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An earlier developed perturbation approach to scattering from rough interfaces in stratified
fluid-elastic media has been extended to provide a spectral representation of the higher-order
statistics of waveguide reverberation, incorporating the combined physics of scattering and
waveguide propagation. The formulation is compatible with existing propagation and ambient
noise models based on wavenumber integration and therefore provides a more complete model
with consistent treatment of all components of the acoustic environment. The model is used

to demonstrate how reverberation affects the spatial correlation of the acoustic field, and

the associated degradation in performance of high-resolution matched field processing approaches
is discussed. In addition to the higher order statistics the formulation also provides a model
for the reverberant field for specific roughness realizations, allowing for direct modeling of
time-domain solutions, both in the spatial and the spectral domains, as illustrated by examples
relevant to both deep and shallow water sonar scenarios.
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INTRODUCTION

In this paper we extend previous work [1] to com-
pute the reverberant field in a fluid-elastic waveguide with
rough interfaces. The previous work developed a unified,
self-consistent theory for predicting the effect of rough
boundaries on the mean acoustic field in a fluid-elastic
waveguide.

The structure of the reverberant field from boundary
scattering in a waveguide must be studied using the com-
bined physics of scattering from random interfaces and the
same waveguide physics governing the mean field propaga-
tion. Further, since reverberation is, in effect, signal gen-
erated noise, the issue of signal extraction from noise and
reverberation examined from a full wave theoretic point
of view becomes of great interest. If one had a model of
signal generated noise analogous to surface generated am-
bient noise [2, 3], then one could approach the signal pro-
cessing in a manner analogous to previous matched field
processing in correlated noise [4, 5]. Though all of these
individual subjects, i.e., waveguide propagation, bound-
ary scattering and matched field processing, have been
extensively covered in the literature, the combination of
the three remains a relatively unresearched area. One of
the few examples is the work of Haralabus et al[6] who
used Monte-Carlo simulation of free surface scattering in
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a waveguide to analyze the effect of such environmental
uncertainty on matched field processing.

Here, we develop a direct spectral representation of the
reverberation statistics, providing a model of the signal-
generated noise totally consistent with earlier developed
models for the waveguide propagation[10] and ambient
noise[3] components of the problem. As a result, we have
developed a modeling framework which can be used to in-
vestigate the performance of both passive and active sonar
processing concepts in ocean waveguides, based on consis-
tent modeling of the whole seismo-acoustic environment.

The principal result of the previous work was the
derivation of a boundary operator formulation using a per-
turbation approach which accounts for scattering at arbi-
trary fluid-elastic interfaces. When applied to a propaga-
tion theory or model like SAFARI it predicts the attenua-
tion of the coherent component of the propagating acoustic
fields, compressional and shear, as well as reflection and
transmission coefficients of these fields at rough interfaces.
The attenuation of the coherent fields arise from the gen-
eration of ”scattered” compressional and shear waves in
the stratification.

The theory was shown to contain the effects arising
from coupling into evanescent waves unique to elastic me-
dia: Rayleigh (at vacuum-elastic interface), Scholte ( at
fluid-elastic interface) and Stoneley (elastic-elastic inter-
face) waves.

The scattered fields were computed only for interfaces
separating semi-infinite media whereas the coherent field



computations were done for propagation in fully strati-
fied complex waveguide. Numerical examples were shown
to reproduce earlier work [7] using a different derivation.
The results, however, shed further light on the problem
of scattering at rough elastic interfaces in that its pro-
cedure clearly identifies the partitioning of scattered en-
ergy into compressional and shear body waves and evanes-
cent waves. Furthermore, it was shown that an incident
evanescent wave, in this case a Sholte wave, loses energy
at a rough interface by scattering into homogeneous plane
waves in the stratification.

The perturbation theory has later been combined with
a model of random surface sources by Liu et al. [8] to pro-
vide a unified theory for rough bottom scattering of am-
bient noise in the ocean, demonstrating the significance of
scattering into seismic modes in shaping the spectral be-
havior of the deep ocean noise field observed experimen-
tally. LePage et al. [9] have used a full three dimensional
implementation of the theory to model transmission loss
in the Central Arctic, and based on excellent agreement
with historical loss data, providing theoretical evidence for
scattering into the flexural ice modes being the dominant
loss mechanism in the Arctic.

We here extend the elastic perturbation theory to in-
clude a description of the scattered field as it is ultimately
distributed in the waveguide environment responsible for
its existence. Hence, the present approach provides a self-
consistent method to compute reverberation in a waveg-
uide.

We use the model to examine the spatial correlation
structure of the reverberant field in a waveguide. Further,
we demonstrate by a shallow water example how this mod-
eling capability can be used to investigate the ultimate ef-
fect of the associated de-correlation of the total field on
matched field processing.

