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The spectral super-element approach uses a hybridization of finite elements, boundary integrals, and
wavenumber integration to solve the Helmholtz equation in a range-dependent ocean environment. The
range-dependent ocean is divided into range independent sectors or super-elements. Wavenumber
integral representations can be derived for an influence matrix representing the relation between
displacement and pressure expansions on the vertical boundaries. The integration kernels are determined
very efficiently by the Direct Global Matrix method in combination with a numerical quadrature scheme.
The unknown expansion coefficients are then found by matching the boundary conditions of continuous
displacement and stress between the sectors, with the acoustic field following by evaluating the
wavenumber integrals within each sector, e.g. using the FFP technique. Two different boundary matching
schemes are applied. One solves the global coupling problem incorporating all multiple scattering.

A second, more efficient approach applies a single-scatter approximation at each vertical sector
boundary, allowing for a marching solution. Numerical solutions to a series of canonical benchmark
problems are given and compared to solutions obtained by other numerical approaches such as

parabolic equations and coupled modes.

PACS numbers : 43.30Bp, 43.30Dr, 43.30Gv

INTRODUCTION

The last couple of decades has seen a significant effort
in improving the numerical modeling capability for range-
independent seismo-acoustic propagation and reverbera-
tion in the ocean environment [1].

The most general approaches are direct solutions of
the wave equations using discrete methods such as the fi-
nite difference methods (FDM), and finite element methods
(FEM). These methods rely on spatial and temporal dis-
cretizations which are small compared to the wavelengths
in the problem, and since ocean acoustics problems are
typically concerned with ranges of several hundreds or
thousands of wavelengths, these discrete methods are in
general prohibitive for computational reasons. As a re-
sult, the discrete methods are only important for modeling
propagation and scattering in the near field.

Galerkin finite-element or spectral methods are used
extensively in fluid dynamics [2] and to a limited degree
in seismo-acoustic modeling [3]. These methods are in
general well suited to wave propagation problems. The
basis functions inherently possess some of the wave nature
of the actual field, and the spectral methods therefore in
general require less degrees of freedom than the discrete
However, the
computational savings are still insufficient for use of these

finite-element and -difference approaches.

methods for general long-range ocean waveguide problems.
Because of the computational limitations on the direct
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numerical solution of the wave equations, most modeling
development and application in ocean seismo-acoustics has
been centered around the classical modeling approaches,
ray tracing, parabolic equations, wavenumber integration,
and normal modes [1]. In addition to the computational
issues, these methods are also usually preferred because
of the fact that they provide frequency domain solutions.
Due to the low cross-spectral coherence of long range
ocean waveguide propagation frequency domain solutions
are usually more relevant than the time domain solutions
provided by most seismo-acoustic FEM and FDM algo-
rithms.

Ray tracing remains a popular method due to its nu-
merical efficiency, and the direct physical interpretation of
the results. Further, it is well suited to handling range-
dependence in two as well as three dimensions. However,
ray theory provides a high-frequency approximation, and
the associated limitations for seismo-acoustic modeling are
well established. Also, ray tracing is not easily applied to
propagation in elastic media because of the ray splitting
associated with elastic conversion at interfaces.

The parabolic equation (PE) algorithm has undergone
a dramatic development over the last couple of decades,
and today is without doubt the most popular approach
to seismo-acoustic modeling in range-dependent ocean
waveguides. Even though the numerical solution is often
performed using discrete methods such as FDM or FEM,
the range discretization does not have to be smaller than a
fraction of the wavelength. Also, the transformation into
a parabolic equation allows for numerical solution using a
marching scheme, and the PE is therefore in general ex-



tremely efficient compared to direct numerical solution of
the eliptical Helmholtz equation. Due to the inherent one-
way propagation assumption, the PE is limited to weak
range dependence, but using a single-scatter approxima-
tion it has recently been extended to model backscattering
[4]. Also, a PE for elastic propagation has recently been
introduced [5]. As a result of these developments the PE is
now applicable to most scenarios occuring in low to mod-
erate frequency ocean seismo-acoustics. Compared to the
other classical approaches a major drawback of the PE as
well as the discrete methods is the fact that the solutions
are not as easily interpreted physically. Thus, the modal
structure of the field can only be determined through post-
processing [6].

