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Abstract

The Ocean Acoustic Tomographic (OAT) approach to
sound speed field estimation is generalized in order to in-
clude a variety of sources of information of interest such
as an oceanographic model of the sound speed field, direct
local sound speed measurements and a full field acoustic
propagation model. The inverse problem is presented as
a four-dimensional field estimation problem using a vari-
ational approach commonly used in oceanographic data
assimilation. The OAT approach is shown to be a special
case of the general framework. The Matched-Field To-
mography (MFT) approach is also discussed within this
context. A simple implementation of this novel approach
is then investigated in the absence of a suitable oceano-
graphic model. Acoustic propagation is accounted for us-
ing a standard parabolic equation model. The inverse
equations derived in this paper are validated numerically,
and a simple inversion case is discussed.

1 Introduction

Recent advances in sensor technology and computing
power have made relatively large data streams of hetero-
geneous nature available to oceanographers, thus sam-
pling the oceanic environment both locally and remotely.
Concurrent advances in acoustical modeling have made it
possible to accurately predict acoustic propagation char-
acteristics provided adequate environmental information
is available. By combining both data and modeling assets
in an operational setting, acoustically focused oceano-
graphic sampling (AFOS) will enable rapid assessment
of oceanic fields while drawing on the strength of in-
dividual data types, i.e., the large coverage of integral
acoustic measurements and the high resolution of local
direct measurements [1]. The Haro Strait experiment
was implemented in June-July 1996 near Victoria, British
Columbia, in order to test a number of engineering and

scientific concepts related to coastal oceanic field estima-
tion [2]. The experiment showed that synoptic field esti-
mates can be produced in real time for oceanographically
challenging regions, provided that inversion algorithms
are kept simple and linear in order to sustain environ-
mental and system uncertainties. It also showed multi-
ple heterogeneous data streams are necessary in order to
overcome the inherent limitations of each data type.

While ocean acoustic tomography (OAT) was used for
the acoustic measurement model in Haro Strait, it be-
came clear soon after the experiment that the OAT for-
mulation [3] has many limitations preventing it from be-
ing an efficient field estimation technique. Drawing on
the oceanographic data assimilation literature, the effi-
cient combination of data and models into a field esti-
mate requires three things: a measurement model, cap-
turing the data measurement process; a dynamical model,
capturing the deterministic physics of the observed phys-
ical process; and a priori statistics for both the data and
the model error fields [4]. The OAT approach does pro-
vide a priori statistics for the data and the sound speed
field. However, it fails to capture the deterministic spa-
tial and temporal physical structure of the sound speed
field. Furthermore its associated measurement process is
doubly approximate, as it is perturbative and based on a
ray-theoretic, partial-wave representation of the acoustic
field. In order to palliate these shortcomings and assim-
ilate acoustic data into models, a novel framework has
been developed. This framework lays out explicitly a set
of four defining equations driven by additive noise terms
as outlined in the next section. The resulting sound speed
and pressure field estimates agree with both the data and
the models within their respective error bounds. The gen-
eralized approach represents a first step towards the as-
similation of acoustic data into ocean models, and can
therefore be referred to as acoustic data assimilation.
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The example shown in this paper focuses on spatial es-
timation although time is implicitly taken into account in
the formulation. The inversion framework is outlined in
the next section. The special cases of OAT and Matched-
Field Tomography (MFT) are then investigated. A prac-
tical implementation based on the standard parabolic
equation model is presented in the following section. Fi-
nally, numerical results are shown and discussed in the
last section.

