.

Allowing only linear field variation over the elements, at least
10 boundary elements per wavelength are required to ensure
convergence of the BEM solutions.

C. CORE - Spectral Super-Element Model

CORE is an acronym for Coupled OASES for Range-
dependent Environments [15]. It belongs to the new Spec-
tral Super-Element [14] class of propagation models for range-
dependent waveguides. The spectral super-element approach
is a hybridization of the finite element and boundary ele-
ment methods. The environment is divided into a series
of range-independent sectors, separated by vertical interfaces
along which the field parameters are expanded in a series of
orthogonal polynomials within each layer. The field within
the super-element and the influence funtions connecting the
expansion functions are given by wavenumber integral repre-
sentations. Thus, the boundary conditions to be satisfied on
the vertical interfaces can be expressed in a linear system of
equations in the expansion coefficients, with the coefficient ma-
trix evaluated using SAFARI/OASES. The system of equation
yields the two-way field in all elements simultaneously, but in
most cases a more efficient marching, single-scatter solution can
be applied.

All CORE solutions provided here uses the single-scatter ap-
proximation. Also, unless otherwise noted, the spectral super-
element solutions are obtained using only four orders of expan-
sion in the field parameters within each layer.

D. VISA - Virtual Source Approach

The Virtual Source Algorithm (VISA) [16] is similar to the
spectral super-element models in terms of the division of the
range-dependent waveguide into horizontally stratified sectors.
However, instead of the boundary integral solution used to
match the boundary conditions in BEM and CORE, VISA
uses a marching, local single-scatter approximation to the
transmission and reflection problem at the sector boundaries.
Thus, a virtual array of sources and receivers is introduced
on each sector boundary. The field incident from the physi-
cal source or the previous sector boundary is computed using
SAFARI/OASES and therefore inherently decomposed in plane
waves. Each plane wave component is then undergoing a local
reflection/transmission process, leading to a direct wavenumber
integral representation for the displacements on the boundaries.
These then act as sources in the virtual source array radiating
into the next sector and back into the previous ones. Because it
does not depend on the solution of an integral equation, VISA
is extremely efficient compared to BEM and CORE, but it ob-
viously provides an approximation only. On the other hand,
as the benchmark problems demonstrate, it is extraordinarily
robust.
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III. ELASTIC BENCHMARK CLASSIFICATION

The benchmark problems we propose can be categorized into
several classes and sub-classes as follows:

A. Sanity Checks

This class of benchmarks are in general extremely simple
problems which are trivial to solve by existing codes. Typical
examples are range-independent problems which can be solved
exactly using wavenumber integration, but which are non-trivial
for codes such as CORE and VISA, which handle dummy inter-
faces in the same manner whether they are transparent or not.
This class of problem are excellent for identifying implementa-
tion errors and for testing energy conservation of a marching
solution such as the PE or VISA. Also, in the case of elastic
problems, improper handling of compression/shear coupling is
in general emphasized by these non-coupling problems.

B. Discrete Medium Changes

This class provides the next level of complexity, and intro-
duces backscattering. A characteristic example of this class is
two welded elastic slaps with only the medium properties chang-
ing in the lateral direction. The geometry of the problem re-
mains unchanged in the lateral direction. Depending on the con-
trast, these problems can be conveniently subdivided into weak
and strong sub-classes. Weak contrast problems are character-
ized by small changes in the elastic constants between sectors,
typically 10 to 20 %. Such cases are also exhibits weak compres-
sion/shear coupling, and models such as most PE-s depending
on this will work excellently. Some range-dependent problems
encountered in the real seabed are characterized by strong con-
trasts. Since the importance of shear in ocean acoustics is in-
herently associated with strong coupling, most problems where
shear are important are of this category. For horizontal inter-
faces strong contrast is handled easily by both wavenumber-
integration approaches and the PE, but strong contrasts at
vertical interfaces provide a serious problem for the PE, for
example. Later we introduce a couple of benchmarks which
emphasizes proper handling of such strong compression/shear
coupling.