We emphasize that the present reverberation model is
far from being complete in terms of representing actual
ocean environments. Thus, the environment is assumed
to be range-independent.
ation from environmental facets is not treated. Further,
the model considers only rough interface reverberation.
Clearly, other scattering mechanisms such as volume inho-
mogeneities may play an equally significant role in shaping
the reverberant field. However, the objective of this work
is not to produce a complete reverberation model for re-
producing actual sonar scenarios, but rather to provide a
consistent model of the signal, the ambient noise, and the
reverberation in ocean waveguides.

As a result discrete reverber-

Also, in terms of quantitative prediction, the present
model is limited to diffuse reverberation from small-scale
roughness. However, the physical implications of the cou-
pling of the scattered field into the ocean waveguide are
entirely general, at least in a qualitative sense, for arbi-
trary roughness characteristics.

As a final note, we stress that the present model does
not implicitly distinguish between backward- and forward
scattering. The results therefore apply to both passive
and active sonar scenarios. Thus, the examples include
narrow-band passive scenarios illustrating the effect of for-
ward scattering on matched field processing performance.

Clearly the time-envelope of the reverberation plays a sig-
nificant role for active sonar performance, and to illustrate
the capability of the present model in that regard we also
include some broad-band results.

I. MATHEMATICAL FORMULATION

In the following we briefly review the main results of
the perturbation theory for rough interface scattering in
stratified elastic waveguides [1], and extend the formu-
lation to provide a spectral representation of the spatial
correlation of the reverberant waveguide field, compatible
with existing wavenumber integration codes such as SA-

FARI [10].

A. Unperturbed stratified problem

The solution of the wave equation in horizontally
stratified media by means of integral transforms or
wavenumber integration is well established and forms the
theoretical basis for several numerical models applied in
seismology and underwater acoustics[11]. Only a brief out-
line of the features pertinent to the rough interface rever-
beration problem shall therefore be given at this point.

In a homogeneous and isotropic elastic medium, the
seismo-acoustic field produced by one or more sources of
time dependence e/*! can be expressed in terms of three
scalar displacement potentials,

éi(r,z), P waves
xi(r,z) =< ¥i(r,z), SV waves (1)
Ai(r,z), SH waves .

satisfying Helmholtz equations of the form

VIx + K2(2)x = —6(r)8(z — 2) , (2)
In a fluid layer only the compressional potential ¢;(r, z) ex-
ists. Further, compressional sources only excite the P and
SV potentials, eliminating the SH potential A;(r,z). Al-
though most implementations involve only compressional
sources all potentials are needed for the general scattering
perturbation described below.

At the interfaces between layers i and ¢+ 1, the poten-
tials must satisfy the boundary conditions of continuity of
stresses and displacement, which can be stated in an op-
erator form,

B;i(xii+1) =0, i1=1,2,...,N—-1 , (3)
where N is the total number of layers, including the upper
and lower halfspaces.

In a range-independent environment the Helmholtz
equation can be Fourier transformed into the depth-
separated wave equation
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(4)

with k; being the wavenumber for compressional waves for
the P potential ¢(r, z) and the shear wavenumber for the



shear potentials. We express the solution to Eq.(4) as a
superposition of a particular solution satisfying the inho-
mogeneous equation and a linear combination of the two
independent homogeneous solutions. If the environment is
decomposed into a stratification of isovelocity layers, the
homogeneous solutions are exponentials and we obtain the
following integral representation for the potentials in layer
i.

(e ) = i [ e 7 (0 + 37 G0

(5)
where k, = \/k? — k2, k = |k|. Equation(5) can be in-
terpreted as a plane wave decomposition of the field, with
XT(k) and XY~ (k) being the amplitudes of upgoing and
downgoing plane waves, respectively. The Fourier trans-
form of the boundary conditions is

Bi(k) XT,

B0 =Wi(k), =12 N1

(6)
with v;(k) being a vector containing the source contribu-
tions at interface ¢. Together with the radiation conditions
for z — +o00, Eq. (6) defines a system of linear equations,
the solution of which determines the unknown wavefield
amplitudes Y[ (k).

B. Rough Interface Perturbation

As demonstrated in the earlier paper, Ref.[1], elastic
scattering by small scale roughness may be incorporated
into the wavenumber integration formulation using a per-
turbational approach. Assume that the interface at depth
z;, separating the layers ¢ and 7 + 1 is not smooth, but
rough with elevation z — z; = #;(r). The perturbation
theory is valid for any particular, deterministic roughness
realization, but in general the roughness will not be known
in a deterministic sense. We therefore describe the rough-
ness as a random process with mean zero, (y;(r)) = 0.
The roughness statistics are assumed to be homogeneous,
defined through the spatial correlation function

Ni(x") = (i (r)n(x)) (7)

with v = v’ —r. N;(r") is the Fourier transform of the
roughness power spectrum FP;(p),

i/d2r"Ni(r")e_jp'rII .