A common problem for all the classical, approximate
aproaches, is the fact that the accuracy of the solution
is not automatically guaranteed due to a dependency on
computational parameters. However, this problem has
traditionally been overcome by using two different model-
ing approaches. In that regard, extensive use of the elastic
PE is hampered by a lack of other applicable modeling
approaches. There is therefore a continuing effort being
devoted to the development of the other classical mod-
eling approaches to treat propagation and reverberation
problems in a range-dependent ocean environment.

The wavenumber integration and normal mode ap-
proaches are based on integral transforms and therefore
inherently limited to range-independent propagation prob-
lems. However, approximate solutions to range-dependent
environments can be devised for both of these solution
techniques.

Here, the adiabatic mode theory is well established
and used extensively. However, due to the fact that it
assumes that the mode shapes only undergo simple geo-
metric scaling, the adiabatic approximation is restricted
to weak range-dependence. Coupled-mode [7] algorithms
have been developed which can handle strongly range de-
pendent problems. The coupled mode approach is cur-
rently the primary provider of benchmark solutions, but
existing implementations are limited to handling fluid
waveguides only.

The wavenumber integration approach is the estab-
lished benchmark for range-independent propagation in
fluid-elastic waveguides [8], and a significant effort has
been devoted to the development of an approximate ex-
tension to range-dependent environments. Lu and Felsen
[9] derived an adiabatic transformation of the wavenum-
ber integrals for weakly range-dependent problems. How-
ever, due to approximations made using dominant asymp-
totics, the method works well only for cases where the
wave field is largely dominated by discrete modes [10].
Gilbert and Evans developed a one-way wavenumber inte-
gration approach for range-dependent fluid environments
[11]. In contrast to the adiabatic approximation this ap-
proach handles full mode coupling, but the one-way ap-
proximation makes it applicable only to problems with
weak contrasts in the range direction.

Wavenumber integration has been applied succesfully
to range dependence which is limited in its horizontal ex-
tent, such as a finite size inhomogeneity in the seabed.

By combining wavenumber integration with a boundary
integral formulation for the scattered field, accurate solu-
tions are obtained very efficiently for fluid as well as elastic
environments [12, 13, 14, 15].

In the present spectral super-element method, the
range-dependent ocean is divided into a series of range-
independent sectors separated by vertical boundaries. In
spite of some similarity to the traditional spectral element
approach, there is a fundamental difference in terms of
the horizontal dependence of the solution. In the spectral
element approach this dependence is included in the de-
grees of freedom, whereas it is given explicitly in terms of a
boundary integral in the present super-element approach.
This is the key to the efficiency of the present approach
to propagation in waveguides of long horizontal extent,
prohibitive to traditional spectral element approaches.

The field in each sector or super-element is expressed
as a superposition of that produced by any real source that
might be present in the sector and the field produced by
panel sources representing the discontinuities of the ver-
tical boundaries. Since the super-element is horizontally
stratified, the source field is given by a wavenumber in-
tegral, with the kernels determined very efficiently using
the Direct Global Matrix (DGM) approach [16, 8]. The
panel source contributions are expressed as a boundary
integral which is changed to a discrete summation of in-
fluence functions by expanding the field along the verti-
cal boundary in orthogonal polynomials. Using Legendre
polynomials for the expansion, wavenumber integral rep-
resentations for the influence functions are obtained. The
kernels of these integrals are also evaluated very efficiently
using DGM.

Since it does not rely on any wavelength-dependent
discretization in the horizontal direction, the spectral
super-element approach can be applied to short- as well as
long-range propagation and reverberation problems. The
wavenumber integration approach inherently decomposes
the total solution into spectral components which is im-
portant for physical interpretations. The present method
can also be extended in a straight forward manner to treat
laterally inhomogeneous elastic media.