C. Discrete Geometry Changes

In addition to changes in medium properties, benchmarks
in this class also exhibits discrete changes in geometry in the
lateral direction. These discrete changes often take the forms
of step changes in bathymetry. An example would be the ocean
waveguide with a stair-step discontinuity.

D. Continuous Range-Variation

This next level of benchmark complexity introduces more re-
alistic gradual range-dependence, with the classical example be-
ing the ideal and penetrable fluid wedge problems. For compu-
tational reasons, these problems are the ones for which the PE
is the natural choice of approach. However, for elastic bottoms
where compression/shear coupling becomes important, the per-
formance of the elastic PE is uncertain. It may work excellently
for small slopes and/or weak contrasts, but the limitations are
unknown because of the lack of benchmarks and reference solu-
tions. The establishment of these limitations is one of the major
issues which can be addressed through benchmarking with some
of the new solution techniques.

E. Consistency Benchmarks

This class is very similar to class A in the sense that they
provide a form of sanity check. They do so, however, at a much

higher level of complexity, allowing for validation of some of the
more subtle issues of fluid-elastic interaction. In general these
problems possess some form of symmetry which make the solu-
tions “self-checking” by virtue of the associated field symmetry
properties. A characteristic example of this class is a plane wave
or beam incident along the symmetry plane of a corner reflec-
tor/refractor. Below we present an example of such a “corner”
problem.

IV. BENCHMARK PROBLEMS AND SOLUTIONS

In the following we present the various benchmarks and the
solutions obtained using the various codes described above. In
all cases involving a water medium, it is assumed to be lossless
with a sound speed of 1500 m/s and a density of 1 g/cm®.

A. Sanity Benchmarks
Al: Modified NORDA Case 3

Example Al is based on case 3A used in the NORDA
Parabolic Equation Workshop [20]. This problem was first mod-
ified for use as a test case for elastic PE by Wetton and Brooke
[7] and we run a slightly different version here. The waveguide,
illustrated in Fig. 1(a), consists of a water layer with a thick-
ness of 100 m, over a solid layer with a thickness of 100 m, a
density of 1.2 g/cm®, a compressional speed of 1590 m/s, and
a shear speed of 500 m/s. The fluid is assumed to be lossless
and the solid has a compressional attenuation of 0.2dB/X and a
shear attenuation of 0.5 dB/\. A 25-Hz line source is placed at
a distance of 5 km from an artificial transparent interface. The
primary test here is to see how well energy is coupled through
a transparent vertical interface and represents the extreme case
of a low-contrast vertical step. Comparisons between SAFARI
and our solutions for receiver depths of 50 and 110 m are shown
in Fig. 1(b) and Fig. 1(c). For clarity we have shown the so-
lution from 2 to 8 km and we see that the super-element solu-
tion agrees well with SAFARI. For ranges less than 5 km, the
super-element formulation reduces to SAFARI exactly and we
see perfect agreement in the solutions. For ranges beyond the
artificial interface, the agreement is still quite good for both
receivers, indicating proper coupling across the interface.

B. Discrete Medium Changes Benchmarks
B1-B4: Single Layer Benchmarks

The next benchmark consists of a set of 2-sector problems
shown in Fig. 2. The waveguide is bounded at the top and
bottom by a pressure release boundary. A 25-Hz line source is
placed at a depth of 25 m and at a distance of 2 km from the ver-
tical discontinuity. By bounding the waveguide by pressure re-
lease boundaries, this benchmark requires the propagation code
to properly conserve energy before one can arrive at the cor-
rect answer. In addition, by varying the material properties on
both sides of the discontinuity, we can assess the sensitivity of a
particular code to contrast in the primary direction of propaga-
tion. Table I shows the 4 different configurations that we have
chosen.