2 The Inverse Problem

2.1 General inverse formulation

Information regarding the ocean sound speed field can
be drawn from a number of sources when trying to solve
the sound speed field inversion problem. Acoustic pres-
sure measurements p of the acoustic pressure field p are
gathered by acoustic arrays surrounding the region of in-
terest. Direct (local) measurements € of the sound speed
field ¢ might be available, e.g., through CTD data sets.
An acoustic wave propagation model B, chosen for its
relevance to a particular operational scenario, provides a
link between the acoustic measurements and the sound
speed field. In addition, further information regarding
the spatial and temporal structure of the sound speed
field might be contained in what can be loosely called
an oceanographic model A. This model may be a sim-
ple stochastic constraint or a complex ocean circulation
model. These four sources of information are encapsu-
lated in the following set of equations:

¢ = Mc + ¢, c, ~N(O,R,) (1)

Ale) = v, v~N(0,Q.) (2
B(p,c) = w, w ~ N(0,Qp) (3)
P =Lp + pn, P~ N(O,Ry)  (4)

The first equation corresponds to the local sound speed
measurement model. The gaussian noise vector ¢, ac-
counts for local sampling errors. The second equation
corresponds to the oceanographic dynamical model, thus
called by analogy with the oceanographic data assimi-
lation problem. It is driven by the gaussian noise vec-
tor v accounting for unmodeled features of the sound
speed field. The third equation corresponds to the acous-
tic dynamical model. Tt relates the true pressure field to
the true sound speed field. It is driven by the gaussian
noise vector w accounting for model uncertainties such as
surface roughness, bottom composition, bathymetric un-
certainties, sensor locations. The fourth equation corre-
sponds to the acoustic pressure measurement model. The
additive noise component is here again modeled as a gaus-
sian random vector with known covariance matrix R,,.

The inverse problem now amounts to the estimation
of the two state vectors p and c¢. Note that the sound
speed field c is understood in general terms; the equa-
tions described in this section remain the same regardless
of whether ¢ represents the actual sound speed field, a
set of EOF coefficients or any other adequate mapping.
Following the traditional variational approach, an opti-
mal estimate of the sound speed field can be computed
by minimizing the misfit between the available data sets
and the available models, i.e., by jointly minimizing the
mean square errors of equations (1)—(4):

c= ar%@m {J(p,c)} (5)

where the objective function J is given by:

J(p,c) = CILRc_lcn + VTlev + WTlew + pLR;lpn

(6)

Formally minimizing the objective function given above
yields:

1.
L'R,'Lp + %%Q;IB =L'R,'p (7)

B! DAY ~
5o QB+ 5-Q A+ MR Me = MIR. '€ (8)

The system of equations (7)—(8) is coupled through two
separate entities. The first is as expected the acoustic
model B: it formally relates the acoustic pressure field
to the sound speed field. The second entity is the co-
variance matrix associated with the acoustic dynamical
model, i.e., the model error covariance matrix Q. If the
model error statistics are not quantified the eigenvalues
of Qp become infinite, thus expressing the fact that no
information is available regarding possible model errors.
The inverse of Qj then tends towards zero and equations
(7) and (8) become uncoupled. Equation (7) then reduces
to the problem of estimating the acoustic pressure field
given the acoustic data only. Equation (8) reduces to the
oceanographic data assimilation problem in the absence
of acoustic data. In order to preserve the natural cou-
pling exhibited by equations (7) and (8), and therefore
optimally estimate the sound speed field using both the
available data sets and the available models, error fields
must be carefully quantified through the different covari-
ance matrices in general and Q in particular. Solving
jointly (7) and (8) will yield an optimal sound speed es-
timate ¢ which will agree with all data sets and models
available within their respective error bounds. In partic-
ular this estimate will include the full physics of wave
propagation and possibly ocean circulation as specified
by (2) and (3). As a byproduct the acoustic field will also
be estimated.
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An alternate version of the system of equations (7)-
(8) can be derived when the acoustic dynamical model
B(p, c) is written as p — ®(c) and the oceanographic dy-
namical model A(c) is written as ¢ — ¥:

LR'L+Q;")p=L'R,;'p+Q,'®  (9)

od
%Qb_l@ +(MR;'M +Q;Y)c=
- 0P
MRJ1C+ Q' + %Qb_lp (10)

where ® represents an acoustic propagation model which
takes ¢ as input and returns p as output; ¥ represents an
oceanographic model whose input is independent of both
p and c and returns c as output. This alternate set of
equations may be more suitable to some numerical imple-
mentations, in particular when derivatives of the acoustic
model are available, e.g., through automated differentia-
tion tools such as TAMC [5].