We describe two different solution algorithms. The
first is a global approach, yielding both the forward prop-
agating field and the back-scattered components. The
coefficients are obtained from simultaneously matching
the boundary conditions along all vertical sector bound-
aries. For ocean environments with continuously chang-
ing bathymetry, the construction and inversion of this
matrix in a global manner presents a severe computa-
tional load. This deficiency has motivated the search for
a more efficient formulation of the hybrid scheme. By em-
ploying the single-scatter approximation, where the back-
scattered component from the opposite vertical boundary
is neglected, a computationally efficient forward-marching
scheme can be derived. We have also implemented a 2-way
marching scheme providing a single-scatter approximation
to the reverberation from large scale features, similar to
the approach used in the two-way PE [4].

We would like to stress that the present approach
should be considered a supplement rather than an alter-
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Figure 1: Super-element discretization of range-dependent
ocean waveguides

native to other numerical approaches. Thus, it is ide-
ally suited to canonical problems with few changes in
bathymetry. It provides accurate solutions to problems
with continuously changing bathymetry as well, but for
such problems other methods such as the PE are in gen-
eral more efficient. The main advantage of the present
approach is the fact that the only approximation made is
associated with the environmental discretization. There
is no one-way assumptions made similar to those of the
PE, and the numerical accuracy associated with the trun-
cation of the expansion can be asserted by simple con-
vergence analysis. As a result, the present approach can
provide a benchmark for other more efficient approaches
for problems with gradually changing bathymetry. An-
other advantage of the present approach is its conceptual
validity for range-dependent fluid-elastic stratifications, as
will be described in a future paper.

I. THE SPECTRAL SUPER-ELEMENT APPROACH

A. Stratified Super-Elements

In the spectral super-element approach , the environ-
ment is first divided into a series of range-independent sec-
tors or super-elements, separated by vertical boundaries
or cuts, as illustrated in Figl. The different grey-scales
within each super-element denote layers with different ma-
terial properties. Within each sector, the ocean environ-
ment is horizontally stratified. Here we will assume all
layers to be fluid, but the approach is applicable to elas-
tic stratifications as well. However, the additional algebra
would obscure the fundamental principle of the approach,
and we therefore limit ourselves to the fluid case in the
present paper.

In deriving the spectral-element equations we will as-
sume the acoustic field to be plane. Thus, in order to ac-
count for cylindrical spreading in axisymmetric scenarios,
the spreading factor is applied explicitly to the resulting
field. The validity of this approach is described in the ap-
pendix and an example of a numerical calculation is shown
in Fig. (7).

Within each sector the acoustic pressure of time de-

pendence exp iwt is given by

p(r) = pw’o(r), (1)

where ¢ is the displacement potential, satisfying the
Helmbholtz equation [1],

[V? + k()] 6(x) = f(x) .

and r represents the spatial coordinates (z, z).

The field in sector j is now expressed as a superposi-
tion of the field produced in the stratified element in the
absence of the vertical boundaries, ¢*, the field arising
from the left boundary ¢, and the field arising from the
right boundary, ¢,

$(x,2) = ¢"(z,2) + 67 (z,2) + 67 (2,2) (3)

The contributions ¢* from the vertical boundaries are
determined using an indirect boundary integral method
[17], based on Green’s theorem for the virtual element ob-
tained by eliminating the other vertical boundary and let-
ting the element continue to infinity,

o

9G(r, ri) 4
61/171] dS .

