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Doppler analysis has been extensively used in active radar and sonar sensing to estimate the speed

and direction of a single target within an imaging system resolution cell following deterministic

theory. For target swarms, such as fish and plankton in the ocean, and raindrops, birds and bats in

the atmosphere, multiple randomly moving targets typically occupy a single resolution cell, making

single-target theory inadequate. Here, a method is developed for simultaneously estimating the

instantaneous mean velocity and position of a group of randomly moving targets within a resolution

cell, as well as the respective standard deviations across the group by Doppler analysis in free-space

and in a stratified ocean waveguide. While the variance of the field scattered from the swarm is

shown to typically dominate over the mean in the range-velocity ambiguity function, cross-spectral

coherence remains and maintains high Doppler velocity and position resolution even for coherent

signal processing algorithms such as the matched filter. For pseudo-random signals, the mean and

variance of the swarms’ velocity and position can be expressed in terms of the first two moments of

the measured range-velocity ambiguity function. This is shown analytically for free-space and with

Monte-Carlo simulations for an ocean waveguide.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3557039]
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I. INTRODUCTION

Doppler analysis has been extensively used in active ra-

dar and sonar sensing to estimate the speed and direction of a

single target within an imaging system resolution cell based

on coherent mean field theory.1,2 For target swarms, such as

fish, plankton, and Autonomous Underwater Vehicles (AUVs)

in the ocean, and raindrops, birds, and bats in the atmosphere,

multiple randomly moving targets typically occupy a single

resolution cell, making single-target theory inadequate. The

heuristic assumption, typically made for target swarms in both

radar and sonar, is that the mean velocity of the group can be

approximated by taking the first moment of the range-Doppler

ambiguity function along the velocity axis.3–5 Here, we prove

that this approach leads to accurate estimates of mean group

velocity by applying scattering theory to a group of randomly

moving targets within a resolution cell. We also show that

while the variance of the field scattered from the swarm typi-

cally dominates over the mean in the range-velocity ambiguity

function for swarm extents greatly exceeding the wavelength,

cross-spectral coherence remains and maintains high Doppler

velocity and position resolution even for coherent signal proc-

essing algorithms such as the matched filter which were origi-

nally developed for mean field analysis. Estimators are

derived for the mean instantaneous velocity and position of

the random target group within a resolution cell, as well as the

respective standard deviations for long-range acoustic remote

sensing system in both free-space and in a stratified ocean

waveguide. Domination of the variance in the scattered field

intensity has previously been shown to occur for the special

case of large aggregations of immobile targets where no

Doppler shifts occur.6

The application of Doppler sonar to determine the ve-

locity of moving target swarms in the ocean, such as fish and

plankton, has been limited to relatively short range (tens to

hundreds of meters) and effectively free-space scenarios7–13

because the low Mach numbers of the swarms make higher

frequency signals (tens to hundreds of kilohertzs) more con-

venient for resolving Doppler shifts. Higher frequency sig-

nals, however, suffer increased attenuation and so are

limited to shorter ranges. Here, we investigate the possibility

of determining Doppler velocity at much greater ranges by

using low frequency pseudo-random signals that suffer low

attenuation and have high range and Doppler resolution in

both free-space and in an ocean waveguide. As range

increases in ocean sensing applications beyond the water

depth, waveguide propagation ensues. The problem of scat-

tering from a single object moving in a waveguide is far

more complicated than that of one moving in free-space. It is

known, for example, that for a waveguide supporting N

modes, N2 Doppler shifts as opposed to the single shift will

occur in free-space for the same motion.14 We show here

that by applying a statistical formulation to the even more

complicated problem of sensing multiple randomly moving

targets in an ocean waveguide within a single imaging sys-

tem resolution cell, the analysis can be greatly simplified.

For appropriate signal design, such as pseudo-random

signals, we find that the mean and variance of the swarm’s ve-

locity and position can be expressed in terms of the first two

moments of the measured range-velocity ambiguity function.

This is derived analytically for free-space and demonstrated
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with Monte-Carlo simulations for an ocean waveguide. We

refer to simultaneous estimation of the group’s velocity and

position from ambiguity surface moments as the Moment

Method. Simultaneous estimates of the mean velocity and

position are also obtained by finding the velocity and position

that corresponds to the peak of the ambiguity function’s

expected square magnitude, which we refer to as the Peak

Method. We show that estimates of the mean velocity

obtained via the Moment Method are at least as accurate as

estimates based on the Peak Method. For active sensing of a

single deterministic target in a waveguide where N2 Doppler

shifts occur, it has been shown that a relatively accurate esti-

mate of the target velocity can be obtained from the Doppler-

shifted spectrum of its scattered field.14,15 Here, we show that,

for a group of random targets within a resolution cell, accurate

simultaneous estimates can be obtained for the instantaneous

velocity and position means of the group, as well as their

standard deviations through the Moment Method.

In Sec. II and the Appendixes, we derive analytic

expressions for the statistical moments of the field scattered

from a single moving target in free-space or a stratified

range-independent waveguide, given random target velocity

and position and arbitrary source spectrum. We then derive

the expected value and expected square magnitude of the

range-velocity ambiguity function for the total field scattered

from a group of random targets. We show in Sec. II that the

first and second moments of the ambiguity function’s

expected square magnitude along constant range and veloc-

ity axes in free-space are linear functions of the group’s ve-

locity and position means and standard deviations for a

pseudo-random signal described in Appendix A known as

the Costas sequence. In Sec. III, we demonstrate both the

Peak and Moment Methods via illustrative examples in free-

space and an ocean waveguide based on field measurements

of fish schools from ocean acoustic waveguide remote sens-

ing (OAWRS) experiments.16

II. DETERMINING TARGET VELOCITY STATISTICS
FROM DOPPLER SHIFT AND SPREAD

We assume a group of N targets are randomly distrib-

uted in volume V centered at the origin 0, which is in the

far-field of a stationary monostatic source/receiver system at

range r, as shown in Fig. 1. We consider a remote sensing

sonar platform that consists of a point source collocated with

a horizontal receiving array, such as that shown in Fig. 2.

We define u0
q as the random initial position of the qth target

and vq as the random speed of the qth target toward the

source/receiver system. We assume that the target positions

and velocities are independent and identically distributed

(i.i.d.) random variables with probability densities Puðu0
qÞ

and PvðvqÞ, which are inherent properties of the target group.

We define the means and standard deviations for u0
q, vq to be

lu, ru and lv, rv, respectively. We also assume that the tar-

gets move at low Mach numbers, which is typical for biolog-

ical scatterers, e.g., fish at velocities of order 1 m/s (Refs.

17–19) and that population densities are not large enough for

multiple scattering to be important.6 As detailed in Appendix

B, vq is defined to be the velocity component parallel to r,

which is assumed to be constant during the time necessary

for the sound signal to travel through the resolution footprint

of the remote sensing system. For simplicity, we assume that

all targets have the same scatter function, and for the fre-

quencies considered, they scatter omnidirectionally. We

assume that target velocities follow Gaussian probability

densities and set the velocity means to correspond to typical

fish group swimming speeds, in illustrative examples. A tar-

get group is then defined to be migrating by setting the ve-

locity standard deviation to be approximately 10% of the

mean velocity. Similarly, a group is defined to be randomly

swarming if the velocity standard deviation is much larger

than the velocity mean. Targets are assumed to be uniformly

distributed within 100 m about a nominal range of 15 km

from the remote sensing system. For waveguide examples,

we consider the waveguide of Fig. 2, which is representative

of continental-shelf environments, and assume that targets

are uniformly distributed in depth between 70 and 90 m. For

free-space examples, we use the same distributions. Finally,

areal number densities are chosen so that acoustic returns

from the target groups will stand above the background

reverberation,20 based on the past OAWRS field data from

the New Jersey continental shelf and the Gulf of Maine.16–21

For herring, we then assume an areal number density of 2

fish/m2, whereas for tuna, we consider imaging a single

school consisting of roughly 100 individuals.20

FIG. 1. Sketch of the resolution

footprint volume enclosing a target

with initial offset u0
q from the coordi-

nate system origin and velocity vq.

The variables Lx, Ly, and Lz denote

the dimensions of the footprint vol-

ume in x, y, and z coordinates,

respectively. The position mean and

standard deviation are lu, ru, while

the velocity mean and standard devi-

ation are lv, rv.
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In all examples, we employ the specific signal design

described in Appendix A, which has center frequency of 1.6

kHz, bandwidth of roughly 20 Hz, velocity resolution of

approximately 0.17 m/s, and range resolutions of about 43

m, which is smaller than the range dimension of the targets’

spatial distribution. The target distribution scenarios are

summarized in Table I, and the source signal and remote

sensing system parameters are given in Table II.

A. Free-space

The field scattered from the qth target due to a harmonic

source of frequency f and unit amplitude can be written as14

Us;qðr; t; f Þ ¼ Sð�f Þ
�k

Gðrj0; �f ÞGð0jr; f Þe�i2p�f t

� e�i2pð�fþf Þ̂ir �u0
q=c; (1)

where �f � f ð1þ 2vq=cÞ is the Doppler-shifted frequency of

the scattered field, c is the sound speed in the medium, S(f) is

the target’s planewave scattering function, and G(0jr,f) is the

free-space Green’s function between the source and the ori-

gin evaluated at frequency f. For a broadband source with

dimensionless source function q(t)() Q(f), the scattered

field is given by Fourier synthesis as

Ws;qðr; tÞ ¼
ð

dfQðf ÞUs;qðr; t; f Þ; (2)

where() denotes Fourier transform pairs q(t) ¼ $ Q(f)
� e�i2pftdf, Q(f)¼ $ q(t)ei2pft dt.

