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Analytic expressions for the first order bias and second order covariance of a general maximum
likelihood estimatgMLE) are presented. These expressions are used to determine general analytic
conditions on sample size, or signal-to-noise rg8bIR), that arenecessaryor a MLE to become
asymptotically unbiased and attain minimum variance as expressed by the Cramer—Rao lower
bound(CRLB). The expressions are then evaluated for multivariate Gaussian data. The results can
be used to determine asymptotic biases, variances, and conditions for estimator optimality in a wide
range of inverse problems encountered in ocean acoustics and many other disciplines. The results
are then applied to rigorously determine conditions on SNR necessary for the MLE to become
unbiased and attain minimum variance in the classical active sonar and radar time-delay and
Doppler-shift estimation problems. The time-delay MLE is the time lag at the peak value of a
matched filter output. It is shown that the matched filter estimate attains the CRLB for the signal’s
position when the SNR is much larger than thetosisof the expected signal’s energy spectrum.

The Doppler-shift MLE exhibits dual behavior for narrow band analytic signals. In a companion
paper, the general theory presented here is applied to the problem of estimating the range and depth
of an acoustic source submerged in an ocean waveguide20@L Acoustical Society of America.
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I. INTRODUCTION The purpose of the present paper is not to derive a new
. . . parameter resolution bound, but rather to determine, within
In many practical problems in ocean acoustics, geophys;

. . . ) ST the framework of classical estimation thebfy the condi-
ics, statistical signal processing, and other disciplines, non-

linear inversions are required to estimate parameters fror;aons on sample size, or SNRiecessaryfor the MLE to

measured data that undergo random fluctuations. The nonli?€C0Me asymptotically unbiased and attain minimum vari-

ear inversion of random data often leads to estimates that afd1c€- The approach is to apply the tools of higher order
biased and do not attain minimum variance, namely thésymptotic inference, which rely heavily on tensor analysis,
Cramer—Rao lower boun@RLB), for small sample sizes or O expand the MLE as a series in inverse orders of sample
equivalently low signal-to-noise rati®NR). The maximum  Size or equivalently inverse orders of SNIRrom this series
likelihood estimatoMLE) is widely used because if an as- analytic expressions for the first order bias, second order
ymptotically unbiased and minimum variance estimator ex-covariance and second order error correlation of a general
ists for large sample sizes, it is guaranteed to be the MLE.MLE are presented in terms of joint moments of the log-
Since exact expressions for the bias, variance, and error colikelihood function and its derivatives with respect to the
relation of the MLE are often difficult or impractical to de- parameters to be estimated. Since the first order error corre-
rive analytically, it has beqome popular in ocean a}coustic$ation is shown to be the CRLB, which is only valid for
and many other areas to simply neglect potential biases anghpiased estimates, the second order error correlation can
to compute limiting bounds on the mean square error, such ?ﬁovide a tighter error approximation to the MLE than the

the CRLB, since these bounds are usually much easier GRLB that is applicable in relatively low SNR even when

obtain. The CRLB, however, typically provides an unrealis- L ! .
tically optimistic approximation to the MLE error correlation the MLE is biased to first order. These expressions are then

in many nonlinear inverse problems when the sample size i4S€d t0 determine general analytic requirements on sample
small, or equivalently the SNR is low. A number of bounds SiZ&: o7 SNR, that areecessaryior an MLE to become as-
on the error correlation exist that are tighter than theymptotically unbiased and attain minimum variance. This is
CRLB® Some of these bounds are based on Bayesiafone by showing when the first order bias becomes negli-
assumptiorfs® and so require tha priori probability density ~ gible compared to the true value of the parameter and when
of the parameters to be estimated, which can be problematitie second order covariance term becomes negligible com-
when thea priori probability density is not knowf. pared to the CRLB.
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The first order bias is evaluated for general multivariatedard linear frequency modulatedFM), hyperbolic fre-
Gaussian data. The second order covariance and error corgdency modulate(HFM), and canonical waveforms are pro-
lation terms are evaluated for two special cases of Gaussianded for typical low-frequency active-sonar scenarios in
data that are of great practical value in ocean acoustics, geocean acoustics.
physics, and statistical signal processing. The first is for a
deterministic signal vector embedded in additive noise anqi|_ GENERAL ASYMPTOTIC EXPANSIONS OF THE
the second is for a fully randomized signal vector with zeropLE AND ITS MOMENTS

mean in additive noise. These cases have been widely used . . .
: - : o Suppose the random data vecxargivenm-dimensional
in ocean acoustic inversions, spectral estimation, beamform-

ing, sonar and radar detection, and localization problems a%arameter vectod, obeys the conditional probat_)ility density
well as statistical optic:2° In a companion paper, each of unction (pdf) p(X;6). The log-likelihood functionl (6) is