2.2 Simplified inverse formulation

In many cases an oceanographic dynamical model is not
available, either because the region of interest is poorly
understood, or because such a model is computationally
too demanding. Furthermore, direct sound speed mea-
surements might not be included in the inversion, either
because they do not exist, or because they are used inde-
pendently for validation purposes. In this case, which is of
practical relevance to many ocean acoustic applications,
the original set of equations (1)—(4) becomes:

c—cg = cp, cn ~ N(0,S) (11)
B(pa C) =W, W~ N(O: Qb) (12)
p=Lp+py, pn ~ N(0,Ry) (13)

Equation (11) simply expresses the fact that the sound
speed field is now modeled as a random vector of known
statistics. This is the weakest practical constraint which

can be imposed upon c. The objective function becomes:
J(p,c) =cS e, +wiQ;'w + PR, 'p,  (14)

Minimizing the objective function leads to the following
set of equations:

oBt .
L'R;'Lp + 6—pQ,;IB =L'R;'p (15)
oBt _
S Q' B+8 T (e—c)) =0 (16)
or, alternatively:

LR,'L+Q;")p=L'R;'p+Q;'® (17)

o® _ o0®
%Qb '$+8 1(C_CO) = %Qb 1p (18)

This system of equations can be solved by different meth-
ods. A simple method, though not necessarily practical
in operational settings, is outlined in section 3. A more
general method would iterate over (15) and (16): assum-
ing an initial sound speed guess, the acoustic pressure
field can be estimated through (15). Then this estimate
can be used in (16) in order to estimate the sound speed
field. The rate of convergence of this method may be im-
proved by adapting the covariance matrix Qy at each step
in a way that reflects the relative information contents of
the data set and the acoustic model. For instance, the
acoustic model is expected to be fairly inaccurate at first.
As the system is iterated the initial sound speed guess
is refined and the acoustic model uncertainty may be ex-
pected to decrease accordingly. However, this procedure
requires a formal error model which is beyond the scope
of this paper and is still the object of active research.

2.3 Ocean Acoustic Tomography

The ocean acoustic tomographic problem is traditionally
formulated in terms very similar to Eq.(11)—(13) although
the acoustic dynamical model is in fact implicit and hid-
den in the acoustic measurement model [3]. It can be
formally written as:

c, ~ N(0,S)
Tn~N(O,R;)

(19)
(20)

C = Cp,

T=Lc+ 7,,

where the only state variable is ¢ and the data 7 usu-
ally consists of arrival time perturbations. The objective
function now reduces to two terms:
J()=cls e, + IR, (21)
The optimal sound speed estimate is found once again by
minimizing J:
¢= (LIR'L+87") LR, 'F (22)
This expression has been widely used in OAT inversions,
and can also be derived using a bayesian maximum like-
lyhood approach [3]. A number of important limitations
can be found in the OAT approach. The measurement
model (20) aggregates a perturbative measurement model
with an implicit ray-theoretic dynamical model and is as
such doubly approximate. The data used in the inversion
excludes significant portions of the actual acoustic data
acquired. By contrast equations (1)—(4) or the simpler
version (11)—(13) feature an exact acoustic measurement
model where the matrix L simply contains the locations
of the acoustic sensors on the computational grid. The
data p include the full wave acoustic data acquired by
the acoustic sensors. Furthermore, the acoustic dynam-
ical model is cast in explicit form and is not limited to
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ray models. As such the inverse formulation outlined in
2.1-2.2 can be viewed as a generalization of the OAT
framework.