The ambiguity function is defined as

Ws;qðs; vÞ ¼
ð1
�1

Ws;qðr; tÞq�ðt� sÞei2pvtdt

¼
ð1
�1

Ws;qðr; f 0ÞQ�ðf 0 � vÞe�i2pðf 0�vÞsdf 0; (3)

FIG. 2. Sketch of waveguide geometry and

sound speed profile. The locations of the

fish shoal, the source/receiver imaging sys-

tem and the resolution footprint with respect

to the coordinate system (x, y, and z) are

also shown. The coordinate system coin-

cides with that of Fig. 1. The sound speed in

the water column is constant, c1¼ 1500 m/s,

and the sound speed in the sediment half-

space is c2¼ 1700 m/s. The density q1 and

attenuation a1in the water column are 1000

kg/m3 and 6� I0–5 dB/k1, respectively,

where k1 is the wavelength in the water col-

umn. The sediment half-space has density

q2¼ 1900 kg/m3 and attenuation a2¼ 0.8

dB/k2, representative of sand, where k2 is

the wavelength in the bottom sediment.

TABLE I. Target distribution scenarios.

Case A

migrating herring

Case B

swarming herring

Case C

migrating tuna

Velocity mean, lv 0.2 m/s 0 m/s 1.5 m/s

Velocity standard deviation, rv 0.025 m/s 0.5 m/s 0.1 m/s

Areal number density, or number of targets 2 fish/m2 1 school

(100 fish)

Position mean, lu (from the origin 0, see Figs. 1 and 2) 0

Target range distribution (from the mean position lu) Uniform, 6 50 m

Target depth distribution (for waveguide examples, see Fig. 2) Uniform, 70–90 m

Target cross-range extent Exceeds remote sensing system’s

cross-range resolution
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where v is the Doppler shift and s is the time-delay defined

such that s¼ 0 corresponds to the time instant the signal is

transmitted from the source. The ambiguity function has

units of pascal per hertz and can also be interpreted in terms

of target velocity and position by using the transformations

v ¼ cv=ð2fcÞ and u¼ cs/2, where v, u are the target’s velocity

and position, and fc is the signal’s center frequency. The mean

and second moment of the ambiguity function Ws;qðs; vÞ are

derived analytically in Appendix B1 and are given by

Ws;qðs; vÞ
� �

¼
ð1
�1

Sðf 0Þ
k0

Gðrj0; f 0ÞQ�ðf 0 � vÞe�i2pðf 0�vÞs

�
ð

Gð0jr; f 0ð1þ 2vq=cÞ�1ÞQðf 0ð1þ 2vq=cÞ�1Þ

�Uqðf 0 îr=c; vqÞPvðvqÞdvqdf 0; (4)

jWs;qðs;vÞj2
D E

¼
ð1
�1

ð1
�1

Sðf1Þ
k1

Gðrj0; f1ÞQ�ðf1�vÞ

�S�ðf2Þ
k�2

G�ðrj0; f2ÞQðf2�vÞe�i2pðf1�f2Þs

�
ð

Gð0jr; f1ð1þ2vq=cÞ�1ÞQðf1ð1þ2vq=cÞ�1Þ

�G�ð0jr; ff ð1þ2vq=cÞ�1ÞQ�ðf2ð1þ2vq=cÞ�1Þ
�Uqððf1�f2Þ̂ir=c;vqÞPvðvqÞdvqdf1 df2; (5)

where f 0, f1, or f2 correspond to received frequencies, and

Q(f)is the source spectrum. The variable Uq is defined ana-

lytically in Eq. (B4) and is the characteristic function for

probability density Pu(uq
0), so that it can be interpreted as

the Fourier transform of the target’s spatial distribution.

For the whole group of N targets, we find jhWs(s, v)ij2
¼ N2jhWs,q(s, v)ij2 and (see Appendix B1),

jWsðs; vÞj2
D E

¼ N jWs;qðs; vÞj2
D E

þ NðN � 1Þ

� j Ws;qðs; vÞ
� �

j2: (6)

The expected square magnitude of the ambiguity function is

then the sum of (i) a second moment term proportional to N
due to scattering from each target, and (ii) a mean-squared

term proportional to N2 due to interaction of the fields scat-

tered from different targets.22

For target groups large compared to the wavelength, the

source spectrum Q and the targets’ spatial spectrum Uq tend to

be non-overlapping band-limited functions of frequency whose

products tend to zero in Eq. (4), leading to a negligible mean.

This is not the case in Eq. (5) where the peaks of Q and Uq

overlap because evaluation of Uq at the frequency difference

enables cross-spectral coherence. The variance then typically

dominates the second moment.6 This is shown in Fig. 3 for the

case A target distribution scenario that represents migrating

herring (Table I), given the source signal and remote sensing

system parameters in Table II, where we find that the magni-

tude squared of the expected value of the ambiguity function,

jhWs(s, v)ij2, is typically about 20 dB smaller than the

expected square magnitude of the ambiguity function, hjWs(s,
v)j2i. From Eq. (6), this means that for this case we would

require a 100-fold increase in population density for the mag-

nitude squared of the mean ambiguity function to dominate.

1. Estimating target position and velocity statistics

Equations (4) and (5) cannot typically be evaluated ana-

lytically. A significant simplification is however possible in

the case of specially designed source signals whose spectra

can be approximated as

Qðf Þ ¼
XM�1

n¼0

anei2pðf�fnÞhn sin cðpðf � fnÞTÞ

�
XM�1

n¼0

anei2pðf�fnÞhndðf � fnÞ; (7)

where an is the coefficient of the nth frequency component,

fn, for n¼ 1,2,…, M and hn and T are known constants. Equa-

tion (7) is approximately valid, for example, for spectra that

consist of a series of windowed harmonic waves, such as the

Costas sequence described in Appendix A. For such spectra,

the expected square magnitude of the ambiguity function is

given by

jWs;qðs;vÞj2
D E

¼
XM�1

n¼0

XM�1

m¼0

XM�1

i¼0

XM�1

j¼0

a�namala
�
j

SðfnþvÞ
2pðfnþvÞ=c

� �

� S�ðflþvÞ
2pðflþvÞ=c

� �
�Gðrj0;fnþvÞ

�G�ðrj0;flþvÞGð0jr; fmÞG� 0jr; flþv

fnþv
fm

� �

�d
flþv

fnþv
fm� fj

� �
Uq

�
fnþ fm� fl�

flþv

fnþv
fm

� �

� îr=ð2cÞ;0
�
�e�i2pðfn�flÞsPv

c

2

fnþv

fm
�1

� �� �
(8)

When the dimensions of the swarm are much larger than the

acoustic wavelength, the first two moments of Eq. (8) along

constant Doppler shift v and constant time-delay s axes can

be analytically expressed in terms of the targets’ position

and velocity first and second statistical moments (see Appen-

dix B1). Taking moments along a constant-s axis,

TABLE II. Remote sensing system properties.

Signal Design

7-pulse

Costas sequence

(see Appendix A)

Center frequency 1.6 kHz

Bandwidth �20 Hz

Range resolution, Du �43 m

Cross-range resolution (at 15 km range) � 100 m

Velocity resolution, Dv � 0.17 m/s

Source/receiver range (from the origin 0,

see Figs. 1 and 2)

15 km

Source/receiver depth (for waveguide examples,

see Fig. 2)

20 m
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v1 ¼
ð

v jWs;qðs; vÞj2
D E

dv � b1

XM�1

n¼0

XM�1

m¼0

2fm

c
ðfm � fnÞ

" #(

þ M
XM�1

m�0

2fm

c

� �2
" #

lv

)
� c1 þ d1lv; (9a)

v2 ¼
ð

v2 jWs;qðs; vÞj2
D E

dv � b1

XM�1

n¼0

XM�1

m¼0

2fm
c
ðfm � fnÞ2

" #(

þ
XM�1

n¼0

XM�1

m¼0

2
2fm

c

� �2

ðfm � fnÞ
" #

lv

þ M
XM�1

m¼0

2fm
c

� �3
" #

ðl2
v þ r2

vÞ
)

� c2 þ d2lv þ e2ðl2
v þ r2

vÞ; (9b)

where the ambiguity function has been normalized so that

$hjWs,q(s, v)j2idv¼ 1. The coefficient b1 is given by

b1 ¼ M
XM�1

m¼0

2fm
c

" #�1

: (10)

The coefficients c1, d1, c2, d2, and e2 can be calculated ana-

lytically, given a specific signal design, and then used to

provide estimates of the target’s mean velocity and its stand-

ard deviation given measurements of v1 and v2. For the pur-

poses of this paper, we employ the Costas sequence design

detailed in Appendix A that satisfies Eq. (7), and for which

the coefficients are given in Table III. In the illustrative exam-

ples of Sec. III A, we assume the form of Eq. (9) holds and

use it to estimate the velocity means and standard deviations.

Estimates obtained via the Moment Method in Sec. III A are

found to be very accurate, with errors typically smaller than

10%.

Similarly, for the moments of the expected square

magnitude of the ambiguity function over time-delay s,

we find

FIG. 3. Free-space. 10log10 jhW(s,v)ij2 (black dashed line) and 10log10 hjW(s,v)ji2 (black solid line) via 100 Monte-Carlo simulations for the field scattered

from a random aggregation of targets following the case A scenario described in Table I. The source signal and remote sensing system parameters are given in

Table II. 10log10 of the expected square magnitude of the ambiguity function, based on the analytical expressions of Eqs. (4) and (5), and (6) is also shown

(gray line) and is found to be in good agreement with the Monte-Carlo result. The variance of the ambiguity function dominates the total intensity and the mag-

nitude squared of the ambiguity function’s expected value is negligible.