. . . - fined asl(6)=In(p(X;H)) when evaluated at measured
these cases is applied to determine the asymptotic bias a@ﬁlues ofX. Let therth component ofd be denoted by'.

covariance of maximum likelihood range and depth esti- ; L L ) .
mates of a sound source submerged in an ocean Waveguiége first log-likelihood derivative with respect @ is then

; - ] _
from measured hydrophone array data as well as necessa $f'”ed as 1;=dl(0)/o¢". |f Ry=ryp..lin,...Rm

conditions for the estimates to attain the CREB. =T'm1.mn, @ré sets of coordinate indices, joint moments of

In the present paper, these expressions are applied to titee log-likelihood derivatives can be defined by, g
active sonar and radar time-delay and Doppler-shift estima= E[IRl...IRmJ, where, for example,vsy,=E[ldl] an
tion problems, where time delay is used for target range €%, p.c.de=Ellalplclgel-
timation and Doppler shift is used for target Velocity estima- The expected information, known as the Fisher informa-
tion. Attention is focused on the commonly encounteredion, is defined byi,=E[l,l] where the indices, s are
scenario of a deterministic signal with unknown spatial orarbitrary. Lifting the indices produces quantities that are de-
temporal delay received together with additive white noisenoted by pRiRm=jrusi  j'maSmngy 0 O
The time-delay MLE is then the time lag at the peak value of L ANy

. i i wherei"™=[i"1], is ther, s component of the inverse* of
a matched filter output. The matched filter estimate for %he expected information matrix The inverse of the Fisher

signal’s time delay or position is widely used in many appli-i formation matrixi~L is also known as the Cramer—Rao
cations of statistical pattern recognition in sonar, radar, anip . .
S . o . ower bound(CRLB). Here, as elsewhere, the Einstein sum-

optical image processing. This is because it has long beeﬁ]ation convention is used. That is, if an index occurs twice

known that the matched filter estimate attains the CRLB in : L ' . .
. ) . . in a term, once in the subscript and once in the superscript,

high SNR. Necessaryanalytic conditions on how high the summation over the index is implied

SNR must be for the matched filter estimate to attain the N o

CRLB have not been previously obtained but are derived  1N€ MLElz,7the value off that maximized (¢) for the
here using the general asymptotic approach developed V€N dataX,”>" can now be expressed as an asymptotic

Secs. l—IV. expansion around in increasing orders of inverse sample

A number of authors have derived tighter bounds tharsizen ™+ or equivalently SNR. Following the derivation of

the CRLB for the time-delay estimation problem to help Barndorff-Nielsen and Cok,the component, is first ex-

evaluate performance at low SNR where the CRLB is noPanded around as

attained by the MLE, as, for example, in Refs. 5, 12, 13. The

present paper follows a different approach by providing ex- Tr:|r+|rs(b_ 0)5+ 4 rst(b_ 0)5(9— 6)t

plicit expressions for the second order variance of the time-

delay and Doppler-shift MLEs that are attained in lower + Y (0= 0)5(0—0)(9—0)U+---, (1)

SNR than the CRLB. The first order bias is also derived.

These expressions are then used to provide analytic condi- . .

tions on SNR necessary for the time-delay MLE, namely thevhere — 6)"=6"— 6". Equation(1) is then inverted to ob-
matched filter estimate, and Doppler-shift MLE to becometain an asymptotic expansion foB{ 6)", as shown in Ap-
unbiased and attain minimum variance in terms of propertiependix D. After collecting terms of the same asymptotic or-

of the signal and its spectrum. lllustrative examples for stander, this can be expressed as

S

(D—0)r = "I, +L0"0 1 +i"i™H 1+ X0™"+ 30", 0" 11,

0,(n" 12 04(n Y 04(n 3%

U LA S0 H L A SO H LA S H G LA Oy () @)

stvtutw MZ)IM'

OA(n73/2) OA(n73/2)
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whereHgr=Ig—vr. The terms are organized in decreasing The first order bias of the MLE is then the expected
asymptotic order. The drops occur in asymptotic orders ofzalue of Eq.(2), as derived by Barndorff-Nielsen and Cbx,
n~Y2 under ordinary repeated sampling, which is equivalent AN T D o\