:271'

(v/) Px(p) (8)

The total field in layer number m is decomposed into a
coherent or mean field (x,,) and an incoherent, scattered

field, s,
(9)

Expansion of the total field about the mean inter-
face now yields new sets of boundary conditions in the
wavenumber domain, one for the mean field, and one for
the scattered field.

Xm = <Xm>+5m .

Mean field

The first boundary condition derived in Ref.[1] con-
cerns the amplitudes of the mean field, (x), at the average
interface depth z = z;,

El(k) + (»f) a—;éz(k) + Ii(k) + IZ(k)] (XFip(k) =0,

(10)

where the I; and I, are the scattering integrals [1]

L(k) = —%/fq Pi(q— k)aBaiz(q)T}(k,q) (11)
B0 = -9 [ pia-1 [ia -0 o ba)

xTi(k,q) - (12)

ﬁ-(k, q) is the T-matriz for interface number i,

aé@zik) _ j(q _ k) ogi(k)] ) (13)

Ti(k.q) = B (q)

representing the transition between each mean field com-
ponent of wavevector k in layers ¢ and ¢ + 1 and the scat-
tered components with wave vector q in the same layers,
for unit roughness spectrum. The operation ob;(k) repre-
sents the rotation of the boundary conditions on the rough
surface [1].

By comparing Eqs.(6) and (10), it is clear that the
effect of the rough surface scattering on the coherent field
can be accounted for simply by replacing the original
boundary conditions at interface ¢ with the ones indicated
in Eq. (10). Note that this operator formulation allows for
simultaneous treatment of multiple rough interfaces. The
perturbation theory is valid for k,7; < 1 and 'y; < 1.

Whereas the boundary operator El(k) incorporates
both the incident reflected and transmitted wavefield com-
ponents, the selection of the boundary operator for the
scattered field B;(q) is more subtle. Thus, for a single
interface separating two halfspaces, only outgoing com-
ponents are present in accordance with the Rayleigh hy-
pothesis. On the other hand, in waveguides the scattered
field will be reflected at the other interfaces and return to
the rough interface. In these cases it therefore becomes
an issue whether these multiples should be included in
the boundary operators for the scattered field. Here, the
perturbation formulation assumes that the scattered field
interacts incoherently with the mean field, but coherently
with itself. To the first order this will only be the case if
the multiples return to the rough interface within a range
smaller than the roughness correlation length, which will
only be the case if the other interfaces in the waveguide
are close compared to the correlation length as well as the
wavelength in the separating medium. For problems with
thick layers only outgoing scattered components should
therefore be included. On the other hand there are cases
where multiples must be included. An example is the Arc-
tic ice cover which is thin compared to the correlation
length. As discussed by LePage et al. [9], the scatter-
ing into flexural modes is observed experimentally, and
the excitation of these must therefore be included in the
scattering integrals. Since these modes are the result of



constructive interference of exponentially growing and de-
caying waves in the ice cover, the surface multiples must
be included in the boundary operator.

Reverberant field

To first order in the roughness the boundary condi-
tions for the scattered field are [1]

Bi(a)57;41(a) =

OB i, iy omk)l (a9, (19

d2k7; k
~ 3 Yi(a—k)

where q represents the wave vectors of the scattered
Fourier components. Inserting Eq.(13) this equation can
be written in the form,

T (@ =5 [ PR 10T:(k )T (), (15)
which makes it clear why ﬁ-(k, q) physically represents a
transition or coupling matrix between coherent field com-
ponents with wavevector k and scattered components of
wavevector q. However, since the matrix inversion B;(q)
is independent of the integration variable, the form in
Eq. (14) is computationally more efficient. This equation
was used by Kuperman and Schmidt [1] to compute the
scattering kernel g;fiﬂ(q) for plane waves incident on an
interface separating two infinite halfspaces, involving only
outgoing scattered components. However, we can straight-
forwardly use Eq.(14) to compute waveguide reverbera-
tion including all multiples, modes etc. This is clear from
simply observing that Eq.(14) is of the same form as the
unperturbed equation (6), but with the source contribu-
tion on the right hand side replaced by an integral over
all mean field wavenumber components. For a particular
roughness realization 7;(r) this integral can therefore be
interpreted physically as representing a virtual source dis-
tribution at the rough interface depth. The reverberant
field generated by these virtual sources will clearly propa-
gate according to the same waveguide physics as the mean
field, including transmission and reflection at all interfaces
and the formation of normal modes. This propagation be-
havior of the reverberant field is incorporated simply by
replacing the local boundary operator on the left hand side
of Eq. (14) with the global boundary operator including all
interfaces in the stratification. The resulting equation for
the wavenumber spectrum of the reverberant field is there-
fore,

B’i(q)g;m(q):fi(q) i=1,...,N—1, (16)

where the vector f;(q) represents the wavenumber integral
on the right hand side of Eq. (14). In the waveguide the re-
verberant field will obviously re-scatter when interacting
with the rough interfaces. Use of the smooth boundary
boundary operator will therefore over-estimate the ampli-
tudes of the reverberant field. However, in analogy to the
mean field, this re-scattering is easily incorporated by us-
ing the perturbed boundary operator in Eq.(10), instead

of the smooth one, i.e.