The BEM code [19] is expected to produce good results for
this set of benchmarks and is therefore taken as the reference
solution. Solutions for the normal stress at a receiver depth of
35 m are shown in Fig. 3 and Fig. 4 and we generally have good
agreement among the three solutions. The backscatter solutions
are presented in Fig. 5 and Fig. 6.

B5: Dynamic Range Test

For a low contrast problem we investigate the dynamic range
of each code. For a vertical interface with a low contrast most



BENCHMARK

Parameters | Bl | B2 | B3 | B4

p 1.0 1.5 1.5 1.5
Left Cp 1500 | 1700 | 1700 | 1700
sector Cs 0 700 700 700

Qap 0.2 0.2 0.2 0.2

Qs 0 0.5 0.5 0.5

p 1.5 1.0 1.5 1.5
Right Cp 1700 | 1500 | 1800 | 3000
sector Cs 700 0 900 | 1700

ap 0.2 0.2 0.2 0.2

Qs 0.5 0 0.5 0.5

TABLE 1

PARAMETERS FOR THE SERIES OF 2-SECTOR CANONICAL TEST PROBLEMS. WAVE
SPEEDS ARE GIVEN IN m/s, DENSITIES IN g/cm3, AND ATTENUATION IN dB/A.

energy will penetrate the interface and only little energy will
be backscattered. The difference in the fields for which the
solution breaks down is referred to as the dynamic range of the
codes. The CORE and BEM codes will have greater difficulties
in handling such a problem than VISA since they solve for a
virtual source distribution on the interface to be used for both
the forward and backward field. In doing so, most of their effort
will be on obtaining a correct forward field. On the other hand,
VISA solves it solely as a transmission and reflection problem
and should not experience problems with low contrasts. This
test is only for establishing the dynamic range for the codes.

A simple 2-sector acoustic case is selected and the average
backscattered field in the water column at range zero from a
vertical interface at 2-km range is computed. The left sector
has a nominal sound speed of 1500 m/s and we systematically
doubles the sound speed difference between the left and right
sector from 0.625 m/s to 80 m/s. We will assume that the
increment is small and that the arrivals are approximately per-
pendicular to the interface such the reflection coefficient doubles
for every doubling of the sound speed differential. This corre-
sponds to a 6 dB increase in the backscattered field. The result
of this test, Fig. 7, does in fact show that VISA follows closely
the 6 dB increase per sound speed doubling, while CORE and
BEM breaks down earlier.

Transforming the backscattered field to the vertical interface
the dynamic range, that is the difference between the average
forward and backward field before the solution breaks down, can
be estimated. For BEM it is about 40 dB and for CORE 55 dB.
The larger dynamic range for CORE is expected to be due to
its higher order representation of the field at the interface. For
more complicated problems involving shear and more compli-
cated geometry the dynamic range is expected to be lower.

B6: Mode conversion - Vertical Point Force

Mode conversion from compressional waves to shear and vice
versa is an extremely important physical process. It is also the
single most important complicating factor in most parabolic
equation formulations. Example B6 considers just this particu-
lar problem. A 25-Hz vertical point force is placed at 25m depth
in a 100-m deep waveguide bounded at the top and bottom by
presure-release boundaries. We set up a 2-sector problem with
the compressional and shear speed in the left sector being 1700
m/s and 700 m/s respectively. The density is 1.5 g/cm?® and the
compressional and shear attenuation is 0.2 dB/\ and 0.5 dB/A
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respectively. The right sector is elastic with a compressional
speed of 3000 m/s and a shear speed of 1700 m/s. All other
parameters remain the same. The compressional speed in the
left sector is matched to the shear speed on the right, resulting
in strong coupling of P-waves from the left to S-waves on the
right. Another complicating factor is the extremely large con-
trast in the sound-speeds. The solutions for this example are
shown in Fig. 8 and Fig. 9.

B7: Mode conversion - Horizontal Point Force

In Example B7, we run the same problem but this time with a
horizontal point force of 1 N placed in the middle of the waveg-
uide. From the symmetry of the waveguide we can see that now
most of the excitation at the vertical discontinuity will be of the
compressional waves. The solutions for this example are shown
in Fig. 10 and Fig. 11.