Here S* is the boundary of the virtual elements. G(r, rt)
is an arbitrary Green’s function satisfying the homogenous
Helmholtz equation everywhere within the virtual element
but not necessarily the boundary conditions. By choosing
a Green’s function which satisfies all boundary conditions
at the horizontal interfaces, including the lower and up-
per boundaries of the super-element, then the contribu-
tions to the surface integral from the horizontal boundaries
are eliminated. Note here, that the super-elements always
have finite depth. Thus, in the presence of a lower half-
space, the lower boundary of the super-element is chosen
deep enough into the halfspace to ensure that the field sat-
isfies the radiation condition along the horizontal bound-
ary, in which case the associated surface integral contri-
bution vanishes. We would like to emphasize that this
is different from the false bottom modal formulation of
Evans [7] where the false bottom is introduced to achieve
a complete mode set. In our approach, we only need to
truncate the last layer at a depth where the dominant part
of the field is downgoing.

If in addition we choose a Green’s function which
is symmetric in the horizontal coordinate z, G(r,rI) =
G(|Jz — #'|;2,2'), then the term involving dG/dnE in
Eq. (4) will vanish, yielding

(2)

o*(r) =

—¢*(r*) (4)

+ /.t
G(r,ri)a(bai(i)dSi ,
n

¢*(r) = (5)

S+

B. Field Expansion

The boundary conditions to be satisfied between the
super-elements, together with Eq.(5) now provides an in-
tegral equation for the field ¢* on the vertical bound-
aries of the super-element, the numerical solution of which



requires some kind of discretization. For fluid super-
elements, the boundary conditions are the continuity of
pressure and the horizontal component u of displacement,
i.e. at the vertical boundary j separating super-elements

jand j+1,
(s V= { s )™

A superscript is used to identify the super-element here
and in the following. Since the field within each layer in
the stratification is a smooth function of depth, we here
choose a Galerkin boundary element approach [1]. In the
Galerkin approach, the continuity of the field across the
vertical boundaries is expressed in the weak form

u(z;, )

pzj,2)

(6)

/O"ufm,z)[u” (25,2) — wl(aj, 2)ldz =0, ()

where z is the local depth coordinate and similarly for the
pressure. The field parameters displacement and pressure
are now expressed as expansions in terms of a set of basis
functions. By choosing an orthogonal set of expansion
functions Eq.(7) requires the expansion coefficients in the
two neighboring sectors to be identical.
an orthonormal set of Legendre polynomials, normalized

within each layer n:

O s 9 B

where m is the order of expansion, P, is the Legendre
function and h,, is the thickness of layer n. The argument
to the Legendre polynomial is the normalized, local depth
coordinate

Here we choose

}j Puoi(z) (8)

z—hy,/2
T2 9)

With the normal derivative of the displacement po-
tential in the kernel of Eq.(5) representing the horizon-
tal displacements at the vertical boundaries, insertion of
Eq. (8) yields the following expression for the total field in
super-element j

pa.—

Lj—1,

S Fi(e— 21,2 (U Y

—Fj(ej — 2, 2) {UF} +¢*(2,2) . (10)
Here, {U;}? and {U}l}’ represent the unknown panel
source strengths at the left and right boundary, respec-

tively, of super-element number j, and

; 27 [!
Fi(z,2) = h—”/ Pea(2)G(x; 2, 2)dz . (11)
LJ-1
Expanding the field parameters in Legendre polynomials
within each layer n as in Eq. (8) then yields the following
expression for the field expansion coefficients in terms of
the unknown panel source strengths, {UE}/
J J
U* (z
U@V
Sm(2)

“o0 Y gy

nmlk
nm Ik x_xj

1k
_ - nm,lk(rj+1 - ‘l) g {U+ J (12)
Dopmin (241 — ) th ’
and U}, and S} . are the expansion coefficients for the

dlsplacement and pressure produced by sources within the
super-element. C? . (2) and Dnm x () are the expan-
sion influence functions for dlsplacement and pressure, re-

spectively,
Crm,ix() J _ 2m—1 1 d/0x i
{ Doy ik (%) - 21 S | paw? Fi(z,2)
X Pr—1(Zn )dzn (13)

C. Influence Functions

It is clear from Egs.(11) and (13) that the influence
functions formally are obtained by a double depth-integral
of the symmetric Green’s function. However, using the di-
rect global matrix (DGM) approach [16] we can replace
these depth integrals by a wavenumber integral represen-
tation.