Bz*(q)gzq,:z+1(q):fl(q) =1, N-1, (17)
where the perturbed boundary operator EZ* is defined
in Eq.(10). Equation(17) obviously eliminates the re-
scattered components from the total scattered field and
therefore under-estimates the scattered field amplitudes.
As a result, Egs.(16) and (17) provide upper and lower
bounds for the scattered field intensity. On the other
hand the higher order of the approximation suggests that
Eq.(17) will be closest to the correct answer for most
waveguide problems with realistic penetrable bottoms.
Once the mean field is found, Eq. (16) may be solved
using the standard methods [11], and the scattered field
in layer m follows using the Fourier transform, Eq. (5),
(18)

sm(r,z) =

21 / d?qe T UYET (q)em(q, 2) -
where en(q,2) is a diagonal matrix representing the ex-
ponential behavior of the up- and downgoing plane wave
components in layer m.

Interpretation of reverberation data is often performed
using array processing to reveal its angular or spectral
distribution. Here, the present theory inherently com-
putes the frequency-wavenumber (w — k) response directly
in the form of the scattering kernel St (q)en(q, z), but
can also be applied to compute the time-domain 7 — p
equivalent[13], with 7 being the vertical intercept time and
p being the horizontal slowness. Thus, it is easily shown
that the 7 — p response is obtained by simply eliminating
the wavenumber integral in Eq. (18), but only performing
the Fourier syntheses of components of equal horizontal
slowness vector p,

1 5
sm(p,7) = Py /dweJWTfsf;,Fl(wp)em(wp,z) . (19)
In the examples following we will give examples of full
time-domain responses in both the spatial and the 7 — p
domains.

Reverberation statistics

Equations (16) and (18) can be used to model the
scattered field for specific roughness realizations, but in
general only the roughness statistics will be known, e.g.
through the spatial spectrum P;(k). In such cases, how-
ever, we can derive an expression for the spatial correlation
function for the reverberant field,

sl (r2, 22))

where m and n are the layers including the two receivers,
and the | represents the complex conjugate. Insertion of

Eq. (18) yields

Cs(r1,21,r2,22) = (Sm(r1, 21) (20)

Cs(ry, 21,1‘2, z2)

— //d q1d2 2€ —-i(q1-Tri1—q2rs2)
2"1'

xem (21, d1)el (22, 42) (Sm (@) (q2)) -

(21)



Inserting Egs. (16), and using the identity

1 .
27 /d2reyk~r =6(k),

(22)

and Eq. (8), we arrive after some algebra at the following
expression for the correlation function of the reverberation
from the rough interface 1,

Cs(ry, 21,19, 22) =

(<277f)>3 /dzPPi(—p) [/d2QAm(21,q,q+ p)e /AT

T
. [/dQ‘lAn(ZQ,q,qu p)e_]qh] (23)

with

Am(z,4,k) = em(z, QT3 (k, (X (k) (24)

Here, i’tm(k,q) is the reverberation T-matriz represent-
ing the transition from mean field components with wave
vector k in the layers separated by interface ¢, and the re-
verberation components of wave vector q in layer m. It is
defined by an expression similar to Eq. (13), but with the
local boundary operator El(q) replaced by the global op-
erator, or the perturbed operator EZ* (@), i=1,...,N—1.
Using the same perturbation theory, an expression similar
to Eq.(23) was derived by Goalwin [12] for the correla-
tion of the scattered field in a fluid halfspace with a rough
pressure release surface. However, the operator form in
Eq. (23) is entirely general in terms of waveguide stratifi-
cation including fluid as well as elastic layers.

Il. NUMERICAL IMPLEMENTATION

The operator formalism derived above for both the
mean and the reverberant fields are entirely general in
terms of two-dimensional roughness statistics, and does
not make any assumptions concerning horizontal isotropy.
Thus, LePage et al. [9] made a full implementation of the
coherent field equation (10), incorporating 3-D scattering
from an Arctic ice cover with anisotropic roughness statis-
tics. They found only a minor effect of 3-D scattering on
the coherent field, but demonstrated the strong 3-D na-
ture of the scattering kernel, suggesting that out-of-plane
scattering is important for modeling the reverberant field.
Liu et al. [8] also demonstrated the inherent 3-D nature of
the scattered field in fluid-elastic stratifications, using the
present perturbation theory to model sea-bed scattering
of surface-generated ambient noise.