. : 2 : b(6)=E[(8—6)"]

o an asymptotic drop of (SNR)}2. The asymptotic orders

of each set of terms are indicated by symbols such as
O,(n™™) which denotes a polynomial that will be of order
n~™whenn is large but may contain higher order terms, i.e., 0,0

Op(n*(m“)), that can be significant whemis small. Here Here we take a further step and use E2).to derive the
the symbolO,(n~™) denotes a polynomial of exactly order error correlation of the MLE to second order as given by the
n~"™ for all values ofn. order-separated expression

:%iraibc(vabc_‘_z'vab,c)+0p(n73/2)+'” . (3)

Cor(#,09)=E[(6— 6)(6— 6)°]

— [ira] +[2imbl~ncv1mn(l~r5ila+iasilr)vs,b,c(nl)+%icdief(il'siab+iasirb)vbce,d,fss(nZ)

0, (n" 1) 0

n72)

p(

4 iru(il'siabicd+ il'diabics+ iadirbics)vsr,u,bc,d(nz)

sbm.cq;t, Lerl:ao;sn_ Ll.rs:al;on | l.as:rl.on 2
F PP 1 U o (GO ST A ST )vs,,,b,c(n)

o

n72)

ol
+%ismv]mn(itnicd(il'liab+ialirb)+2ibnl~cd(l~r1iar+ialil'r)+iclitn(il'diab+iadirb))vs,[,bc,d(nZ)

o

p(n %)

5" 1 (T 1T Y (0P AP 1T Y ()]0 () 4

0,(n"?)

where notation such asbced,fvs(nz) means then? order terms of the joint momemt,ceqq .-

Using the identity Cov@", %) = Cor(8", %) —b(6")b(6?), we obtain the following expression for the covariance of the
MLE to second order:

Cov(&,0)=E[(&"—E[6])(6*—E[6°])]

— [ira] +[2imbl~ncv1mn(l~r5ila+iasilr)vs,b,c(nl)+%icdief(il'siab+iasirb)vbce,d,f,s(nZ)

0,(n" 1) 0

(7 2)

4 iru(il'siabicd+ il'diabics+ iadirbics)vsr,u,bc,d(nz)

o

(%)

sbm .cq;tp L.rl-ao.sn | l.rs.al.on_ l-.as.rl.on 2
TP 0 5 (2T ST 5T g (1)

o

n72)

ol
+%ismv]mn(i’"im(irliab-l-ialirb)+2ib"i6d(irlim+iali”)+idi’"(irdiab-l-iadirb))vs,,,bc,d(nz)

o

p(n %)

+éimbinciodvlmno(il'sila+iasirl)vs,b,c,d(nZ)+4l~brn(l~rsl~al+iasirl)vs,m,]b(nl)

0p(n~?)

B %imimiawiyz(vsruvw_vz+2vsruv w_v,z(nl) + 2vst,uvw_vz(nl) +4vst,uv w_v,z(nl)) + Op(n 73) +eee (5)
-2
)

O,(n

p(

The first order covariance terif? is ther, a component of Bhattacharyy&. While it involves derivatives of the likeli-
the inverse of the Fisher information, or thea component hood function, it is quite different from the multivariate co-
of the CRLB. A bound on the lowest possible mean squarerariance derived in Eq5) that is valid for multivariate es-
error of anunbiased scalarestimate that involves inverse timates that may be biased. For discrete random variables,
sample size orders higher tham ! was introduced by expressions equivalent to Ed8)—(5) have been obtained in
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a significantly different form via a different approach by statistic that contains all measurement information about the
Bowman and Shentof. parameters to be estimatetf

A necessancondition for the MLE to become asymp- The assumption of Gaussian data is valid, by virtue of
totically unbiased. This is for the first order bias of E§).to  the central limit theorem even for smalland N, when the
become much smaller than the true value of the parametestal received field is the sum of a large number of statisti-
¢". Similarly, anecessaryondition for the MLE to asymp- cally independent contributions. In the case of a determinis-
totically attain minimum variance is for the sum of secondtic signal in additive noise, the additive noise typically arises
order terms in Eq(5) to become much smaller than the first from a large number of independent sources distributed over

order term, which is the CRLB. the sea surfact. These noise sources may be either caused
by the natural action of wind and waves on the sea surface,