2.4 Matched-Field Tomography

The simplified inverse formulation outlined above can also
be used to attempt to describe the Matched-Field Tomog-
raphy (MFT) approach [6, 7]. The key difference is that
the acoustic dynamical model is now assumed to be ex-
act, i.e. the covariance matrix Qp vanishes. Following the
traditional MFT assumptions, the sound speed vector ¢
is non-random but unknown, which can be expressed by
the fact that the inverse covariance matrix S~! vanishes.
Using the alternate representation of B used in Eq.(9)—
(10), which is also commonly used in MFT, the system of
equations (11)—(13) then reduces to:

p=L&(c) +pn (23)
The objective function J has only one term left:

J(c) = pLR; 'pn (24)
Defining the scalar product of two vectors as:

(xly) = xR}y (25)

the objective function becomes simply equal to ||py|[>.
Using this notation, the optimal sound speed estimate

can be written as:
CyLm = Cl?“ng.”[||Lq’(c)||2
C

— 2Re {(L®(c)[p)}]

By contrast the minimum variance estimate derived in
the traditional MFT framework using a linear systems
approach can easily be derived using Woodbury’s identity
as [8]:

(26)

CSuyv = argmin|||L®(c)||?
C

1
1+ [[L&@(cy)]?

where c; represents the true sound speed field. The first
term in (27) is usually interpreted in the beamforming
literature as the conventional beamforming output [9].
The second term corresponds to the noise nulling oper-
ation. Thus at high signal-to-noise ratios, i.e., for large
||IL®(cy)||, the nulling term in (27) cancels out the con-
ventional term and the objective function is minimized
for €prv equal to ¢;. It is worth noticing the maximum-
likelihood estimator (see Eq.(26)) exhibits the same struc-
ture, namely a conventional term identical to that in (27)
and a nulling term. Although the nulling terms are differ-
ent, both involve what amounts to a correlation between
the data p or L®(c;) and a replica L®(c).

(L@ (c)L&(c))|”] (27)

3 SPE Inversion

3.1 Standard parabolic equation model

For the purpose of this paper as well as for computational
reasons we will restrict ourselves to solving the simplified
inversion case (section 2.2). Before the set of equations
(15)—(16) can be explicitely solved, an acoustic model B
must be specified. We will use the standard parabolic
equation model (SPE) for its relevance to a number of
operational situations as well as its numerical tractability.
The SPE model can be written as [10]:

B(p,n) =B(n)p —bo =0 (28)
where by is initialized using a gaussian starter field. The
sound speed vector ¢ has been replaced by the squared
index of refraction 17 whose exact mapping is given below
(see equation (34)). The matrix B is defined on a com-
putational grid of M nodes in depth by N nodes in range
as follows:

c o ..
-C} C? (0]
Bm=| " (29)
o ... -cit cV
The matrix CT* is defined at the m®* range bin as:
2k 11
[C]j; = K, — Az T gMittm-1)m;
(4,m) € [1,M] x [1,N] (30)
m 1
[CT]j51 = 520
(Jam) € []'aM - 1] x []-aN] (31)
[CT'];; =0 otherwise (32)
The matrix CJ" is defined as:
Cy=-(Cr) (33)

where the star denotes complex conjugation. The compo-
nents 74 (m—1)m of the model vector n are a monotonic
function of the sound speed field:

5, G
Nj+(m—-1)M :kO(C2- - )
jm

(34)

where ¢;,, is the sound speed at the jt* depth bin and
mt? range bin of the computational grid.
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3.2 Inverse equations

Armed with the explicit dynamical model outlined in the
previous section, the derivatives of B with respect to p
and 7 can be derived. The operator B is recast in a form
more suitable to analytical differentiation:
1
B(p,n) =Bop + 5(I+3)D(p)n —bo  (35)
where I is the identity matrix and J has its sub-diagonal

(corresponding to the 7;’s of Cy in B(n)) set to 1. The
operator D maps a vector onto a diagonal matrix whose

diagonal elements are given by the former. Thus, the
derivatives of B are:
9B(p, n)
=2V -8
o = B(n) (30)
oB(p;m) _ 1
=-+0)D 37
o = 5 T+3) Dlp) (37)

We can assume without loss of generality that 7 is zero
mean. The system of equations (15)—(16) then becomes:

L'R;'Lp + B(n)'Q; " (B(n)p — bo) = L'R;'p (38)
S {1+ 9)D(p) Q* (B(m)p —bo) +S 7 =0 (39)

In the absence of a reliable acoustic model, the inverse co-
variance Qb_1 tends to zero, and the system of equations
(38)—(39) becomes uncoupled. If the acoustic model is
infinetely reliable, i.e., the covariance Q; tends to zero,
the solution to Eq.(38)—(39) becomes independent of the
data and is equal to the pressure and sound speed field
implicitely assumed in B within the resolution of the in-
version.