TABLE III. Coefficients of Eq. (9).

c1 d1 c2 d2 e2

0.0156 2.1334 0.5822 0.1333 4.5512
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s1 ¼
ð

s jWs;qðs; vÞj2
D E

ds

¼ ðr þ îr � luÞ
1

c

XM�1

n¼0

XM�1

m¼0

dn;m; (11a)

s2 ¼
ð

s2 jWs;qðs; vÞj2
D E

ds

¼ ðĵir � ruj2þjr þ îr � luj2Þ
2

c2

XM�1

n¼0

XM�1

m¼0

dn;m; (11b)

where r is the range from the monostatic source/receiver

position to the center of the resolution footprint, and the

ambiguity function has again been normalized so that

$hjWs,q (s, v)j2ids¼ 1. The coefficients dn,m are given by

dn;m ¼ Pv
c

2

fn þ v

fm
� 1

� �� �
: (12)

Equation (11) shows that the first two moments of the ambi-

guity function’s expected square magnitude along a constant

Doppler shift axis are linearly related to the first two moments

of the target swarm’s position. Note that as long as the abso-

lute value of the mean position estimate is less than or equal

to the length scale of the resolution footprint, then for practi-

cal purposes the targets have been accurately localized.

B. Waveguide

As in Sec. II A, we assume a group of N targets is ran-

domly distributed within volume V in the far-field of a

monostatic source/receiver system in a stratified range-inde-

pendent waveguide. We also assume that targets scatter

omnidirectionally for the frequencies considered. Under

these conditions, the field scattered from the qth target, due

to a harmonic source at angular frequency X, can be found

by adapting Eq. (59) of Ref. 14 to account for the case of a

monostatic (r0¼ r), stationary (v0 ¼ v ¼ 0) system and for

the change of the coordinate system origin from the target

centroid to the center of the resolution footprint

Us;qðr;t; XÞ ¼ 4p
X

l

X
m

Sðxm;l;qÞ
kðxm;l;qÞ

Ul;m
s:q ðr;X;xm;l;qÞe�ixm;l;qt;

(13)

where xm,l,q ¼ Xþ vq[nl(X)þ nm(X)] is the Doppler-shifted

frequency due to target motion, n is the wavenumber, S(x) is

the target’s planewave scattering function, l and m are indi-

ces corresponding to the incoming and outgoing modes,

respectively, and the variable Us,q
l,m describing propagation to

and from the target is defined explicitly in Eq. (B30). Note

that both the scattering function and the wavenumber are

evaluated at the Doppler-shifted frequency xm,l,q due to

modal propagation. The mean and second moment of the

ambiguity function of the back-scattered field are derived

analytically in Appendix B2 and are given by

Ws;qðs; vÞ
� �

¼ 1

p

ð1
�1

Sðx0Þ
kðx0ÞQ�ðx0 � 2pvÞe�iðx0�2pvÞs

�
ðX

l

X
m

Qðx0ð1þ vqð1=vG
l þ 1=vG

mÞÞ
�1Þ

� Ul;m
q ðx0; vqÞPvðvqÞdvqdx0; (14)

hjWs;qðs;vÞj2i¼
1

p2

ð1
�1

ð1
�1

Sðx1Þ
kðx1Þ

Q�ðx1�2pvÞS
�ðx2Þ

k�ðx2Þ

�Qðx2�2pvÞe�iðx1�x2Þs�
ðX

l

X
m

X
n

X
p

�Qðx1ð1þvqð1=vG
l þ1=vG

mÞÞ
�1Þ

�Ul;m;n;p
q ðx1;x2;vqÞ

�Q�ðx2ð1þvqð1=vG
n þ1=vG

p ÞÞ
�1Þ

�PvðvqÞdvqdx1dx2; (15)

where x0, x1 or x2 correspond to received frequencies,14 vG
m

is the group velocity of the mth mode, and Q(f)is the source

spectrum. As in the free-space case, the ambiguity function

can also be interpreted in terms of target velocity and posi-

tion by using the transformations v ¼ vG
1 v=ð2fcÞ and

u ¼ vG
1 s=2, where v and u are the target’s velocity and posi-

tion, and fc is the signal’s center frequency. The variables

Uq
l,m and Uq

l,m,n,p are defined in Eqs. (B34) and (B38), respec-

tively, and are characteristic functions for the qth target’s

initial position uq
0 given its probability density function,

Pu(uq
0). They can be interpreted as Fourier transforms of the

target’s spatial distribution and are evaluated at the Doppler-

shifted frequencies xm,l,q and xp,n,q so that they are functions

of the modes l, m, n, and p.
For a group containing N targets, we again have jhWs(s,

v)ij2¼N2jhWs,q(s,v)ij2 and hjWs(s,v)j2i¼NhjWs,q(s, v)j2i
þN(N� 1)jhWs,q(s,v)ij2. As in the free-space case, the

expected square magnitude of the ambiguity function is the

sum of a second moment term proportional to N and a mean-

squared term proportional to N2,where the variance term typi-

cally dominates for groups large compared to the wavelength,6

as shown for the case A target distribution scenario that repre-

sents migrating herring (Table I) in Fig. 4. The source signal

and remote sensing system parameters are given in Table II.

We note that the targets appear to be closer to the source/re-

ceiver by roughly 40 m, but this is approximately equal to the

length scale of the system’s resolution footprint, so for practi-

cal purposes the targets are still accurately localized.

1. Estimating target position and velocity statistics

As in the free-space case, Eqs. (14) and (15) cannot

typically be analytically evaluated. A significant simplifica-

tion is however possible in the case of some specially

designed source spectra, such as Costas sequences,

which can be written in the form of Eq. (7), QðXÞ
¼
PM�1

n¼0 aneiðX�XnÞHndðX� XnÞ. The second moment of the

ambiguity function is then given by (see Appendix B2),
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jWs;qðs; vÞj2
D E

¼
XM�1

n0

XM�1

m0

XM�1

l0

XM�1

j0

a�n0am0al0a
�
j0

p2

� Sðxn0 þ 2pvÞ
ðxn0 þ 2pvÞ=c

� �
S�ðxl0 þ 2pvÞ
ðxl0 þ 2pvÞ=c

� �

� d
xj0

xm0
� xl0 þ 2pv

xn0 þ 2pv

� �
e�iðxn0 �xl0 Þs

�
X

l

X
m

X
n

X
p

� Ul;m;n;p
q ðxn0 þ 2pv;xl0 þ 2pv; ~vqÞPvð~vqÞ; (16)

where an0 are the coefficients of the xn0 frequency compo-

nents for n0 ¼ 1, 2,…, M, and

~vq ¼
xn0 þ 2pv

xm0
� 1

� �
ð1=vG

l þ 1=vG
mÞ
�1: (17)

Despite this simplified form, it is still not straightforward to

derive analytical expressions for the moments along time-

delay s and Doppler shift v. We note, however, that

Ul;m;n;p
q ðxn0 þ 2pv;xl0 þ 2pv; ~vqÞ

� 1

V

ð
V

Ul;m
s;q ðr;xm0 ;xn0 þ 2pvÞU�n;p

s;q ðr;xj0 ;xl0 þ 2pvÞd3u0
q;

(18)

which is not a function of target velocity, so that Eq. (16) for

the waveguide has many similarities with Eq. (8) for the

free-space case. In the illustrative examples of Sec. III B, we

assume the form of Eq. (9) still holds and use the coefficients

of Table III for free-space to estimate the velocity means

and standard deviations in a waveguide.

III. ILLUSTRATIVE EXAMPLES

Here, we demonstrate how the position and velocity

mean and standard deviation of a group of targets can be

simultaneously estimated in free-space and in a typical conti-

nental-shelf environment. We examine the three target

scenarios described in Table I, which are illustrative of long-

range remote sensing of marine life in the ocean. In all the

examples, we employ the Costas sequence design detailed in

Appendix A and the remote sensing system parameters sum-

marized in Table II. The mean of the ambiguity function and

its expected square magnitude are found by evaluating either

Eqs. (4) and (5) for free-space or Eqs. (14) and (15) for the

waveguide scenario via 100 Monte-Carlo simulations. We

then evaluate the moments of the ambiguity function square

magnitude along constant time-delay and Doppler shift axes.

Estimates of the targets’ velocity and position mean and

standard deviation are obtained via the Moment Method by

inverting Eqs. (9) and (11), using coefficients from Table III,

l̂v;j ¼
v1 � c1

d1

; (19a)

r̂v;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � c2 � d2l̂v;j � e2l̂2

v;j

e2

s
; (19b)

îr � l̂u ¼
cs

1

d3

� r; (19c)

îr � ru ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s2

2d3

� ½r þ îr � lu�2
s

(19d)

where

FIG. 4. Waveguide. 10log10 hjW(s,v)ji2(black

dashed line) and 10log10 hjW(s,v)j2i (black solid

line) via 100 Monte-Carlo simulations for the

field scattered from a random aggregation of tar-

gets following the case A scenario described in

Table I. The cross-range resolution is set to be

such that the fish areal number density is 2 fish/m2.