I1l. ASYMPTOTIC BIAS, ERROR CORRELATION AND or they may be generated by ocean-going Ve§§e|5_

gg_?_/:R'ANCE OF THE MLE FOR GAUSSIAN A particular fully randomized Gaussian signal model

that is very widely used and enjoys a long history in acous-

The asymptotic expressions presented for the bias, errdics, optics, and rad&t*°is the circular complex Gaussian
correlation, and covariance of the MLE in Sec. Il are nowrandom(CCGR model. The basic assumption in this model
evaluated for real multivariate Gaussian data. General multis that at any time instant, the received signal field is a
variate Gaussian data can be described by the conditionfICGR variabl€:'® This means that the real and imaginary
probability density parts of the instantaneous field are independent and identi-

1 1 1" cally distributed zero-mean Gaussian random variables. In
2m)™ [ 0)|n,2ex - EZ (Xi—p(0)7 active detection an_d imaging_problems, this model is typi-

=1 cally used to describe scattering from fluctuating targéts

and surfaces with wavelength scale roughriegghen the
' (6) target or resolved surface patch is large compared to the

wavelength, the total received field can be thought of as aris-
where the dat&X=[X{X;X3...X]]" are comprised of in-  ing from the sum of a large number of independent scatters
dependent and identically distributel-dimensional data so that the central limit theorem applies. Since World War 1,
vectorsX; to show an explicit dependence under normal rethe CCGR signal model has been used to describe ocean-
peated sampling for convenient reference. It is noteworthyicoustic transmission scintillation in what is known as the
that the CRLB is always proportional torLbut may be saturated region of multi-modal propagattdit®>?*In this
proportional to a more complicated function of the length ofregime, natural disturbances in the waveguide, such as un-
the data vectoN. derwater turbulence and passing surface or internal gravity

We begin by deriving the first order bias for the generalwaves, lead to such randomness in the medium that the
multivariate Gaussian case where the data covarighaad  waveguide modes at the receiver can be treated as statisti-
the data meagp depend on the parameter vecthrThe joint  cally independent entities. The central limit theorem can then
moments required to evaluate both the error correlation anfle invoked for the total received field, which behaves as a
covariance for the general case are quite complicated but NnGCGR process in tim&° In passive source localization
of great relevance in most standard ocean acoustic and signaloblems in ocean-acoustics, the source signal is typically
processing problenfsThey are not derived in this paper, but mechanical noise that is accidentally radiated into the ocean
are the subject of another work where the second order biasy a vessel. This noise typically has both narrow and broad-
is also derived® We instead define two special cases thatband components that arise from a broad distribution of in-
have great practical value, since they describe a deterministifependent mechanical interactions that lead to a signal that
signal in additive noise and a fully randomized signal incan be represented as a CCGR process in time. The CCGR
noise, respectively. In the former the data covaria@cés  signal model has become a very standard model in ocean-
independent of the parameter vec#@rwhile the meanu  acoustic matched field processitfef>2
depends or® which is the subject of the estimation problem.
In the latter, the data meamis zero while the covariancg
depends on the parameter vecthto be estimated. In the We obtain the following expression for the first order
latter case, the sample covariance of the data is a sufficieltias of the MLE given general multivariate Gaussian data

p(Xx;0) =

XCHO)(Xi— pu(0)

A. The general multivariate Gaussian case

b(6")=3"i"v s+ 204,,)+Op(n~3?)

2 1 9°C aC P am pm aC i
— —_ri—1 i—1 - -1 -1 -1 -1 =1
E E z n[l ]I’S[I ]tu[ztr(c aasaatc aau) +<(905(99t) C (aau) +<(995 C &au C aat

Pu \T a,u) am\T aC am\ 1 §°C aC
_ -1 ) _ -1 _— -1 7\ _ = -1~ - ~-1_ "
¥ (305(90”) c (aa‘ ; a6¢) © )¢ T\ 2 ¥ e SEamC e | ™
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by substituting Eqs(A1)—(A3) for the relevant joint mo- C. Random signal in noise: Zero-mean and

ments into Eq(3) for the first order bias, whergg, indi-  parameter-dependent covariance
cates a sum over all possible permutations,dfrderings, a Similarly, the error correlation and covariance of the
total of two. For exampleXs s =vsi+ vts- MLE can be obtained to second order for a zero-mean

It should be noted that the expression contains both ten 5 ,ssian random signal vector in Gaussian noise by substi-
sor rluotatlon., denoted by the |nd|ce.st, andu, .and vector- tuting Egs.(C1)—(C10) into Eqgs.(4) and(5), respectively. In
matrix notation. For the first order bias, only first and secondg casepu is zero in Eq(6). For scalar parameter and data

order parameter derivatives are required of the mean anghe foliowing simple expressions for the mean-square error

covariance. _ and variance expressions are obtained:
Suppose, for example, the bias of the vector