3.3 Inverse estimates

The system of equations (38)—(39) can be rewritten as:

p = [L'R,'L+B(n)!Q;'B(n)]
[L'R;'p+ B(n)'Q; 'by]  (40)
n=[F(p)Q;'F(p)+s']""
F(P)*Qz)_l(bo —Bop) (41)

1
F(p) = 5 (I+J)D(p) (42)
which may be cast in the following symbolic form:
p=f(n) (43)
n =g(p) (44)

As alluded to in section 2.2 this system might be best
solved by iteration. This would however require an error
model for Qp which is beyond the scope of this paper.
Instead, to demonstrate the feasibility of the inversion
we will use the concept of ambiguity surface drawn from
the MFP literature [11, 10]. Consider the following cost
function e:

_ llg[f(m)] — Tnl|

<) Il

(45)

where T is the model resolution of the inverse, i.e., the
optimal estimate 7} is equal to T'. The model resolution
captures the fact that even with perfect a priori knowl-
edge the true sound speed field can only be recovered
within the inherent physical limitations of the observing
system. The cost function € will therefore vanish when
7 is equal to the true sound speed field. The cost func-
tion might reach a relatively small value for other sound
speed fields, thus generating “spurious side lobes” to use
MFP terminology. An ambiguity surface can therefore
be built by computing € for different values of 1. Alter-
natively standard multivariate minimization algorithms
may be applied to €. The sound speed field estimate will
be computed by identifying the absolute minimum of e.

4 Numerical Results

4.1 Framework validation

The size of the vectors used in Eq.(38)—(39) tends to be
fairly large and memory-intensive: the size of the pres-
sure field for instance is of order N? since it describes a
two-dimensional field. The size of matrices such as B is
then of order N4, where N is the number of grid points
in one direction and is typically of the order of 100 and
above. The numerical implementation of equations (40)
and (41) is therefore non-trivial, and would have been
altogether impossible a few years ago due to computa-
tional limitations. The purpose of this section is to show
that such an implementation is possible today and that
sound speed fields can be reasonably estimated using the
acoustic data assimilation formulation.

The experimental scenario considered in this paper is
shown in Fig.1. The receiver array consists of 33 ele-
ments equally spaced spanning the entire water column
at a range of 50 km. The source frequency was set to a
low value, 5 Hz, in order to decrease the computational
load since this paper is concerned solely with demonstrat-
ing the numerical feasibility of acoustic data assimilation.
The receiver noise covariance matrix R, is assumed to
be of the form o,I, where the ambient noise level o), is
set equal to 70 dB re 1 uPa. The sound speed profile
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Figure 1: Deep ocean Munk waveguide. Source frequency: 5
Hz. Ambient Noise Level: 70 dB re 1 uPa. Source Level: 190
dBrel pPalm.

is a range-independent Munk profile with a channel axis
depth of 1300 m (see Fig.4). The sound speed covariance
matrix S is assumed to be of the form o,I. This covari-
ance matrix really applies to i, not to the actual sound
speed field; the term o, was set equal to 2kZ after calibra-
tion of the inversion procedure. Equations (38) and (39)
were implemented under the form (43) and (44) using the
sparse matrix algebra package UMFPACK [12].