The source signal and remote sensing system

parameters are given in Table II. 10log10 of the

expected square magnitude of the ambiguity func-

tion, based on evaluating Eqs. (14–15) and (6) is

also shown (gray line) and is found to be in good

agreement with the Monte-Carlo result. The var-

iance of the ambiguity function dominates the total

intensity and the magnitude squared of the ambi-

guity function’s expected value is negligible.
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d3 ¼
XM�1

n¼0

XM�1

m¼0

dn;m; (20)

dn,m has been defined in Eq. (12) and j corresponds to one

Monte-Carlo simulation. For the coefficients c1 through e2,

we use the analytically calculated values for free-space given

in the first row of Table III. Estimates of the mean velocity

and position are also obtained by simply finding the peak of

the ambiguity function square magnitude, which we refer to

as the Peak Method and define by

hjWs;qðs; vÞj2ijv ¼ 2l̂0v;jfc=c; (21a)

hjWs;qðs; vÞj2ijs ¼ 2l̂0
u;j=c: (21b)

For each estimated quantity, NMC ¼ 100 Monte-Carlo simu-

lations are used to calculate the estimate’s sample mean and

sample variance, and so investigate how such estimates per-

form in both free-space and waveguide environments. For

example,

FIG. 5. Free-space. The strength of

the sidelobes is much less than half

that of the main lobe and the

Moment Method provides accurate

velocity and position estimates, as

shown in Fig. 6. (A) 10log10 of the

expected value of the ambiguity

function square magnitude for the

pressure field scattered from a shoal

of migrating herring (Table I, case

A) and given the source signal and

remote sensing system parameters in

Table II. The white curve indicates 3

dB-down contour(s), which may be

used to roughly delimit the target

shoal. The maximum of the ambigu-

ity surface is shown by a white

cross. (B, C) Constant-velocity and

constant-position cuts through the

point indicated by the white cross in

(A). Dashed lines indicate the mean

position and velocity estimates

based on the maximum value of the

ambiguity surface (Peak Method).
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hl̂vi ¼
1

NMC

XNMC

j¼1

l̂v;j; (22a)

varðl̂vÞ ¼
1

NMC

XNMC

j¼1

ðl̂v;j � hl̂viÞ2 : (22b)

The free-space results are presented here for comparison with

those in a waveguide, since analytical expressions for the

moments of the expected square magnitude of the ambiguity

function have been derived only for free-space. For the wave-

guide scenarios, we check whether estimates of the velocity

and position mean and standard deviation can be obtained via

the Moment Method using the analytical expressions derived

in free-space, Eqs. (9) and (11), and Table III. For the case

when additive noise in included, the results presented here

are applicable as long as the spectral level of the noise does

not exceed the spectral level of the signal by more than the

time-bandwidth product of the signal.

A. Free-space

The expected square magnitude of the ambiguity func-

tion, as well as constant-velocity and constant-position cuts

through its maximum for a typical migrating shoal of herring

(Table I, case A) are shown in Fig. 5, given the signal and

remote sensing system parameters summarized in Table II.

Estimates of the velocity and position mean are obtained via

the Moment Method [Eqs. (19a) and (19c)], as well as via

the Peak Method [Eq. (21)]. The Moment Method and Eqs.

(19b) and (19d) are then used to estimate the velocity and

position standard deviation.

The sample means and sample standard deviations, e.g.,

Eqs. (22a) and (22b), of these estimates are shown in Fig. 6.

We find that estimates of the velocity and position mean

based on the Moment Method are at least as accurate as

those based on the Peak Method. For mean velocity, only the

case of the swarming herring demonstrates an observable

bias which is likely due to the very large standard deviation

of the targets’ velocity for that scenario. As long as the esti-

mate of mean position is within the 40 m resolution footprint

FIG. 6. Free-space. Estimates of the velocity and position mean and stand-

ard deviation for simulated migrating and swarming herring shoals, and a

migrating school of tuna (Table I), given the source signal and remote sens-

ing system parameters summarized in Table II. Target positions are local-

ized within the remote sensing system’s resolution footprint, and velocity

estimate errors are typically less than roughly 10%. Horizontal lines indicate

true values. (A, B) Estimates of the targets’ velocity mean and standard

deviation. Triangles and solid vertical lines indicate the sample means and

sample standard deviations of estimates obtained via the Moment Method

[Eqs. (19a) and (19b)], using 100 Monte-Carlo simulations. Circles and

dashed lines indicate the sample mean and sample standard deviation for

estimates of the mean velocity obtained via the Peak Method [Eq. (21a)],

i.e., by locating the maximum of the ambiguity function square magnitude

[white cross in Fig. 5(a)]. (C, D) Same as (A,B) but for estimates of the

group’s position mean and standard deviations obtained via both the

moment (triangles and solid vertical lines) and peak (circles and dashed

lines) methods.

FIG. 7. Waveguide. There is now more energy in the sidelobes of the ambi-

guity function compared to Fig. 5, but both the Peak and Moment methods

still provide accurate velocity and position estimates as seen in Fig. 8. (A)

10log10 of the expected value of the ambiguity function square magnitude

for the pressure field scattered from a shoal of migrating herring (Table I,

case A) and given the source signal and remote sensing system parameters

in Table II. The fish are assumed to be submerged in the waveguide of Fig.

2. The cross-range resolution is set to be such that the fish areal number den-

sity is 2 fish/m2. The white curve indicated 3 dB-down contour(s), which

may be used to roughly delimit the target shoal. The maximum of the ambi-

guity surface is shown by a white cross. (B, C) Constant-velocity and con-

stant-position cuts through the point indicated by the white cross in (A).

Dashed lines indicate the mean position and velocity estimates based on the

maximum value of the ambiguity surface (Peak Method).
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of the remote sensing system, for practical purposes, the tar-

get group has been accurately localized. This is the case for

all the examples considered here, as shown in Fig. 6. Esti-

mates of the velocity standard deviation for cases A, B, and

C are very distinct. This suggests that in free-space it may be

possible to use the Moment Method to help identify and clas-

sify dynamic behavior.

B. Waveguide

We consider the same cases (Table I) as in Sec. III A for

free-space, with the same source signal and remote sensing

system parameters (Table II), but now in the waveguide as

shown in Fig. 2. For the case of a migrating herring shoal

(Table I, case A), we find that the Peak and Moment Meth-

ods provide accurate velocity and position estimates, even

though the ambiguity function square magnitude now exhib-

its more significant sidelobes, as shown in Fig. 7. By using

Monte-Carlo simulations, we show that the same equations

that linearly relate the first two moments of the ambiguity

function square magnitude along a constant Doppler shift

axis to the first two moments of the target swarm’s position

in free-space [Eqs. (11a and 11b)] also approximately hold

in the waveguide case, for the Costas source signal.

These estimates for all cases are shown in Fig. 8. We find

that the free-space expressions and coefficients for the

Moment Method of Eqs. (9) and (11) and Table III provide

very good estimates of the mean velocity and position of the

groups and their standard deviation in a stratified range-inde-

pendent waveguide environment. Estimates of the velocity

mean and standard deviation are found to typically be within

10% of their true values, and the targets are accurately local-

ized within the system’s resolution footprint. Estimates of the

velocity standard deviation for the three different cases con-

sidered are found to be distinct, which suggests that it may be

possible to classify dynamic behavior through instantaneous

Doppler measurements.

IV. CONCLUSIONS

We showed that for typical remote sensing scenarios of

large aggregations of randomly distributed moving targets

where the group dimensions are much larger than the acous-

tic wavelength, the variance of the scattered field dominates

the range-velocity ambiguity function, but cross-spectral co-

herence remains and enables high resolution Doppler veloc-

ity and position estimation. We then developed a method for

simultaneously and instantaneously estimating the means

and standard deviations of the velocity and position of

groups of self-propelled underwater targets from moments of

the measured range-velocity ambiguity function. This

Moment Method is based on analytic expressions for the

expected square magnitude of the range-velocity ambiguity

function in free-space. It was shown that for pseudo-random

signals, such as Costas sequences, the moments of the ambi-

guity function’s expected square magnitude along constant

time-delay and Doppler shift are linear functions of the

mean and variance of the targets’ velocity and position. We

also described an alternative Peak Method that can be used

to estimate the targets’ mean velocity and position.

Both methods were shown to perform well not only in

free-space, but in a typical continental-shelf ocean wave-

guide also. In particular, for typical long-range imaging sce-

narios, exceeding 10 km, the target groups were accurately

localized within the remote sensing system’s resolution foot-

print with simultaneous velocity mean and standard devia-

tion estimates for the group within 10% of the true values.

We found that the estimates obtained via the Moment

FIG. 8. Waveguide. Estimates of the velocity and position mean and stand-

ard deviation for simulated migrating and swarming herring shoals and a

migrating school of tuna (Table I), given the source signal and remote sens-

ing system parameters summarized in Table II. Target positions are localized

within the remote sensing system’s resolution footprint, and velocity esti-

mate errors are typically less than roughly 10%. Horizontal lines indicate

true values. (A, B) The sample means and sample standard deviations of

estimates of the targets’ velocities mean and standard deviation obtained via

the Moment Method [Eqs. (19a) and (19b), triangles and solid vertical lines].

Also the sample mean and sample standard deviation of the target mean ve-

locity estimate obtained via the Peak Method [Eq. (21a), circles and dashed

lines], i.e., by locating the maximum of the ambiguity function (white cross

in Fig. 7). (C, D) Same as (A, B) but for estimates of the group’s position

mean and standard deviations obtained via both the moment (triangles and

solid vertical lines) and peak (circles and dashed lines) methods.

FIG. 9. Waveguide. Necessary length scales for the quadruple modal sum

of Eq. (B37) to reduce to a double modal sum, given different frequencies X
and sound speed profiles.

J. Acoust. Soc. Am., Vol. 130, No. 1, April 2011 I. Bertsatos and N. C. Makris: Estimating the velocity of target swarms 93

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Method were at least as accurate as those provided by the

Peak Method. The performance of both methods is dependent

on maintaining low sidelobes in the ambiguity surface. Since

it is only possible to measure the targets’ velocity component

relative to the system, at least two sources or receivers must

be used to estimate horizontal velocity vectors.