2C2 8C3(C//) 15C4(C//)2 4C4(Cm)

~ N\ — _ + —
b:[g} MSE(G) n(C')2 nZ(C1)4 nZ(CI)G nZ(CI)S’
—_—
Op(nfl) Op("iz)
. (10)

is desired, whergr andC are the maximum likelihood esti-

mates of the mean and variance, respectively, from a set of ) 30 PRSI ar o

independent and identically distributed Gaussian randorvar(g): 2C’ 5 8(; (?2 14(; ((’j 6) _4(; ((5 5)‘

variablesx; . The bias obtained from E6) is zero for the n(C")= n*(C") n=(C’) n*(C")

mean component and (C/n) for the variance component. o ("',1) 0.7 1
p p

This result can be readily verified by taking expectation val-
ues directly?’

It is noteworthy that the first order bias ofsaalarpa-  Suppose, for example, that the bias, mean-square error, and
rameter estimate always vanishes for general Gaussian datariance of the MLE of the paramet#=C? are desired,
as can be seen by inspection of Ef). where thex; are n independent and identically distributed
Gaussian random variables with zero-mean. It can be readily
shown that the corresponding bia€%n, mean-square error
8C*/n+44C*n?, and variance 8%/n+40C*/n?, obtained

The multivariate error correlation and covariance of theysing Egs.(3)(5), correspond to those obtained by taking
MLE can be obtained to second order for a deterministicexpectation values directfy.

signal vector in additive Gaussian noise by substituting Egs.
(B1)—(B10) into Egs.(4) and(5), respectively. In this case,
C is independent of) in Eq. (6). For scalar parameter and

data, the following simple expressions for the mean-squarbv- CONTINUOUS GAUSSIAN DATA: SIGNAL
error and variance are obtained EMBEDDED IN WHITE GAUSSIAN NOISE

B. Deterministic signal in additive noise, parameter-
independent covariance

Let a real signaju(t; 6) that depends on parametgbe
received together with uncorrelated white Gaussian noise of

MSE(9) = N 15C2(u")?  CH(u") @® power spectral densitio/2 that is independent of. Sup-
n(p)? 4n?(n")®  ni(u')> pose the real signal has Fourier transfquft; 6) < W (f; 6).
— — The complex analytic signal and its Fourier transform
Opln) Opln %) u(t; )~V (f;0) are conventionally defined such that
P (f;0)=2W(f;6) for f>0, ¥(f;#)=0 for f<O, and
. C 14C3(u")?  CHu') W (f;0)=W(f;0) for f=0, so thatu(t; §) = Re{Tu(t;H)}. The
var(6)= w2 Ak () ni @) (9) total received analytic signak;(t), then follows the condi-
—_— . tional probability densit§?
oyn 1 0pn %)

1 (T
Suppose, for example, that the bias, mean-square error arﬁkﬂ?’i(t);@):kexp{ - NJ |(@i(t) —Z(t; 0))[2dt}, (12)
variance of the MLE of the paramet#=u? are desired, 070
where thex; are agaim independent and identically distrib-
uted Gaussian random variables, d@hds independent ob.  where k is a normalization constant. The bias, the mean-
The corresponding bia€/n, mean-square errorGu?/n  square error, and the variance of the MZEare obtained
+3C?/n?, and variance @u?/n+2C?/n?, obtained using from Egs.(3)—(5) as
Egs. (3)—(5) can be readily shown to correspond to those
obtained by taking expectation values direéfiySince the
MLE for #= u? is biased, the Bhattacharyya bound does not R No Re(T,}
hold for this example and in fact can exceed the actual vari- b(6)=————, (13
ance of the MLEY’ 2 17
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MsE(8) = 0 | ISNoRe{D}” N%Re{73}, 14 Toe J(aﬁ(t—r))*(aﬁa(t—r)) "

— — — 3

T, 4141‘ I? aT ot

S —— 0

0,(n Y 0,n ) =—(27-r)4f 4 (f)|2df. (21
0

A, o = Noting that the first order bias of Eql3) is directly
Ny +14N0Re{12} _ NgRe{l3}

var(9)= , (15  proportional to R}, where Ré,}=0 from Eq. (19), we
I, 417 r find thatthe first order bias for the maximum likelihood time-
—_— delay estimation problem is identically zems expected by
Op(n") Opn™?) inspection of Eq(7).