In order to validate the implementation of each equa-
tion separately, a pressure field was computed using (43)
given the true sound speed field. The result is shown in
Fig.2. The reader should bear in mind that this is not
an inversion per se, but merely the validation of the nu-
merical implementation of f(n) in Eq.(43). As expected
the field is recovered with a very good accuracy. In or-
der to be consistent with the parabolic equation model
presented above, the Hankel function range dependence
of the field is not included. The structure of the acoustic
model error covariance Qp was assumed to be of the form
021 where o, was set equal to 70 dB re 1 yPa. Con-
versely, a sound speed field was computed using Eq.(44)
assuming the true pressure field was known, and the re-
sult is shown in Fig.3 for different values of 0. Here again
the reader should note this not an inversion per se, but
the validation of the numerical implementation of g(n) in
Eq.(44). Note that for the smallest value of o the sound
speed field is recovered almost perfectly, except for the
region beneath the source, which is not insonified at all
and belongs to the null space of the inversion. As the
value of o} increases, regions that are weakly insonified
become impossible to recover.

Inverted acoustic field

Depth (m)

-3000

Range (km)

Figure 2: Upper panel: inverted acoustic pressure field when
true the sound speed field is known (dB re 1 pPa). Lower
panel: true acoustic field error (dB re 1 pPa).
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Figure 3: Inverted sound speed field when the true acoustic
field is known. Upper panel: the model noise level is 0 dB.
Middle panel: the model noise level is 40 dB. Lower panel:
the model noise level is 70 dB
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Figure 4: Left panel: climatological (Munk) sound speed pro-
file. Right panel: Empirical orthogonal functions vs depth
(solid line: EOF1, dashed line: EOF2).

4.2 Inversion results

Having validated our numerical implementation in the
previous section we can now present a simple inversion
scenario in which the true sound speed field is initially
unknown and is estimated using the measured acoustic
data p. This scenario assumes an inclusion of warm water
is present at a depth of 1000 m. This inclusion is mod-
eled by the empirical orthogonal function (EOF1) shown
in Fig.4. Sound speed uncertainties associated with sur-
face temperature changes will be subsequently modeled
by the exponentially decaying profile (EOF2) also shown
in Fig.4. The resolution matrix T in Eq.(45)is estimated
by computing the inverted sound speed field assuming the
true sound speed field is the climatological (Munk) profile.
A diagonal pseudo-resolution matrix is then constructed
by computing each diagonal element such that the true
sound speed field is transformed into its inverse estimate.
In the absence of a formal resolution estimate, the reso-
lution matrix is approximated by this pseudo-resolution
matrix when computing €(n) as defined in Eq.(45).

For the case of no deterministic mismatch, the cost
function € is shown in Fig.5 for different amplitudes of
EOF1. As the acoustic model noise o, decreases, the
main lobe of € becomes narrower, indicating that the true
magnitude of EOF1 can be identified with a higher ac-
curacy. In other terms the more accurate the acoustic
model, the more accurate the sound speed estimate. The
same cost function € is next shown in Fig.6 in the pres-
ence of a 5 m/s sound speed mismatch at the sea surface,
modeled by EOF2. The cost function for o, equal to 40

0.7

0.6 o

Normalized error

EOF coefficient (m/s)

Figure 5: Cost function ¢(n) vs EOF1 amplitude for different
values of o (solid line: o, = 0dB, dashed line: o, = 20dB,
dash-dotted line: o, = 40dB)

dB is almost the same as in the no mismatch case. The
acoustic model is not very accurate, as indicated by the
wide main lobe, but it appears to be robust with respect
to environmental mismatches. As the model noise de-
creases, the cost function becomes much more sensitive
to environmental mismatch, so that when o} is equal to
0 dB, the cost function is no longer well-behaved and a
clear minimum is no longer identifiable. In other words,
the less accurate the acoustic model, the more robust the
sound speed estimate. This outlines the inherent trade-
off between accuracy and robustness, which is determined
by the choice of o3, or more generally Q. This trade-off
lies at the heart of the inversion methodology presented
in this paper: the different sources of noise and error
are explicitely accounted for, and presumably quantified
through the covariances matrices Q,, Qp, R, and R..
Mismatches merely increase the level of uncertainty and
may be dealt with provided this increase in uncertainty in
properly quantified. Possible biases may be straightfor-
wardly added to the formulation without any significant
modification. The price paid for this increased uncer-
tainty will be loss of accuracy or resolution. On the other
hand, as the inversion is iterated the covariance matrices
may be updated and adapted in order to reflect the ac-
tual accuracy of the estimate. The inversion can thus be
gradually “focused” in a way similar to that suggested by
Collins and Kuperman [13].