APPENDIX A: SIGNAL DESIGN

The range-velocity ambiguity function provides a

graphical representation of the resolution capacity of a given

signal and is typically used to quantify the signal’s perform-

ance in terms of resolving target range and relative velocity

from measurements of the scattered field.1 The ambiguity

function characteristics for several “basic” signals have been

reviewed extensively in literature.1,23–25 In terms of clutter

discrimination and reverberation suppression in the presence

of ambient noise, the following signals are among the best

options: pulse trains, linear frequency modulated (LFM) sig-

nals, and pseudo-random noise signals, such as Costas

sequences. Here, we describe the design of a Costas

sequence signal motivated by the need to resolve the position

and velocity of a large group of underwater biological tar-

gets. We assume that the desired range resolution is around

50 m, while the velocity resolution should be better than 0.2

m/s. Finally, the signal’s center frequency should be on the

order of hundreds of hertzs or a few kilohertz, to allow for

remote sensing on the order of tens of kilometers.20

A Costas sequence is defined in terms of the number M
of CW pulses in the sequence, the duration Tcw of each

pulse, the base frequency fb, and the sequence used to gener-

ate each CW pulse. To determine appropriate values for the

above parameters, we consider the range Du¼ cDs/2 and ve-

locity Dv¼ cDv/(2fc)resolutions we want to achieve, where

Ds and Dv are the time-delay and Doppler shift resolutions

of the signal,1

Ds ¼ 1

B
¼ Tcw

M
; (A1a)

Dv ¼ 1

Ttot

¼ 1

MTcw

; (A1b)

fc : fbþB/2 is the center frequency and c is the speed of

sound in the medium. Increasing the center frequency will

decrease Dv and so increase the velocity resolution. Given

then a Costas sequence of M ¼ 7 pulses, a pulse length of

Tcw¼ 0.4 s leads to a range resolution of approximately 43

m in water (c¼ 1500 m/s). The desired velocity resolution of

0.2 m/s or better can then be achieved by choosing fc¼ 1600

Hz to get Dv � 0.17 m/s.

For this specific design of a 7-pulse Costas sequence,

the total signal duration is Ttot¼MTcw¼ 2.8 s and the band-

width is B¼M/Tcw � 20 Hz. Each of the seven consequent

pulses is a CW at frequency fn¼ fbþ an/Tcw for n ¼ 0,1,…,

M �1, where fb is the signal “base” frequency (fc�B/2) and

an is the (nþ 1)th element of the Costas sequence, here cho-

sen to be (4, 7, 1, 6, 5, 2, 3). The normalized time domain

expression is given by1

qðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
MTcw

p
XM�1

n¼0

qnðt� nTcwÞ ; (A2)

where

qnðtÞ ¼ e�i2pfnt; 0 	 t 	 Tcw

0; otherwise:

	
(A3)

The complex signal spectrum is then given by the Fourier

transform of Eq. (A2),

Qðf Þ ¼
ffiffiffiffiffiffiffi
Tcw

M

r XM�1

n¼0

ei2pf ðnTcwÞei2pðf�fnÞTcw=2sin cðpðf � fnÞTcwÞ

¼
XM�1

n¼0

anei2pðf�fnÞhn sin cðpðf � fnÞTcwÞ

�
XM�1

n¼0

anei2pðf�fnÞhndðf � fnÞ; (A4)

where an ¼
ffiffiffiffiffi
Tcw

M

q
ei2pfnnTcw and hn¼ (nþ 1/2)Tcw, so that Eq.

(A4) is in the form of Eq. (7). Note that the last line of Eq.

(A4) strictly requires jf – fnj> 1/Tcw. It is still approximately

valid otherwise.

APPENDIX B: FULL FORMULATIONS IN FREE-SPACE
AND IN A STRATIFIED WAVEGUIDE FOR THE
STATISTICAL MOMENTS OF THE AMBIGUITY
FUNCTION FOR THE FIELD SCATTERED FROM A
GROUP OF RANDOMLY DISTRIBUTED, RANDOMLY
MOVING TARGETS

1. Free-space

Here, we derive analytical expressions for the statisti-

cal moments of the ambiguity function of the total acoustic

field scattered from a group of moving targets in free-

space. We begin with an analytical expression for the

acoustic field scattered from a simple harmonic source by

a single moving target in free-space (Appendix C of

Ref. 14) and derive expressions for the statistical moments

of the received field when the target’s position and veloc-

ity are random. Fourier synthesis is then used to expand

these expressions for the general case of broadband source

signals and calculate the statistical moments of the ambi-

guity function of the received field. Accounting for the cu-

mulative effect of a distribution of N randomly swarming

targets, we note that the expected intensity of the received

field consists of (i) a variance term proportional to N due

to scattering from each target, and (ii) a mean-squared

term proportional to N2 due to interaction of the fields

scattered from different targets,22 where the variance term

typically dominates.6

a. The back-scattered field

We consider a monostatic stationary source/receiver

system at r, and a group of N targets randomly distributed in

volume V centered at the origin 0. The random position of
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the qth target at time tq is given by rq¼ uq
0þ vqtq, as shown

in Fig. 1, where uq
0 is its random initial position, and vq is the

target’s average velocity during the time necessary for the

sound signal to travel through the remote system’s resolution

footprint. Since the Doppler shift due to a moving target

depends only on its speed relative to the source and receiver,

we assume without loss of generality that vq ¼ vq̂ir þ vq;? îr;?;
where îr;? denotes a unit vector perpendicular to îr . Under the

above conditions, the field incident on the qth target in the far-

field of a harmonic source of frequency f is given by adapting

Eq. (C3) of Ref. 14,

Ui;qðrq; tq; f Þ ¼ ei2pf ðr�îr �u0
q�vqtqÞ=ce�2ipftq ; (B1)

where r � jrj; îr¼ r=jrj, and we have used the far-field

approximation jrq � rj ¼r � îr � rq, valid for r 
 rq. To

determine the field scattered from the qth target, we then fol-

low the derivation procedure detailed in Eqs. (C4)–(C19) of

Ref. 14,

Us;qðr; t; f Þ ¼ Sð�f Þ
�k

Gð0jr; �f ð1þ 2vq=cÞ�1ÞGðrj0; �f Þe�i2p�f t

� e�i2p�f ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c; (B2)

where

�f ¼ f ð1þ vq=cÞ
1� vq=c

; or �f � f ð1þ 2vq=cÞ (B3)

is the Doppler-shifted frequency of the scattered field. This

derivation is also consistent with the approach of Dowling

and Williams,26 Eqs. (9.1)–(9.7), for calculating the sound

field due to a moving point source.

Let us now consider the effect of random target position

and speed. Taking expectations over the random initial offset

uq
0, we define

Uqð�f îr=c; vqÞ � pu

�f îr

c
1þ 1

1þ 2vq=c

� � !

¼
ð

V

e�i2p�f ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=cPuðu0

qÞd3u0
q; (B4)

where Pu(uq
0) is the probability that the target initial position

is uq
0, and pu is the corresponding characteristic function, i.e.,

the Fourier transform of Pu. Then,

hUs;qðr; t; f Þi ¼
ð

Sð�f Þ
�k

Gð0jr; �f ð1þ 2vq=cÞ�1Gðrj0; �f Þe�i2p�f t;

� Uqð�f îr=c; vqÞPvðvqÞdvq (B5)

where PvðvqÞ is the probability that the target speed is vq.

We note that when the source frequency f becomes such that

the wavelength c/f is much smaller than the length scale of

the targets’ spatial distribution, the variable Uqð�f îr=c;vqÞ
approaches zero, so that hUs,q(r, t; f)i � 0 also.

Finally, we can derive an expression for the autocorrela-

tion of the scattered field from the qth target,

hUs;qðr; t; f ÞU�s;qðr; tþ s; f Þi

¼
ð

Sð�f ÞS�ð�f Þ
�k �k�

Gðrj0; �f Þe�i2p�f tG�ðrj0;�f Þei2p�f ðtþsÞ

�
ð

Gð0jr; �f ð1þ 2vq=cÞ�1Þe�i2p�f îr �u0
q=cð1þð1þ2vq=cÞ�1Þ

� G�ð0jr; �f ð1þ 2vq=cÞ�1Þei2p�f îr �u0
q=cð1þð1þ2vq=cÞ�1Þ

� Puðu0
qÞPvðvqÞd3u0

qdvq

¼
ð jSð�f Þj2
j�kj2

jGðrj0; �f Þj2jGð0jr; �f ð1þ 2vq=cÞ�1Þj2

� ei2p�f sPvðvqÞdvq: (B6)

b. Statistical moments of the ambiguity function

For a broadband source with source function q(t)
() Q(f), the scattered field is found by Fourier synthesis

as

Ws;qðr;tÞ ¼
ð

dfQðf ÞUs;qðr;t; f Þ : (B7)

The ambiguity function of Ws,q(r, t) is defined as

Ws;qðs; vÞ ¼
ð1
�1

Ws;qðr;tÞq�ðt� sÞei2pvtdt

¼
ð1
�1

Ws;qðr;f 0ÞQ�ðf 0 � vÞe�i2pðf 0�vÞsdf 0; (B8)

where * signifies complex conjugate and

Ws;qðr;f 0Þ ¼
ð

dtei2pf 0t

ð
dfQðf ÞUs;qðr; t; f Þ

¼
ð

dtei2pf 0t

ð
dfQðf Þ Sð

�f Þ
�k

Gð0jr;�f ð1þ 2vq=cÞ�1Þ

� Gðrj0;�f Þ � e�i2p�f te�i2p�f ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c:

(B9)