To evaluate the mean-square error and the variance, all
after evaluating the joint moments for the parameterthree integrals are needed. Noting thaflRe=0 and Rél5}

independent covariance, whdrg, T,, T are defined as fol- =7, the following results are obtained:
lows:
2 -
~ ~ N No\ Re{l
- :j Ju(t;0)\* [ du(t; 0) dt (16 MSE(#) = var( #) = — — ~{3}+0p(n*3),
! a0 a0 ' I I I
Op(n~ ") Opn"?) 22
T | (ﬂ(t:@)*(aﬁ(t;m)dt - . -
2 a0 36° : whereT,, T; are evaluated in Eqg19) and (21), respec-

tively. The mean-square error can also be expressed explic-
itly in terms of SNR=2E/N, and signal parameters via

|

There are two important issues to note. First, we are now

FY 96° (18

In(t; 0)) * ( IR3(t; 0)) dt

MSE(#)=var(%)

working with continuously measured data as opposed to the = ! —
discrete data vectors of Sec. Ill. Second, the fact that we are (2E[No)(B"+ )
only estimating a scalar rather than a vector parameter 0. 1)
greatly simplifies the evaluation of the joint moments. b
1 Y +8wB + 30! -
+ + N
(2E/Ny)*  (B2+0))° oln ).

V. TIME-DELAY ESTIMATION g (23

0,(n"?)
Supposéu(t; ) =u(t—7) in Eqg. (12) so that the scalar

) ’ ] P ) where f.=w./(27) is the carrier frequencyk is the total
time delay#= 7 is to be estimated. The MLEE= 7 of time-

; energy of the real signal3 is commonly defined as the sig-
delay 7 corresponds to the peak output of a matched filter for, 515 oot mean squarems) bandwidth, andy* is the fourth

a signal received in additive Gaussian ndigestimates of moment of the expected signal's energy spectrum.
the time delay between transmitted and received signal

waveforms are typically used in active-sonar and radar ap- _ j © = 2
plications to determine the range of a target in a nondisper- 2E= ,fc|w(v+f°)| dv, (24)
sive medium. The asymptotic bias, mean-square error, and ~
variance of7 are obtained by substituting for 6 in Egs. (277)2f°ffcv2|‘1'(v+fc)|2dv
(13)—(18). B%= E , (25)

The following alternative expressions are obtained for
Egs.(16)—(18) by applying Parseval’s Theorem (2m)4* v4|{ff(v+fc)|2 do

A= - (26)
- _J(aﬁ(t—r))*(ﬂﬁ(t—r) " Y 2E
l_ aT ar Equation (23) explicitly shows the asymptotic depen-

" dence of the MLE time-delay variance on increasing orders
:(277)2J 21V (f)|2df, (190 of (SNR) ' For a base-banded signal, whesg=0, the
0 first order variance term of E(q23) is proportional to the
inverse of 3%, while the second term is proportional to the
[ 0m(t=7)\* [ IR*(t—17) ratio y*/88. While it is well known that the first order vari-
Iz_f T Fre dt ance or CRLB decreases with increasing rms bandwidth at
fixed SNR, the behavior of the second order variance term
=j(27-r)3fmf3|\~lf(f |2 df, (20) has Zgnore complicated interpretation since it involves both
0 vandp.
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The time-delay MLE asymptotically attains the CRLB Theorem, the following expressions are obtained:
4 2,2 Ni(p2a )2 —
when (y*+ 8w .+3wc)/(.,8 +wc). '<2E/NO SNR. For B TRt o)\ * | dT(t:fp)
a base-banded signal, this condition means that the SNR |,= dt
must be much larger than thertosisy*/8* of the expected o o

signal’'s energy spectrum. This can be interpreted as meaning T2
that as the signal's energy spectrum becomes more peaked, =(27T)2j T/2t2|§(t)|2dt, (28
higher SNR is necessary to attain the CRLB. -
~ (t. * ~2(¢.
2 afp ot