In addition, it must be noted that by increasing sig-
nificantly the level of complexity taken into account in
the inversion, the present approach increases by an equal
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Figure 6: Cost function e(n) vs EOF1 amplitude for different
values of o} in the presence of environmental mismatch (solid
line: o, = 0dB, dashed line: o, = 20dB, dash-dotted line:
o, = 40dB)

amount the computational load required to carry the in-
version. Computing Eq.(45) currently takes about 6 to 7
minutes on a Pentium IT 450 Mhz running Linux, whereas
the signal frequency is only 5 Hz. The focus of this paper
however is to show the feasibility of such an approach, and
as such does not focus on computational performance is-
sues. Although the available computing power is expected
to keep increasing at a rapid pace, this added computa-
tional load can already be handled through different nu-
merical and analytical means. Firstly, the present analy-
sis inverts the entire acoustic field whereas only the field in
the vicinity of the receiver array is needed for sound speed
estimation purposes. Restricting the inverted acoustic
field in such a way would reduce the size of the estimated
acoustic field by 90%, thus yielding a very significant re-
duction in the size of a number of matrices involved. In
order to do so, the field starter by in Eq.(28) is first prop-
agated through the water column until the vicinity of
the receiver array. Thus, it becomes dependent on the
sound speed field, and the associated derivative must be
included in the analysis. Secondly, the inversion algo-
rithm requires multiple runs of both the acoustic and the
oceanographic (whenever available) models. As such it
lends itself naturally to a parallel and distributed imple-
mentation. In some cases however the acoustic field itself
needs to be forecast, e.g., for tactical or environmental
reasons. In such cases acoustic data assimilation is at the
present time a computational challenge.

5 Summary

The ocean acoustic tomographic approach to sound speed
field estimation has been generalized in this paper in order
to include a variety of sources of information of interest
such as an oceanographic model of the sound speed field,
direct local sound speed measurements and an arbitrary
acoustic propagation model. This new approach consists
of four defining equations:

o a direct measurement model, describing the process
by which direct, e.g., CTD, measurements are ac-
quired: it relates the directly measured sound speed
field to the true sound speed field;

e an oceanographic model, imposing a general con-
straint on the true sound speed field. It may rep-
resent the circulation model available for the region
of interest;

e an acoustic propagation model, relating the true
sound speed field to the true acoustic pressure field;

e an acoustic measurement model, describing the pro-
cess by which acoustic measurements are acquired.

A solution to this set of four equations can be computed in
a least square sense. The resulting sound speed and pres-
sure field estimates agree with both the data and the mod-
els within their respective error bounds. The strengths of
this acoustic data assimilation approach are: (i) all dy-
namical and measurement processes are laid out explicitly
and exactly; (ii) any acoustic propagation model may be
used; (iii) all error statistics must be explicitly quantified,
in particular model error statistics; (iv) full field acoustic
data are used. Environmental or system mismatches are
quantified through appropriate error statistics, thus af-
fecting the inversion resolution. By contrast, OAT makes
a number of implicit assumptions in its measurement
model. In particular, it is a partial-wave and perturbative
method. More importantly, neither OAT nor MFT quan-
tify the inaccuracies of the underlying acoustic model,
thus leading to a heightened sensitivity to mismatch since
the corresponding inversion algorithms assume all mod-
eling and system information to be exact. On the other
hand, by increasing the complexity and the amount of
information taken into account in the inversion, the com-
putational load is significantly increased. However, this
increase can be mitigated by the use of sparse matrix al-
gebra as well as parallel and distributed computing tech-
niques.
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