Changing the order of integration, the integral over t results

in the delta function dðf 0 � �f Þ, where f 0 ¼ f ð1þ 2vq=cÞ (see

Appendix B1). Substituting for f,

Ws;qðr;f 0Þ ¼
ð

dðf 0 � �f Þd�f

1þ 2vq=c
Qð�f ð1þ 2vq=cÞ�1Þ

� Sð�f Þ
�k

Gð0jr;�f ð1þ 2vq=cÞ�1ÞGðrj0;�f Þ

� e�i2p�f ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c

� Sðf 0Þ
k0

Gð0jr;f 0ð1þ 2vq=cÞ�1ÞGðrj0;f 0Þ

� Qðf 0ð1þ 2vq=cÞ�1Þ

� e�i2pf 0ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c: (B10)
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Plugging Eq. (B10) into Eq. (B8), we then have

Ws;qðs; vÞ ¼
ð1
�1

Sðf 0Þ
k0

Gð0jr;f 0ð1þ 2vq=cÞ�1Þ

� Gðrj0;f 0ÞQðf 0ð1þ 2vq=cÞ�1Þ

� e�i2pf 0ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c

� Q�ðf 0 � vÞe�i2pðf 0�vÞsdf 0 (B11)

and we can now provide expressions for the expected value

of the ambiguity function, as well as its second moment,

hWs;qðs; vÞi ¼
ð1
�1

Sðf 0Þ
k0

Gðrj0;f 0ÞQ�ðf 0 � vÞe�i2pðf 0�vÞs

�
ð

Gð0jr;f 0ð1þ 2vq=cÞ�1ÞQðf 0ð1þ 2vq=cÞ�1Þ

� Uqðf 0̂ir=c; vqÞPvðvqÞdvqdf 0 (B12)

and

hjWs;qðs;vÞj2i¼
ð1
�1

ð1
�1

Sðf1Þ
k1

Gðrj0;f1ÞQ�ðf1� vÞ

�S�ðf2Þ
k�2

G�ðrj0;f2ÞQðf2� vÞ� e�i2pðf1�f2Þs

�
ð

Gð0jr;f1ð1þ2vq=cÞ�1ÞQðf1ð1þ2vq=cÞ�1Þ

�G�ð0jr;f2ð1þ2vq=cÞ�1ÞQ�ðf2ð1þ2vq=cÞ�1Þ
�Uqððf1� f2Þ̂ir=c;vqÞPvðvqÞdvqdf1df2: (B13)

We note that the term Uq, which corresponds to the character-

istic function of the random target position uq
0, is evaluated at

different wavenumbers between Eqs. (B12) and (B13). As

demonstrated in Sec. II A, evaluating Uq near base-band typi-

cally leads to the second moment of the ambiguity function

dominating over the magnitude squared of its first moment.

For the total field scattered from the group of N targets

within volume V, we can write Wsðr;f 0Þ ¼
PN

q¼1 Ws;qðr; f 0Þ.
Assuming that: (i) target positions are i.i.d.random variables,

and (ii) target speeds are also i.i.d., we then have hWs(s,v)i
¼ N hWs,q (s, v)i with the second moment given by

hjWs;qðs;vÞj2i¼
XN

q¼1

XN

p¼1

ð1
�1

ð1
�1

Sðf1Þ
k1

Gðrj0;f1ÞQ�ðf1�vÞ

�S�ðf2Þ
k�2

G�ðrj0;f2ÞQðf2�vÞ

�
ðððð

Gð0jr;f1ð1þ2vq=cÞ�1Þ

�Qðf1ð1þ2vq=cÞ�1ÞG�ð0jr;f2ð1þ2vq=cÞ�1Þ

�Q�ðf2ð1þ2vp=cÞ�1Þe�i2pf1ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
q=c

�ei2pf2ð1þð1þ2vq=cÞ�1 Þ̂ir �u0
p=c

�Puðu0
qÞPuðu0

pÞPvðvqÞPvðvpÞdu0
qdu0

pdvqdvp

�e�i2pðf1�f2Þsdf1df2

¼NhjWs;qðs;vÞj2iþNðN�1ÞjhWs;qðs;vÞij2:
(B14)

The last line is arrived at by considering the distinction

between the q¼ p terms, and the q= p terms. The second

moment of the ambiguity function then consists of two

terms: (i) a variance term proportional to N due to scattering

from each target and (ii) a mean-squared term proportional

to N2 due to interaction of the fields scattered from different

targets,22 where the variance term typically dominates.6

c. Moments of the ambiguity function over time delay
and Doppler shift

Equations (B12) and (B13) cannot typically be analytically

evaluated. A significant simplification is however possible in

the case of specially designed source spectra that can be

approximated by Eq. (7), Qðf Þ ¼
PM�1

n¼0 anei2pðf�fnÞhndðf � fnÞ.
As we show in Appendix A, a Costas sequence belongs in this

set of signals. Equation (B12) can then be rewritten as,

hWs;qðs; vÞi ¼
XM�1

n¼0

XM�1

m¼0

a�nam

ð1
�1

Sðf 0Þ
k0

Gðrj0;f 0Þ

� e�i2pðf 0�v�fnÞhndðf � v� fnÞ

� e�i2pðf 0�vÞs
ð

Gð0jr;f 0ð1þ 2vq=cÞ�1Þ

� ei2pðf 0ð1þ2vq=cÞ�1�fmÞhm�dðf 0ð1þ 2vq=cÞ�1

� fmÞUqðf 0̂ir=c; vqÞPvðvqÞdvqdf 0: (B15)

Integrating over f’ introduces the delta function

d vq �
c

2

fn þ v

fm
� 1

� �� �
; (B16)

since f’¼ fnþ v¼ fm(1þ 2vq/c), so that

hWs;qðs; vÞi ¼
XM�1

n¼0

XM�1

m¼0

a�nam
Sðfn þ vÞ

2pðfn þ vÞ=c
Gðrj0; fn þ vÞ

�Gð0jr; fmÞe�i2pfns � puð½fn þ fm þ v�̂ir=cÞ

� Pv
c

2

fn þ v

fm
� 1

� �� �
; (B17)

where we have substituted for Ub,q using Eq. (B4). Similarly,

for the second moment of the ambiguity function we find,

hjWs;qðs;vÞj2i¼
XM�1

n¼0

XM�1

m¼0

XM�1

l¼0

XM�1

j¼0

a�namala
�
j

SðfnþvÞ
2pðfnþvÞ=c

� �

� S�ðflþvÞ
2pðflþvÞ=c

� �
Gðrj0;fnþvÞ

�G�ðrj0;flþvÞGð0jr;fmÞG� 0jr; flþv

fnþv
fm

� �

�d
flþv
fnþv

fm�fj

� �
pu fnþfm�fl�

flþv
fnþv

fm

� �̂
ir=c

� �

�e�i2pðfn�flÞsPv
c

2

fnþv

fm
�1

� �� �
(B18)
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where the delta function signifies that, for given v, only

specific frequency ratios result in non-zero values for

hjWs,q(s,v)j2i.
To evaluate the moments of the ambiguity function’s

expected square magnitude along v, we assume that the

acoustic wavelength is much smaller than the spatial extent

of the target swarm, so that the characteristic function of the

target’s position (pu) can be approximated as a delta func-

tion, whereby

XM�1

l¼0

XM�1

j¼0

d
fl þ v

fn þ v
fm � fj

� �
d fn þ fm � fl �

fl þ v

fn þ v
fm

� �� �

�
XM�1

l¼0

XM�1

j¼0

dðfl � fnÞdðfj � fmÞ (B19)

so that

hjWs;qðs; vÞj2i
XM�1

n¼0

XM�1

m¼0

janj2jamj2
jSðfn þ vÞj2

½2pðfn þ vÞ=c�2

� 1

4pr4
Pv

c

2

fn þ v

fm
� 1

� �� �
: (B20)

It has been shown in Ref. 22 that, for the opposite case,

when the acoustic wavelength is on the order of the target

swarm dimensions, other coherent effects are important and

simplifications to Eq. (B18) are not possible. For low Mach

number motions, we assume that the term jS(fnþ v)j2/
[2p(fnþ v)/c]2 is approximately constant and equal to

jS(fn)j2/(2pfn/c)2. The moments of Eq. (B20) along v for con-

stant s are linearly related to the moments of the target speed

probability density,

v1 �
ð

vhjWs;qðs; vÞj2idv

¼
XM�1

n;m

bn;m
2fm

c
fm � fn þ fm

2lv

c

� �
; (B21a)

v2 �
ð

v2hjWs;qðs; vÞj2idv

¼
XM�1

n;m

bn;m
2fm

c
fm � fn þ fm

2lv

c

� �2

þ 4r2
v

c2
f 2
m

( )
; (B21b)

after normalizing so that $hjWs,q(s,v)j2idv¼ 1, where bn,m is

a known constant, l
v

and rv are the mean and standard devi-

ation of the target speed, and fn and fm are known constants

that correspond to the distinct frequency components of the

source spectrum of Eq. (7). For example, for the case of a

continuous harmonic wave (M ¼ 1), we find v1¼ 2f0lv/c,

and v2¼ 4f0
2(r2

v þ l2
v)/c2.