Also, it should be stressed that the expressions rep-
resent both mono- and bi-static reverberation, including
both forward and backward scattering.

Unfortunately, the evaluation of the two-dimensional
integrals in Eq. (23) are computationally intensive, in par-
ticular for waveguides, due to the wavenumber sampling
requirements (see e.g. Ref. [11], Sec.4.5). On the other
hand, the evaluation of spectral representations are ex-
tremely well suited for implementation on modern mas-
sively parallel computers, such as done by LePage et al.

[9]. Even though the evaluation of Eq.(23) is therefore
not prohibitive on such computer architectures, we will
here limit ourselves to demonstrate the use of the oper-
ator formulations to two-dimensional scenarios. We do
that for primarily two reasons. First of all the 2-D mod-
eling is adequate for demonstrating the significance of the
waveguide physics in shaping the reverberant field, which
is the primary scope of this paper. Secondly a 2-D imple-
mentation allows us to use the existing SAFARI code [10]
with rather simple modifications to evaluate the spectral
representations of the reverberant field.

As a first step we use the standard SAFARI code,
which has the perturbed boundary conditions in Eq. (10)
implemented, to evaluate the coherent component of the
field, but also outputting the vectors 8Bi(k)/8z(ﬁfi+l (k))

and Zz(k)()zfl+1(k)), representing the virtual source dis-
tributions at the rough interfaces. These are then input
to special versions of SAFARI with the physical sources
replaced by the virtual sources.

One version computes realizations of the reverberant
field by generating random realizations of the roughness
spectrum 7;(p). Then, for each value of the scattered
wavenumber q, the wavenumber integral in Eq.(14) is
evaluated numerically, and the resulting global equation
(16) is then solved using the existing SAFARI direct global
matrix kernel. The inverse transform is performed in the
standard way either by evaluating the 1-D Fourier trans-
form for plane problems or by a Hankel transform for
problems with cylindrical symmetry [10, 11], followed by
Fourier synthesis for time-domain solutions [11]. This ap-
proach is computationally very efficient, with computation
times almost identical to those involved in evaluating the
mean field.

Another, slightly more complex version of SAFARI is
used for computing the correlation function in Eq.(23).
Here, the kernels A,,(z, q,q+ p) are evaluated for all val-
ues of q in a way which is basically identical to the one
described above, but taking advantage of the fact that the
same global matrix inversion is used for all values of p. All
spectral integrals are then evaluated in the standard way,
yielding the covariance matrix for an arbitrary receiver
array. The diagonal elements represent the expectation
value of the reverberant field intensity at each receiver.

In the earlier paper [1] we used a Gaussian roughness
spectrum, but since the choice of spectrum is arbitrary we
will here use a more realistic, one-dimensional Goff-Jordan
[14] power law spectrum:

1.5

P(p) ==L ((pL)*+1)" ", (25)

where L is a charactistic correlation length.

I1l. NUMERICAL EXAMPLES

A. Deep water bottom reverberation

The first example concerns a scenario representing the
1992 experiment carried out in the mid-Atlantic under the
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Figure 1: Contours in dB of coherent transmission loss for
ARSRP scenario. The bottom is insonified by a vertical
array of 11 sources steered downward at a nominal grazing
angle of 6°. Plane geometry.

Acoustic Reverberation Special Research Program (AR-
SRP). Even though the present model does not represent
the strongly range-dependent bathymetry of the actual
ARSRP experiment, we will use this experimental sce-
nario to illustrate how the spatial and temporal distri-
bution of deep ocean bottom reverberation is a combined
effect of the scattering process and the waveguide physics.
In other words it is not the intention here to model the ac-
tual experimental data. We assume the environment to be
range-independent with a water depth of 4000 m, with a
sound speed profile measured during the experiment. The
bottom is assumed to be rough with a Goff-Jordan power
spectrum, Eq.(25). The RMS height is assumed to be 2
m and the correlation length is variable. A vertical source
array with 11 elements was used to insonify the bottom
at low grazing angles in half a convergence zone. The
source was emitting wideband pulses with approximate
center frequency 250 Hz and bandwidth 100 Hz. For the
source array steered downward 6° grazing, the transmis-
sion loss predicted by SAFARI for this scenario is shown
in Fig.1. We assumed plane geometry, with the effect of
removing the cylindrical spreading loss in the predictions.
The depth-range contours of the transmission loss illus-
trate the wide spectral nature of the beam, giving rise to
strong interference effects in the insonified area as well as

in the reflected field.