Basically the influence functions represent the expan-
sion coefficients of order m in layer n produced by a panel
source of order k in layer [. Thus, the total field is given
as a superposition of the field ngi produced by the panel
source in the absense of boundaries, and homogeneous so-
lutions ¢* accounting for interface reflections and trans-
missions [1]

8% (2,2) = % (2,2) + 62(2, 2) (14)
To determine the spectral representation of the field pro-
duced by the panel sources we use a generalization of the
approach used by Heelan [18] for the constant stress panel.
Thus, consider the panel source of order k in layer I, rep-
resenting the displacement distribution

2<0,2>Mh
ngghl

0
u(xj_1,2) = _ 15
e ={ Sep e (15)
The displacement potential which satisfies the Helmholtz
equation and the radiation condition can be written in
terms of vertical wavenumber spectral representation as

o (z,z) = /_O;

where 1 and 4y = iy\/n? — ki are the vertical and hor-
izontal wavenumbers respectively and k; is the acoustic
wavenumber.

A (m)e=Tem =M dy - (16)

Differentiating Eq. (16) with respect to  to produce
the horizontal displacement u, followed by the forward
Fourier transform with respect to z gives

1 e .
= %‘/_oo w(z,z)e dz . (17)

—x’yeinhz/,‘z

- ’Yfilk (n)e



Substituting the boundary condition at z = 0, Eq. (15),
and using the identity [19],

hi . .
/ Pk_l(i)e”’zdz == hlemhl/2ik_1jk—1 (hﬂ?/Q) ’ (18)
0

the wavenumber kernel becomes

1 g_q.
Ag(n) = 5 ko1 (hin/2) (19)
Note that the integration over z in the transform has been
performed analytically and is accounted for by the spheri-

cal Bessel function jp_;. Substitution into Eq. (16) yields

~ 1 oo
oz, z) = —;zk 1/ dn

e e M) iy (han/2), (20)
which is the required free-space Green’s function for the
panel source in Eq. (15).

The DGM approach for the multi-layered sector
requires the integral representation for the free-space
Green’s function to be expressed in terms of the horizon-
tal wavenumber. Using contour integration as devised by
Heelan [18], the vertical wavenumber integral of Eq. (20)
is converted into a horizontal wavenumber integral,

$1k(m,z) = ¢kt /OO ds

— 00

1 iSh .
_jk_l(_2821a1)6—|z—h1/2|a1 it ’ (21)

aq

where s is the horizontal wavenumber, oy = /s — k7,
and 8 = sign(z — hi/2).

The above representation is valid only for z < 0 and
z > h; , but still allows for the application of the global
matrix method when satisfying the horizontal interface
boundary conditions since it is at the interfaces z = 0
and z = h; of each layer that the fields are being matched.

We now simply use Eq.(21) as the source contribu-
tion in the SAFARI code [8] to determine the associated
homogeneous solution in layer n

2 el g

Onik(z,2) = /_O; )

The influence functions are then obtained by expand-
The
expansion of the homogeneous solution (fgn,lk is performed
directly using the identity in Eq.(18) to yield the homo-
geneous contribution to the influence functions:

{ G ¥ -
[ e+ comatue

—hpon/2 e—isx .m

IJm—1 (thpan/2) ds.

[A;,zke_a "4 A+ lke

ing the total field in layer n in Legendre functions.

—(2m — 1)im~!

xe (23)

The corresponding direct contributions from the panel
sources within the same layer are obtained by expanding

the vertical wavenumber integral in Eq.(20) in Legendre
functions, again using the identity in Eq. (18),

énm Ik(hl) g 6n1hn m+k—2 /OO
~ ) = —{(m d
{ Dy ik (2) 2w Gm . g

{ pnw12/7 } e jm‘1<h;n)jk—1<h;—n)’(24)

where 6,; is the Kronecker delta and (, = (2m —
1)(=1)™='. Each combination of indices [ and k repre-
sents a single SAFARI run. However, the DGM can treat
multiple right hand sides simultaneously. Hence, An 1
and therefore all influence functions can be found using
SAFARI for all combinations of the indices n,m,!, and
k with just a single global matrix inversion. This makes
the algorithm relatively efficient even for problems with a
large number of layers and high orders of expansion.