Going back to Eq. (B18), to evaluate the moments of the

ambiguity function’s expected square magnitude along s, we

now write the characteristic function for u as a Taylor series

expansion,

puðĉir=cÞ�
ð

PuðuqÞe�i2pĉir �uq=cduq¼
ð

PuðuqÞ1� i2pĉir �uq=c



�4p2

2
½ĉir �uq=c�2þ���

�
duq

¼ 1� i2pcðrþ îr �luÞ=c�4p2

2
c2ð½̂ir �ru�2

þ½rþ îr �lu�2Þ=c2þ ��� ¼
Xp

d¼0

cdc
d (B22)

where c¼ (fn þ fm� fl – fm(flþ v)/(fnþ v)), and lu and ru are

the mean and standard deviation of the target initial position,

respectively. The moments of Eq. (B18) along s involve

integrals of the form

ð
spe�i2pðfn�flÞsds ¼ i

2p

� �p

dðpÞðfn � flÞ; (B23)

where d(p) is the pth derivative of the Dirac delta function

and is defined by the property j

ð
hðf ÞdðpÞðf Þdf ¼ �

ð
@hðf Þ
@f

dðp�1Þðf Þdf

¼ ð�1Þp
ð
@phðf Þ
@f p

dðf Þdf : (B24)

Before substituting into Eq. (B18), we also note that

XM�1

l¼0

d
fl þ v
fn þ v

fm � fj

� �
dðfn � flÞ � dðfj � fmÞ : (B25)

The moments of Eq. (B18) along s are then given by

ð
sphjWs;qðs;vÞj2ids¼

XM�1

n¼0

XM�1

m¼0

janj2jamj2
jSðfnþvÞj2

½2pðfnþvÞ=c�2
1

ð4prÞ4

�p!
i

2p

� �p

cpPv
c

2

fnþv

fm
�1

� �� �
; (B26)

so that

s1 �
ð

shjWs;qðs; vÞj2ids

¼ ðr þ îr � luÞ
1

c

XM�1

n¼0

XM�1

m¼0

Pv
c

2

fn þ v

fm
� 1

� �� �
; (B27a)

s2 �
ð

s2hjWs;qðs; vÞj2ids ¼ 2

c2
ð½̂i � ru�2 þ ½r þ îr � lu�2Þ

�
XM�1

n¼0

XM�1

m¼0

Pv
c

2

fn þ v

fm
� 1

� �� �
: (B27b)

Note here that, for the case of a continuous harmonic wave

(M¼ 1), it is not possible to infer the statistics of target posi-

tion since c¼ 0, pu(0)¼ 1, and the magnitude square of the

ambiguity function does not depend on target position, as

expected.
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Also note that Eqs. (B21)–(B27) were derived for the

expected value of the ambiguity function magnitude squared

given a single target with random position and velocity, Eq.

(B13). For a total of N targets, the expected value of the ambi-

guity function magnitude squared is instead given by Eq.

(B14), which also involves the magnitude squared of the

expected value of the ambiguity function for a single target,

Eq. (B12). Moments of the latter along constant-s and con-

stant-v axis cannot in general be expressed as linear functions

of the target’s position and velocity statistical moments, even

for source signals that satisfy Eq. (7). For a group of N targets,

moments of the expected value of the total ambiguity function

magnitude squared can still be used to obtain estimates of the

targets’ position and velocity means and standard deviations,

as long as the variance of the received field intensity domi-

nates, which is typically the case.6

2. Stratified waveguide

Here, we derive expressions for the statistical moments

of the ambiguity function of the total acoustic field scattered

from a group of moving targets in a stratified waveguide.

Our formulation is based on analytical expressions for the

Doppler shift and spread expected in long-range scattering

from fish groups in the continental-shelf, which in turn are

based on a model for scattering from a moving target sub-

merged in a stratified ocean waveguide.14 We also state con-

ditions for modal decorrelation, since it has been shown that

given a sufficiently large distribution of random volume or

surface inhomogeneities, the waveguide modes will decou-

ple in the mean forward field.22,27

a. The back-scattered field

As for the free-space case in Appendix B1, we consider

a monostatic stationary system at range r from a group of N
targets randomly distributed within volume V centered at the

origin 0. The position of the qth target at time tq is given by

rq¼ uq
0þ vqtq, as shown in Fig. 1, where u0

q is the initial

random target position, and vq is the target’s average veloc-

ity during the time needed for the sound signal to travel

through the remote system’s resolution footprint. We assume

again that vq ¼ vq̂ir þ vq? îr;? , where îr;? denotes a unit

vector perpendicular to îr . Finally, we assume that for

the frequency regime we consider, the targets scatter omni-

directionally so that their scatter function has no angular de-

pendence. Under the above conditions, we can rewrite Eq.

(59) of Ref. 14 as

Us;qðr; t; XÞ ¼ 4p
X

l

X
m

Sðxm;l;qÞ
kðxm;l;qÞ

Ul;m
s;q ðr;X;xm;l;qÞe�ixm;l;qt;

(B28)

where

xm;l;q¼Xþvq½nlðXÞþnmðXÞ� (B29)

is the Doppler-shifted frequency due to target motion. We

have defined for convenience

Ul;m
s;q ðr;X;xm;l;qÞ ¼ ½Alðr; XÞAmðr; xm;l;qÞeiðclðXÞþcmðxm;l;qÞÞz0

q

� Alðr; XÞBmðr; xm;l;qÞeiðclðXÞ�cmðxm;l;qÞÞz0
q

� Blðr; XÞAmðr; xm;l;qÞe�iðclðXÞ�cmðxm;l;qÞÞz0
q

þ Blðr; XÞBmðr; xm;l;qÞe�iðclðXÞþcmðxm;l;qÞÞz0
q �

� eiðnlðXÞþnmðxm;l;qÞÞq0
q (B30)

where, other than in the expression for xm,l,q, the lth mode

wavenumbers are evaluated at X, while the mth mode wave-

numbers are evaluated at xm,l,q. Note that U s,q
l,m (r, X, x m,l,q) is

an implicit function of vq.

Equation (B28) is valid when we are in the far-field of

the source/receiver, which is satisfied here since we are con-

sidering scattering from targets within a resolution footprint

of our monostatic system. We have already made use of this

fact in deriving Eq. (B30), where for the amplitudes of the

down- and up-going plane waves of the incoming mode l,

we have written

Alðr� u0
q; XÞ ¼ Alðr; XÞ � eiðnlðXÞ̂iq�u0

qþclðXÞ̂iz�u0
qÞ; (B31a)

Blðr� u0
q; XÞ ¼ Blðr; XÞ � eiðnlðXÞ̂iq�u0

q�clðXÞ̂iz�u0
qÞ; (B31b)

and similarly for the plane wave amplitudes of the outgoing

mode m, we have used

Amðr� u0
q; xm;l;qÞ ¼ Amðr; xm;l;qÞ

� eiðnmðxm;l;q Þ̂iq�u0
qþcmðxm;l;q Þ̂iz�u0

qÞ; (B32a)

Bmðr� u0
q; xm;l;qÞ ¼ Bmðr; xm;l;qÞ

� eiðnmðxm;l;q Þ̂iq�u0
q�cmðxm;l;q Þ̂iz�u0

qÞ: (B32b)

For spatial cylindrical coordinates k ¼n̂iq þ ĉiz, while

Al (r; X), Bl (r; X) are the amplitudes of the down- and up-

going modal plane wave components incident on the target,

and Am(r;xm,l,q) and Bm(r;xm,l,q)are the amplitudes of the

down- and up-going modal plane wave components scattered

from the target,

Alðr; XÞ ¼ i

dðzÞ
e�ip=4ulðzÞNð1Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pnlðXÞjqj
p eiðnlðXÞjqjþclðXÞztÞ; (B33a)

Blðr; XÞ ¼ i

dðzÞ
e�ip=4ulðzÞNð2Þlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pnlðXÞjqj
p eiðnlðXÞjqj�clðXÞztÞ; (B33b)

Amðr; xm;l;qÞ ¼
i

dð0Þ
e�ip=4umðzÞNð1Þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pnmðxm;l;qÞjqj
p eiðnmðxm;l;qÞjqjþcmðxm;l;qÞztÞ;

(B33c)

Bmðr; xm;l;qÞ ¼
i

dð0Þ
e�ip=4umðzÞNð2Þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pnmðxm;l;qÞjqj
p eiðnmðxm;l;qÞjqj�cmðxm;l;qÞztÞ:

(B33d)

98 J. Acoust. Soc. Am., Vol. 130, No. 1, April 2011 I. Bertsatos and N. C. Makris: Estimating the velocity of target swarms

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



Before taking expectations over target position and speed in

Eq. (B28), we note that only Us,q
l,m is a function of u0

q and

define

Ul;m
q ðxm;l;q; vqÞ �

1

V

ð
V

Ul;m
s;q ðr;X;xm;l;qÞd3u0

q

¼ sincððnlx þ nmxÞLx=2Þsincððnly þ nmyÞLy=2Þ
� ½sincððclþcmÞLz=2ÞðAlAm þ BlBmÞ;
� sincððcl � cmÞLz=2ÞðAlBm þ BlAmÞ�

(B34)

where we have assumed that the target position is randomly

distributed within the resolution footprint of volume V,

and the following shorthand notations have been employed:

Al¼Al (r;X), Bl¼Bl (r;X), Am¼Am (r;xm,l,q), and Bm

¼Bm (r;xm,l,q). Note that nlx, nly, and cl are evaluated at X,

while nmx, nmy, and cm are evaluated at xm,l,q. We can then

write for the expected value of field scattered from the qth

target,

hUs;qðr; t; XÞi ¼ 4p
ðX

l

X
m

Sðxm;l;qÞ
kðxm;l;qÞ

Ul;m
q ðxm;l;q;vqÞ

� e�ixm;l;qtPvðvqÞdvq; (B35)

where PvðvqÞ is the probability that the target speed is vq. For

small Mach numbers, the change between wavenumbers nl(X)

and nl(xm,l,q), as well as the change between modal amplitudes

Al(X) and Al(xm,l,q) are both very small, so that modal ortho-

gonality leads to
P

l

P
m Ul;m

q ðxm;l;q; vqÞ ¼
P

l Ul;l
q ðxl;l;q;vqÞ,

where

Ul;l
q ðxl;l;qÞ ¼ sincðnlxLxÞsincðnlyLyÞ

� ½sincðclLzÞðA2
l þ B2

l Þ � 2AlBl�: (B36)

When the length scale of the resolution footprint becomes

sufficiently larger than the wavelength, the mean scattered

field hUs,q (r, t; X)i � 0.