Figure 2 shows the expectation value of the reverber-
ant field intensity, computed using Eq. (23) for two differ-
ent correlation lengths, (a) L = 50 m, (b) L = 6 m. The
spatial distribution of the reverberant field is clearly de-
pendent on the roughness correlation length. For L = 50
m the roughness slopes are small, and the scattered field
becomes highly specular, with insignificant mono-static re-
verberation as a result. In contrast the L = 6 m has many
roughness features of wavelength size, and larger slopes,
leading to a both stronger scattering and a wider spec-
tral spreading, including negative wavenumbers, with the
effect of significantly increasing the mono-static reverber-
ation.

This dependency of the spectral spreading on the cor-
relation length is consistent with the form of Eq.(23).

0 0 F= 250.0Hz SD= 0.0M
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Figure 2: Contours in dB of expectation value of

the scattered field intensity for ARSRP scenario. A
one-dimensional Goff-Jordan roughness spectrum is as-
sumed, with RMS-elevation 2 m. (a): Correlation length
50 m. (b): Correlation length 6 m.

Thus, a short correlation length corresponds to a wide
spectrum P(p) = P(q — k), allowing an incoming wave
of wavenumber k to scatter into a wide spectrum of
wavenumbers q.

Figure 3 shows a time domain realization of the mean
and scattered fields as observed on a vertical array just
above the seabed. For simplicity we here assume that the
incoming field consists of a single plane wave component
with grazing angle 5°. The vertical array is 100 m long,
with a total of 50 receivers with the lowermost 2 m above
the seabed. The incident field is a transient with center
frequency 250 Hz and 100 Hz bandwidth. The mean field
as observed on the array is shown in Fig.3(a), exhibit-
ing the expected vertical interference pattern. Fig.3(b)
shows the scattered field observed by the array as com-
puted using Fourier synthesis of solutions to Eq. (16). The
strongest components of the scattered field are directly in-
terfering with the mean field at time ¢ = 0. This rever-
beration is associated with “upstream” forward scattering.
The later reverberation arrivals are due to “downstream”
backscattering. Note the limited spatial correlation of the
scattered field. A particularly interesting feature is the rel-
atively low reverberation immediately following the mean
field. A Lambert’s law behavior would suggest a gradual
decrease in reverberation following the mean field arrival.
This suggests that the spectral composition of the scat-
tered field from the elastic granite interface does not have
a maximum at the vertical such as predicted by Lambert’s
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Figure 3: Time-domain response on vertical array in water
halfspace overlying a granite bottom. The rough seabed
has 2 m RMS excursion and a Goff-Jordan power spectrum
with correlation length 6 m. A plane wave is incident at
5° grazing on the bottom, with a transient pressure pulse
of center frequency 250 Hz and bandwidth 100 Hz. (a):
Coherent field. (b): Scattered field.
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Figure 4: 7 — p representation of scattered field at depth
50 m above rough granite bottom.
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Figure 5: Shallow water environment with downward re-
fracting sound speed profile and a randomly rough lime-
stone bottom

law, but rather has a quadrapole behavior with maximain
a forward and a backward directions. As described above
this hypothesis can be directly verified by computing the
scattered field in the 7 — p domain, Eq. (19). This is done
in Fig. 4, showing the 7 — p response computed for a depth
50 m above the rough interface. Negative slowness corre-
sponds to backscattering, and positive slowness to forward
scattering. In this representation it is clear, that the low
level of small slowness scattering is associated with the
grazing angles being larger than critical for the bottom.
At these slownesses most of the scattered energy is ap-
parently radiating into the bottom. This non-Lambert
scattering behavior of the elastic interface has also been
demonstrated by Levander et al. using finite difference
modeling [16].

Another interesting phenomenon is the strong scat-
tering into evanescent Scholte waves, observable on the
sensors close to the bottom. The Scholte waves propagate
along the interface with phase- and group velocity slightly
less than the speed of sound in water, and as a result, the
time-spread of these arrivals is significant. Some of the
discrete Scholte wave arrivals are clearly associated with
arrivals visible also on the upper receivers. These arrivals
are due to backscattering from bottom features “down-
stream” .

B. Shallow water reverberation

As a second example we consider the shallow water
environment shown in Fig.5. The water depth is 100 m,
and the sound speed profile is downward refracting, with
1500 m/s at the surface and 1480 m/s at the seabed. The
bottom is assumed to be an infinite halfspace of limestone
with compressional speed 2500 m/s and shear speed 800
m/s. The compressional and shear attenuations are 0.1
and 0.2 db/, respectively, and the density is 2200 kg/m?.
The seabed is randomly rough with a Goff-Jordan power
spectrum and an RMS excursion of 1 m.