D. Element Connectivity

Inserting the field expansions in Eq. (8) into the weak
form of the boundary conditions in Eq.(7) leads to the
connectivity equations between super-elements j and j+1,

{ Unm (25) }f' _ { Unm(2;) }“1
n=1,...N,

m=1,...M. (25)

Here N is the number of layers, and M is the num-
ber of expansion terms used within each layer. Inserting
Eq.(12) into Eq. (25) then yields the following linear sys-
tem of equations for the unknown panel source strengths

for super-elements j and j + 1,

Z { Crim,15(0)

Ik Dnm,lk(o)

_{—

j+1 1

} {vzY
J+1) +17+1
) 1 )

ol } ey
{ Bty Y ey

@y -{Es

Here, L; is the horizontal length of the super-element. So-
lutlon of Eq. (26) yields the panel source strengths {U,k Y
in super-element j, and the resulting field is then given
by Eq. (12), with the influence functions obtained through
evaluation of the wavenumber integrals in Egs. (23) and
(24), using the FFP approach [1] and Gaussian quadra-
ture, respectively.

nm, Ik

nm lk

{7

Cnm Ik L )

Upm ()

S (25) (26)

Il. NUMERICAL IMPLEMENTATION

A. Global Solution



In the global approach, the influence matrix for all sec-
tors are computed to determine the coefficients in Eq. (26)
which is then solved directly for all sector boundaries.
This approach accounts for multiple scattering between
sector boundaries. In order to set up this global influence
matrix, the environment must be discretized such that the
depth of each layer is the same for all sectors. In an ocean
environment where the bathymetry changes continuously,
such as a coastal wedge, a straight forward stair-case dis-
cretization of the bathymetry will require an excessively
large number of layers. Here lies the greatest deficiency of
the global approach.

B. Marching Algorithm

A computationally efficient forward marching scheme
can be derived by employing the single-scatter approxima-
tion, where the back-scattered component from the for-
ward vertical boundary is neglected. Thus, ignoring the
term with {U;f }7*+! yields the following marching form of
Eq. (26),

D

1Lk

j+1 1
} {vzV

— Cnm,lk 0 i J
e 1 o)

{ o)
#

:{ nggﬁ }j —{ gg:gjg }j+1

o S} ¥ ey

After solving Eq.(27) at super-element boundary j,
the field everywhere in the next sector follows from
Eq. (12) with the backward propagating field ignored.

(27)

C. Reverberant Field

In the global approach, the forward and back scattered
fields are computed simultaneously. Using an approach
similar to the two-way PE solution [4], we can recover an
approximation to the reverberant field from the march-
ing solution as well. We start the forward solution at
the source range and propagate the outgoing field across
the range-independent sectors. At each vertical boundary,
the influence matrix and the panel source strengths in the
back-scattered direction are saved for later use. Starting
at the maximum range, a back-scattered field is marched
backwards towards the source. During this backward pass,
the source strengths saved from the forward pass are added
in. This process thus recovers the backscattered field in
all the sectors.

I1l. NUMERICAL EXAMPLES

In the following we illustrate how the present ap-
proach provides accurate solutions to canonical propa-
gation and reverberation benchmark problems. Unless
otherwise stated, the water column is assumed to be ho-
mogeneous with a sound speed of 1500 m/s and density

4000 m

£
- 100m ¢ =1500 m/s
z ; .
density = 1.0 g/cc
Source y g/ Receivers

at 30 mand
150 m

100

¢ =1700 m/s, density = 1.5 g/cc

2.86 degs. Attenuation = 0.5 dB/wavelength

Figure 2: Schematic for the ASA benchmark problem (Ex.
A).

p = 1.0g/cm3. As reference solutions, we use the FEPE
[20] and COUPLE codes [7]. All our solutions are obtained
using only four orders of expansion in the field parameters
within each layer.