Assume a real Gaussian base-banded signal with a con-

stant energy. Its waveform can be represented as . 3 [™ 3,12
=j(2m) f g1 dt, (29
1 2| 72 t|<T/2 o
whereh—H. For real signals, B is replaced bye/2, andW¥ ’ 9o af%
replaces¥ in Egs. (24)—(26), where in the present caske al(™ 4eiin
=H. Under the assumption that/T is sufficiently small =—(2m) ﬁmt [@(t)|*dt. (30)
that the limits of integratiorf —T/2,T/2] can be well ap- 5 ~
proximated a§—, ], Eq.(23) for the variance of the time- To evaluate the biad,; and R¢l,} are substituted into
delay MLE can be written to second order as Eq. (13). Noting that R¢l,}=0, we find thatthe first order
bias for the Doppler-shift MLE};c is identically zero as
. Nogv2 No\*6 expected by inspection of E7).
var(#)=—=— 7 (7) T - Equations(28)—(30) are then substituted into Eqd.4)—
—_— (15) to evaluate the mean-square error and the variance to
Opnl) 02 second order. The resulting relations for the second order

mean-square error and variance of the Doppler-shift MLE

Since the signal's energy isvl, the first and second order &re similar to those obtained for the time-delay MLE:
terms equalize when the SNR is 3, which is the kurtosis of a

Gaussian density, where the SNRE/N,. This makes MSE(fp)=var(fp)

sense because a Gaussian signal has a Gaussian energy spec- B

trum by the convolution theorem. For SNRs less than 3, or in Ny [No| Re{l;} s (31)
decibels for 10log SNR5 dB, the second order term is N 7 7_ 7 +0,(n "),

higher than the first and the CRLB is a poor estimate of the Ll ! '

true mean-square error. Moreover, since, 1¢ a measure of 0,(n 1) 0,(n"?)

the signal’'s bandwidth, decreasing, or increasing the sig-

nal’s bandwidth, will decrease both first and second ordesince the two problems are related through the time-

variance terms, and so improve the time-delay estimate. frequency duality principle. Expressifg, T in terms of
SNR and signal parameters then explicitly yields the
Doppler-shift MLE mean-square error in terms of increasing

VI. DOPPLER SHIFT ESTIMATION orders of (SNR)! as

Suppose now that aarrow bandsignal waveform is
transmitted in a nondispersive medium and measured with MSE(fp)=var(fp)
additive Gaussian noise at a receiver that is moving relative

to the source at low Mach numbefc<1, whereu is the _ 1 1 5
- - = + — +0,(n7),
speed of relative motion anclthe speed of wave propaga- (2E[Ng)a*  (2E[Ng)? af P
tion. The expected analytic signal waveform at the receiver — — (32
(t;fp) is then frequency shifted with Doppler-shift param- where Opln ) Opln %)
eterfp,=—2u/c. The total signal and noise measured at the
receiver will then obey the conditional probability density of ~ , _ JT’Z G2 dt 33
Eg. (12 with §=f5. The goal now is to examine the ~TI2 '
asymptotic statistics of the MLEED for the Doppler-shift 20 T/2 120/ en|2
barameter. LR TS IO @
With the given assumptions, the signal waveform can be 2E
represented as 2m)4 T2, t415(t)|2 dt
~ e\ o 2mt(ft fp) 54=( el 1G] (35
a(t;fp)=g(t)el s e o), (27) 2E
where the complex envelofigt) is known and is zero out- The Doppler-shift MLE then asymptotically attains the

side the interval—T/2<t<T/2. By applying Parseval's CRLB when 6% a*<2E/N,=SNR. For an analytic signal
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Fgrst Order and Second Order Variance vs. SNR for a Gaussian Signal - Time Delay
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with symmetric magnitude, this can be interpreted as mean- R No2v2 1 No\224 1 .,
ing that the SNR must be large compared to khetosisof Var(fn)—j— 7+ 2 T 7+ Op(n~7).
the signal’'s squared magnitude. DN £
o,n Y 0,(n" %

Example 2

For real signals whereu(t;fp)=g(t)cos 2at(f.+fp),
Eq. (32) can be used whenR is replaced by & in Egs.
(34)—(35), and the real signal envelopgt) replaceg(t) in
Egs. (33)—(35). For the CRLB to be attained in this real
signal case, the SNR must be large comparetivioe the

kurtosis of the squared magnitude of the real signal enve MSH. | . d he signal’s bandwidth and
lope, assuming a symmetric magnitude. Computing?, . Increasingrs decreases the signal’s bandwidth and so

and 8* for the real signal envelopg(t) =h(t) of example 1 also decreases both first and second order variance terms,

by Eq. (32), the variance of the Doppler-shift MLE can be Which improves the Doppler-shift estimate.
written to second order as

The first and second order terms equalize when the SNR is 6,
twice the Gaussian kurtosis as expected, where SNR
=2E/Ny. For SNRs less than 6, or in decibels when

10log SNR< 7.8 dB, the second order term is higher than the
first, and the CRLB provides a poor estimate of the true