For the autocorrelation of the scattered field, we find

hUs;qðr;t;XÞU�s;qðr; tþ s; XÞi

¼ 16p2

V

ð ð
V

X
l

X
m

X
n

X
p

Sðxm;l;qÞS�ðxp;n;qÞ
kðxm;l;qÞk�ðxp;n;qÞ

� Ul;m
s;q ðr;X;xm;l;qÞU�n;ps;q ðr;X;xp;n;qÞ

� e�ivq½nlðXÞþnmðXÞ�nnðXÞ�npðXÞ�t

� eivq½nnðXÞþnpðXÞ�seiXsPvðvqÞd3u0
qdvq

¼ 16p2

ðX
l

X
m

X
n

X
p

Sðxm;l;qÞS�ðxp;n;qÞ
kðxm;l;qÞk�ðxp;n;qÞ

� Ul;m;n;p
q ðxm;l;q;xp;n;q;vqÞeivq½nnðXÞþnpðXÞ�seiXs

� e�ivq½nlðXÞþnmðXÞ�nnðXÞ�npðXÞ�tPvðvqÞdvq (B37)

by defining

Ul;m;n;p
q ðxm;l;q;xp;n;q;vqÞ

� 1

V

ð
V

Ul;m
s;q ðr;X;xm;l;qÞU�n;p

s;q ðr;X;xp;n;qÞd3
u0

q

¼ sin cððnlxþ nmx� nnx� npxÞLx=2Þ
sin cððnlyþ nmy� nny� npyÞLy=2Þ
� ðAlAmA�nA�pþBlBmB�nB�pÞ½sin cððclþcm� cn� cpÞLz=2Þ
� ðAlAmA�nB�pþBlBmB�nA�pÞ½sin cððclþcm� cnþ cpÞLz=2Þ
� ðAlAmB�nA�pþBlBmA�nB�pÞ½sin cððclþ cmþ cn� cpÞLz=2Þ
þ ðAlAmB�nB�pþBlBmA�nA�pÞ½sincððclþcmþ cnþ cpÞLz=2Þ
� ðAlBmA�nA�pþBlAmB�nB�pÞ½sincððcl� cm� cn� cpÞLz=2Þ
þ ðAlBmA�nB�pþBlAmB�nA�pÞ½sincððcl� cm� cnþ cpÞLz=2Þ
þ ðAlBmB�nA�pþBlAmA�nB�pÞ½sin cððcl� cmþ cn� cpÞLz=2Þ
� ðAlBmB�nB�pþBlAmA�nA�pÞ½sin cððcl� cmþ cnþ cpÞLz=2Þ�

(B38)

where An¼An (r; X), Bn¼Bn (r; X), Ap¼Ap (r; xp,n,q), and

Bp¼Bp (r;xp,n,q). Also nnx, nny, and cn are evaluated at X,

while npx, npy, and cp are evaluated at xp,n,q. Due to modal

orthogonality, the quadruple modal sum in Eq. (B37) reduces

to a triple sum,
P

l

P
m

P
n

P
p Ul;m;n;p

q ðxm;l;q;xp;n;q;vqÞ
¼
P

l

P
m

P
p Ul;m;p

q ðxm;l;q;xp;n;q;vqÞ. Further, following the

reasoning of Ref. 22, Sec. IV B, Eq. (68), terms with m= p
are negligible compared to terms for which m¼ p as long

as the size of the resolution footprint is large enough, i.e.,

sin cððnmx � npxÞÞLx=2Þ � 1; and (B39a)

sin cððnmy � npyÞÞLy=2Þ � 1; (B39b)

so that
P

l

P
m

P
p Ul;m;l;p

q ðxm;l;q;xp;l;q;vqÞ
�
P

l

P
m Ul;m;l;m

q ðxm;l;q;xm;l;q;vqÞ. An illustrative example

for the length scales necessary for the above conditions to

hold is presented in Fig. 9 for the waveguide of Fig. 2 and

the source signal and remote sensing system parameters of

Table II. We assume the targets are stationary and uniformly

distributed over all depths, and that the mean range to the

targets is 30 km. While the exact “necessary” length scale

will differ depending on the exact modal decomposition of

the field, we may still conclude that the higher the frequency

and the number of propagating modes, the larger the length

scale required for the double sum approximation stated

above to be valid.

Under these conditions, Eq. (B37) simplifies to

hUs;qðr;t; XÞU�s;qðr;tþ s; XÞi

¼ 16p2

ðX
l

X
m

jSðxm;l;qÞj2

jkðxm;l;qÞj2
Ul;m;l;m

q ðxm;l;q;xm;l;q; vqÞ

� eivq½nlðXÞþnmðXÞ�seiXsdvq: (B40)

b. Statistical moments of the ambiguity function

For a broadband source with source function Q(X)

() q(t), we can use Fourier synthesis to write the scat-

tered field and its spectrum as
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Ws;qðr; tÞ ¼
1

2p

ð
dXQðXÞUs;qðr;t; XÞ; (B41)

Ws;qðr;x0Þ ¼
ð

dteix0tWs;qðr;tÞ : (B42)

The expected values of Ws,q(r,x0), and jWs,q(r, x0)j2 can then

be calculated in a manner similar to the process described in

Appendix B 1 b for the free-space case. The expressions are

given below:

hWs;qðr;x0Þi¼2
Sðx0Þ
kðx0Þ

ðX
l

X
m

Qðx0ð1þvqð1=vG
l þ1=vG

mÞÞ
�1Þ

�Ul;m
q ðx0;vqÞPvðvqÞdvq; (B43)

hjWs;qðr;x0Þj2i

¼ 4
jSðx0Þj2

jkðx0Þj2
ðX

l

X
m

X
n

X
p

� Qðx0ð1þ vqð1=vG
l þ 1=vG

mÞÞ
�1Þ

� Ul;m;n;p
q ðx0;x0; vqÞ

� Q�ðx0ð1þ vqð1=vG
n þ 1=vG

p ÞÞ
�1ÞPvðvqÞdvq; (B44)

where vG
l denotes the group velocity of the lth mode. Simi-

larly, for the statistical moments of the ambiguity function,

Ws,q(s,v) and jWs,q(s, v)j2, we find

hWs;qðs;vÞi ¼
1

p

ð1
�1

Sðx0Þ
kðx0ÞQ

�ðx0 � 2pvÞe�iðx0�2pvÞs

�
ðX

l

X
m

Qðx0ð1þ vqð1=vG
l þ 1=vG

mÞÞ
�1Þ

�Ul;m
q ðx0; vqÞPvðvqÞdvqdx0 (B45)

and

hjWs;qðs;vÞj2i ¼
1

p2

ð1
�1

ð1
�1

Sðx1Þ
kðx1Þ

Q�ðx1 � 2pvÞ S
�ðx2Þ

k�ðx2Þ
� Qðx2 � 2pvÞe�iðx1�x2Þs

�
ðX

l

X
m

X
n

X
p

Qðx1ð1þ vqð1=vG
l

þ 1=vG
mÞÞ
�1ÞUl;m;n;p

q ðx1;x2; vqÞ
� Q�ðx2ð1þ vqð1=vG

n þ 1=vG
p ÞÞ
�1Þ

� PvðvqÞdvqdx1dx2 (B46)

We note that the term Uq
l,m, which corresponds to the charac-

teristic function of the random target position u0
q, is evaluated

at different wavenumbers between Eqs. (B45) and (B46). As

demonstrated in Sec. II B, evaluating Uq
l,m near base-band

typically leads to the second moment of the ambiguity func-

tion dominating over the magnitude squared of its first

moment.

The total field Ws(r,x0) is given by summing over all tar-

gets, Wsðr;x0Þ ¼
PN

q¼1 Ws;qðr;x0Þ . We assume that: (i) target

positions are i.i.d. random variables and (ii) target speeds are

also i.i.d. It then follows that hWs (s,v)i ¼ N hWs,q (s,v)i, and

the expected value of the magnitude squared of the ambigu-

ity function is given by

hjWsðs;vÞj2i

¼
XN

q1¼1

XN

q2¼1

1

p2

ð1
�1

ð1
�1

Sðx1Þ
kðx1Þ

�Q�ðx1�2pvÞS
�ðx2Þ

k�ðx2Þ
Qðx2�2pvÞe�iðx1�x2Þs

� 1

V2

ððððX
l

X
m

X
n

X
p

�Ul;m
s;q1ðr;x1ð1þvq1ð1=vG

l þ1=vG
mÞÞ
�1;x1Þ

�Qðx1ð1þvq1ð1=vG
l þ1=vG

mÞÞ
�1Þ

�Q�ðx2ð1þvq2ð1=vG
n þ1=vG

p ÞÞ
�1Þ

�Un;p
s;q2ðr;x2ð1þvq2ð1=vG

n þ1=vG
p ÞÞ
�1;x2Þ

�Pvðvq1ÞPvðvq2Þdu0
q1du0

q2dvq1dvq2dx1dx2

¼NhjWs;qðs;vÞj2iþNðN�1ÞjhWs;qðs;vÞij2 (B47)

where the last line is arrived at by considering the distinction

between the q2¼ q1 terms and the q2 = q1 terms. Again,

the second moment of the ambiguity function for the total

group of N targets consists of two terms: (i) a variance term

proportional to N due to scattering from each target and (ii) a

mean-squared term proportional to N2 due to interaction of

the fields scattered from different targets,22 where the var-

iance term typically dominates.6
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