Example A is the socalled ASA benchmark problem
involving a cylindrically symmetric sloping ocean bottom
[21]. The environmental model is shown in Fig. 2.This
problem is considered to illustrate the accuracy of the out-
going field obtained using the marching algorithm. The
water depth decreases linearly from 200m at » = 0 to
zero at = 4km. A 25-Hz point source is placed at
mid-depth. In the homogeneous sediment, ¢ = 1700 m/s,
p = 15g/em’, and o = 0.5 dB/X. The backscattered
field is negligible for this problem [22]. The environment
is discretized into 17 layers, each of about a wavelength
in depth, and 113 range sectors. The solutions for this
problem appear in Fig. 3. The solid line is the solution
obtained with the PE and the agreement is very good for
the shallow receiver and satisfactory for the deeper re-
ceiver and for most practical purposes the differences can
be considered as insignificant.

Example B involves a stair step in the ocean bottom
with the ocean bottom acoustic parameters of example A.
The water depth is a constant 200m for » < 1.5 km and
150 m for r > 1.5 km. A 25-Hz line source is placed at
depth z = 100m. The abrupt change in the environment
causes a significant amount of energy to be reflected from
the stair face and into the water column. We solved this
problem using only 2 range sectors and 8 layers down to a
depth of 350m. Fig. 4 shows the environmental model and
our solutions to the stair-step problem appear in Fig. 5.
The super-element solution and the two-way coupled mode
field are in excellent agreement. For this problem with
only one vertical sector boundary, the global and marching
schemes provide identical results.

Example C shown in Fig. 6 consider a seamount in
a cylindrically symmetric ocean environment [11]. A 25
Hz source is located in the middle of the waveguide. The
depth of the water column at the source range is 200 m.
A 135 m high seamount has inner radius 5 km and outer
radius 10 km. The bottom is a homogeneous half-space
with a sound speed of 1700 m/s and density 1.5g/cm?®.
The attenuation in the bottom is 0.5dB/A. We solved this
problem using only 3 range sectors and 8 layers down to a
depth of 400m. Comparisons between COUPLE and our
solutions are shown in Fig. 7.
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IV. CONCLUSION

We have presented an efficient and versatile spectral
super-element technique for wave propagation in multi-
layered range dependent environments. The approach is
capable of computing both the forward scattered and the
reverberation field, and is particularly suitable for treating
reverberation from large scale oceanic features and canon-
ical benchmark problems. The numerical efficiency of the
approach is obtained by using SAFARI to compute all in-
fluence functions for each super-element with one global
matrix inversion. Wavenumber integration is also used for
evaluating the field within each super-element once the
boundary panel source strengths are found. By including a
shear displacement potential and the associated additional
boundary conditions at the vertical boundaries, the tech-
nique is straightforwardly extended to treat propagation in
elastic media. Applications to canonical propagation and
reverberation problems have been used to demonstrate the
accuracy and versatility of the solution technique.
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APPENDIX: Axisymmetric environments
For cylindrical geometries, the Helmholtz reduced wave

equation is
10(,9%
ror\' or +

We can separate out the cylindrical spreading effect by
introducing

2
29+M¢:0.

0z2 (28)

nr

é(r,z) = 7@(7’, z), (29)

where the coeflicient is selected to give 0 dB loss at r =1
m. Eq. (28) then becomes

0?¢ 1 0%¢

— + — — +h?%=0.

or? + 47’2¢+ 022 +h%e
For large r;, we may neglect the second term, and we see
that cylindrical spreading can be treated with the present
2D derivation simply by including a factor of , /% in the

final evaluation of the field.

(30)
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