Figure 6 shows contours in depth and range of the
mean field transmission loss in dB. The correlation length
of the bottom roughness is 10 m. The downward refracting
profile has the effect of rapidly attenuating the higher or-
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Figure 6: Contours in dB of coherent transmission loss
for a 100 Hz point source at depth 50 m in shallow water
environment.

der modes, leaving a relatively simple interference pattern
beyond a range of a couple of km.

Figure 7 shows the transmission loss as well as the ex-
pectation value of the reverberation intensity vs range at
mid water depth. The solid curves represent the mean
field, whereas the dashed and dotted curves show the
reverberation intensity for 10 m and 100 m correlation
length, respectively. In Fig.7(a) the scattered field inten-
sity was computed using the unperturbed boundary opera-
tor, Eq. (16), whereas in Fig. 7(b) the perturbed boundary
operator in Eq. (17) was used. Note here that the expec-
tation value for the reverberant intensity is largest for the
long correlation length. This may seem surprising in view
of the fact that the scattering loss is larger for the short
correlation length. The reason for this behavior is that
the longer correlation length produces virtual sources of
higher spatial coherence than the finer scale roughness,
and therefore provide a stronger excitation of the normal
modes of the waveguide.

Note also that the re-scattering of the reverberation
creates the same modal stripping as observed for the mean
field, although somewhat delayed in range, as expected,
yielding a modal interference pattern very similar to the
one of the coherent field.

More important to high resolution array processing
than coherent loss is the reduction in spatial correlation
created by the reverberant field. This property is again
directly modeled using Eq. (23). Figures 8 and 9 show the
normalized vertical correlation and coherence at 4 km for
two different reference depths, 25 and 75 m. We use the
following definition of the normalized correlation,

Re[Cs(r;, 2,15, 2;)]
VCs(ri, 21,11, 20)Cs(xj, 25,15, 25)

and for the coherence,

Cij = , (26)

|CS(ri; Ziarj7zj)|2
Cs(rs, zi, 15, 2)Cs(xj, 2,15, 2)

2
Pij; = (27)
The dotted curves show the results for the coherent field,
whereas the dashed curves indicate the correlation and
coherence of the scattered field. The solid curves repre-
sent the resulting expectation value of the correlation and

Loss (dB)

90

2
Range (km)

Loss (dB)

2
Range (km)

Figure 7: Mean field transmission loss and expectation
value of scattered field at 100 Hz for receiver at 50 m depth
in shallow water waveguide with limestone bottom with
1m RMS roughness. Solid curves indicate mean field for 10
m correlation length. The dashed and dotted curves show
the expectation value of the scattered field intensity for 10
and 100 m correlation lengths, respectively. Scattered field
intensity computed using (a): the unperturbed boundary
operator; (b): the perturbed boundary operator.
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Figure §8: Spatial correlation of acoustic field at 100 Hz on
vertical array of 30 m length, with the center receiver at
25 m depth. The source is at depth 50 m and range 4 km.
(a) Normalized spatial correlation. (b) Spatial coherence.
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Figure 9: Spatial correlation of acoustic field at 100 Hz on
vertical array of 30 m length, with the center receiver at
75 m depth. The source is at depth 50 m and range 4 km.
(a) Normalized spatial correlation. (b) Spatial coherence.

coherence of the total field. Clearly, the effect of rough-
ness scattering on the spatial correlation is most significant
close to the rough bottom.

The effect of the decorrelation on high resolution array
processing is illustrated in Fig.10. A maximum likelihood
matched field processor [4] is used on a vertical array span-
ning the whole water column to localize a point source at
mid water depth and 4 km range. The matched field repli-
cas assume a smooth bottom, and Fig.10(a) shows the
MFP ambiguity function for the case where the field co-
variance matrix is generated assuming a smooth bottom as
well, clearly identifying a sharp peak at the correct source
position. Figure 10(b) shows the ambiguity function ob-
tained when the covariance matrix for the reverberant field
produced by a roughness with L = 10m is added to the
mean field covariance matrix. The associated decorrela-
tion has the effect of adding a number of false source po-
sitions in the ambiguity function, even though, for this
relative small roughness, the largest peak still appears in
the right position.

Finally, to illustrate the temporal distribution of the
waveguide reverberation, we present in Fig.11 the time
domain results for a realization of the L = 10m rough-
ness. The source emits a transient pulse with center fre-
quency 100 Hz and bandwidth 100 Hz. Fig.11(a) shows
the coherent component on a 9-element vertical array at
1 km range. Even though the field is dominated by the
fast lower order modes, some later, high mode number ar-
rivals are observed. Fig.11(b) shows the superposition of
the coherent and the scattered fields. We here ignored re-
scattering by using the unperturbed boundary operator,
Eq.(16), and as expected from Fig.7(a), the scattering
significantly increases the amplitude of the late modal ar-
rivals.