C. Discrete Geometry Changes Benchmarks
C1: Low Contrast Embedded Elastic Step

Example C1, taken from Collins [8] and shown in Fig. 12
involves two solid layers and a step discontinuity in layer thick-
ness. A 25-Hz source is placed at a depth of 50 m in the upper
layer, which is 500 m thick for ranges less than 7 km and 250 m
for ranges beyond 7 km. The compressional and shear speeds
in the upper layer is 1500 m/s and 700 m/s respectively and
the medium is assumed to be lossless. The lower layer is a
half-space with compressional and shear speeds equal to 1600
m/s and 750 m/s respectively. The attenuation in the lower
medium is 0.5 dB/A for both wave types. The density in the
upper and lower medium is 1g/cm® and 1.2 g/cm® respectively.
This particular problem has a very low contrast across the verti-
cal interface and we present forward and back-scatter solutions
at two receiver depths. In the forward direction, we have good
agreement between the three solutions.

In the back-scatter, there is some disagreement, particularly
near the scattering surface. We believed this is due to inac-
curacies associated with the large dynamic range between the
forward and back-scattered field.

D. Continuous Range-Variation
D1: Elastic ASA Wedge

Example D1, shown in Fig. 15 is test case 3 from the Parabolic
Equation Workshop II [21]. This is an elastic version of the
standard ASA wedge benchmark problem. A 25-Hz point source
is placed at 100 m depth. The ocean depth decreases linearly
with range from 200 m at the source range to zero at r = 4 km.
The ocean bottom has a compressional sound speed of 1700
m/s and a shear speed of 800 m/s. The density is 1.5 g/cm®
with the compressional and shear attenuations at 0.5 dB/A. In
Fig. 16 we present solutions from the parabolic equation model
and the super-element method. There is good agreement for
the shallow receiver and for the receiver in the bottom, the
agreement is still quite good and the differences are primarily
due to the particular manner in which the environment is being
discretized.

E. Consistency Benchmarks
E1l: Corner Reflection/Refraction

Example E1 considers reflection and diffraction from a cor-
ner. We have a beam impinging onto a corner of a square at
an angle of 45 degrees measured from the horizontal. The array
is made up of 20 sources spaced at 30 m apart, extending from
the surface down to a depth of 580 m. Again, we can construct
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a multitude of different combinations for the host media (con-
taining the source) as well as the corner. Example E1, shown
in Fig. 17, considers the case of an elastic host media and an
air corner. We present only VISA generated solutions for the
total bulk and shear stress. This test is particularly attractive
because of the characteristic symmetric 'butterfly’ field contour.

V. CONCLUSION

‘We have presented solutions to some range-dependent seismo-
acoustic problems chosen as benchmarks for validating general-
purpose codes. Even though some of these problems do not
represent realistic ocean environments, they nevertheless serve
the very important objective of testing the integrity of the code
as well as the robustness of the formulation. Only when we
are confident that the code behaves as it should, can we then
apply them to solve ’real-world’ problems. No doubt many other
variations can be derived from the simple examples here.
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Fig. 9. B6: Mode conversion with a vertical point force - Backward
scattered field (a) vertical particle velocity, (b) horizontal particle
velocity; Solid : BEM, Dashed : VISA, Dotted : CORE.
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Fig. 13. Embedded elastic step (Ex. C1). Total normal stress. (a)
Receiver at 100 m. (b) Receiver at 300 m. Solid - BEM; Dashed -
VISA; Dotted - Spectral super-element.
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Fig. 14. Embedded elastic step (Ex. C1). Back scattered normal stress
solution. (a) Receiver at 100 m. (b) Receiver at 300 m. Solid - BEM;
Dashed - VISA; Dotted - Spectral super-element.
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Fig. 15. Environment for the ASA elastic wedge
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