C. Arctic ice reverberation

As demonstrated by LePage et al. [9] the scattering
perturbation approach performs excellently in reproduc-
ing the measured coherent transmission loss in the Arctic,
in spite of the fact that it only represents the prominent,

20—

106.0
105.0
104.0
103.0
102.0
101.0
100.0
99.0
98.0
97.0
96.0

40

Depth (m)

80

100 T T T
0 2 4 6 8

Range (km)

20—

106.0
1050
| 104.0
1030

40

102.0
101.0
100.0
99.0
98.0
97.0
96.0

Depth (m)

80

100 T T T
0 2 4 6 8

Range (km)

Figure 10: Maximum Likelihood ambiguity function in
dB for matched field source localization in shallow water
environment. A 100 Hz source of level 160 dB is present at
50 m depth and range 4 km from vertical array spanning
the whole water column. A correlated ambient noise field
is generated by a distribution of surface sources of strength
50 dB, yielding an average noise level of 56 dB. (a) Smooth
bottom. (b) Rough bottom.



-0

SD = 500 m
R R = 1.0 km
W
20 Avw
£ 0o B
< F= 40.0Hz SD= 0.0M
- 0
-
j)
(]
100 T T T
-0.2 0.0 0.2 0.4 0.6
Reduced time t—r/1.500 (secs.)
(b)
-0 SD = 50.0 m
T R,.=_ 1.0 km
W 0 20 40 60 80 100
20 s A Range (km)
VAVAVAV... AARAMA
= N Figure 13: Contours of expectation value of scattered field
z M in dB at 40 Hz in Central Arctic environment. Plane ge-
v
o . ometry.
(]
AAAA AR A rre]
Z02 04 06

00 02
Reduced time t—r/1.500 (secs.)

Figure 11: Time-domain response on vertical array at 1
km range in shallow water environment. The limestone
bottom has 1 m RMS roughness and a Goff-Jordan power
spectrum with correlation length 10 m. The source is at
50 m depth, transmitting a Hanning weighted sine pulse
with center frequency 100 Hz and bandwidth 100 Hz. (a):
Mean field. (b): Total field.
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Figure 12: Contours of transmission loss in dB at 40 Hz in
Central Arctic environment. The source is at depth 100
m. Plane geometry.

10



discrete ice keels in an average spectral sense. We there-
fore expect the present spectral representation to provide
a realistic model for the reverberant field as well. The
typical Arctic transmission loss is shown in the form of
contours vs depth and range in Fig. 12. The frequency is
40 Hz and the source depth is 100 m. The contours clearly
show the separation into the surface duct propagation and
the CZ paths. Since all propagation paths interact with
the ice cover, the spatial correlation of the field is governed
almost entirely by the irregularity of the ice cover, includ-
ing the roughness [15]. This property is directly modeled
using Eq. (23). Thus, Fig. 13 shows the expectation values
of the scattered field intensity vs depth and range for an
ice cover with 2 m RMS roughness and correlation length
40 m. For clarity we have removed the cylindrical spread-
ing. It is interesting to note how more and more scattered
(incoherent) energy gets trapped in the surface channel
after each CZ. Even though we here used the unperturbed
boundary operator in Eq.(23), this phenomenon suggests
that the spatial correlation vs depth may provide a usuable
acoustic signature of changes in ice roughness, relevant to
acoustic monitoring of climatic changes in the Arctic[17].
Fig. 14 shows the computed correlation and coherence on
a vertical array spanning the surface channel at 40 km
range. The dotted line shows the correlation of the field
without roughness. The coherence of the mean field is im-
perfect due to the fact that a realistic correlated noise field
is included [3]. The dashed line shows the correlation of
the scattered field, and the solid curve shows the result for
the total field. Note the inhomogeneity of the correlation
introduced by the different modal penetration depths.

IV. CONCLUSIONS

Using an earlier developed perturbation approach to
scattering from rough interfaces in stratified fluid-elastic
media, a spectral representation of the higher-order statis-
tics of waveguide reverberation has been derived. The for-
mulation is compatible with existing propagation and am-
bient noise models based on wavenumber integration and
therefore provides a more complete model with consistent
modeling of all components of the acoustic environment.
The model has been used to demonstrate how reverbera-
tion affects the spatial correlation of the acoustic field, and
the associated performance degradation of high-resolution
matched field processing has been discussed. In addition
to the higher order statistics the formulation also provides
a model for the reverberant field for specific roughness
realizations, allowing for direct modeling of time-domain
solutions, both in the spatial and the spectral domains, as
illustrated by examples relevant to both deep and shallow
water sonar scenarios.
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