OFirst Order and Second Order Variance vs. SNR for a LFM Signal - Time Delay
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0First Order and Second Order Variance vs. SNR for a HFM Signal - Time Delay
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VII. ASYMPTOTIC OPTIMALITY OF GAUSSIAN, LFM wheref,= wq/27 is the carrier frequency and the bandwidth
AND HFM WAVEFORMS IN MAXIMUM is given bybT/27. The signal is demodulated when multi-
LIKELIHOOD TIME-DELAY AND DOPPLER-SHIFT plied by cosfgt) and low-pass filtered. The HFM signal is
ESTIMATION defined by

The general expressions for the second order variance
for both the MLE time-delay and the Doppler-shift estima-  w(t)=sin(alog(1-k(t+T/2))), [t|<T/2, 37
tors, Egs(22) and(31), are now implemented for the Gauss-
ian linear frequency modulatedFM) and hyperbolic fre-  wherek=(f,—f,)/f,T, a=—2=f,/k, andf, and f, are
quency modulatedHFM) waveforms. All waveforms are the frequencies that bound the signal’s spectrum. This signal

demodulated. is demodulated when multiplied by casf), where f,
The Gaussian signal is described in examples 1 and 2 \/f,f,, and is low-pass filtered. To control sidelobes in the
above. The LFM signal is defined by frequency domain, the signal is often multiplied by a tempo-
ral window function, or taper. We use the modified Tukey
w(t)=cog wot+ 3bt?), [t|<T/2, (36)  window that has the form

Fir% Order and Second Order Variance vs. SNR for a Gaussian Signal - Doppler Shift
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lfd‘rst Order and Second Order Variance vs. SNR for a LFM Signal - Doppler Shift
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w(t) MLE and in Figs. 4—6 for the Doppler-shift MLE for the
three signals. The bandwidth is fixed at 100 Hz in Figs. 1-6,
for a typical low-frequency active-sonar scendfdhe fig-
( p+(1—p)sir? WHT/Z) for 0<t<T ures illustrate some important characteristics of the variance
2Ty, v terms for both the time-delay and the Doppler-shift MLE. As
1 for T,<t<T-T, SNR increases, the first order variance exhibits the expected
= _ (t+T/2)—(T—-2T,) ' linear fall-off and the second order variance falls off with the
p+(1- p)smz( ™ 2T ) expected second order power law as can be seen more gen-
\ v for T-T,<t<T erally in Egs.(23) and (32) where the second order term is

(38)

whereT,,=0.125T is the window duration an@=0.1 is the
pedestal used.

proportional to —20log(Ny/2E), and the first to
—10log(No/2E). The value of either term at a specific
bandwidth and SNR can then be used to determine its value
at the same bandwidth for all SNRs.

The dependence of the first and second order variance Table | specifies the SNR’s values beyond which the
terms on SNR is presented in Figs. 1-3 for the time-delaysecond order variance can be neglected relative to the first by

I;'&rst Order and Second Order Variance vs. SNR for a HFM Signal - Doppler Shift
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FIG. 6. HFM signal Doppler-shift
variance terms as a function of SNR.
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TABLE I. Minimum signal-to-noise ratio§SNR9 necessaryor the MLE to APPENDIX A: JOINT MOMENTS FOR ASYMPTOTIC

asymptotically attain the CRLB. The given values are the minimum SNRsgAUSSIAN INFERENCE: GENERAL MULTIVARIATE
needed for the CRLB to exceed the second order MLE variance by 10 dBGAUSSIAN DATA

All signals have 100 Hz bandwidth.

Gaussian signal  LFM signal  HFM signal For thegeneral multivariate Gaussianase of Eq(6),

: both the mearnu and the covariance matri@ depend on the
Time Delay 15 dB 32 dB 18 dB parameter vectof. The joint moments required to evaluate
Doppler Shift 18 dB 16 dB 15 dB . .

the first order bias are
. . . H _n -1 -1 T~—1
showing where the former is an order of magnitude less than ~ 1ab=5 (€ "CaC ™ "Cp) +npaC "ty (A1)

the latter. Table | then provides conditionscessarnyor the
MLE to attain the CRLB in time-delay and Doppler-shift n i 1
estimation for the given signals. It also specifies conditions Uab°_§a%C tr(C7CaC"CC7Co)
necessaryor the MLE to be approximated as a linear func-
tion of the measured data.

N| S

n
— 2 2 (CTICHCTIC)~ 5 2 maC M me
a,b,c a,b,c

VIIl. CONCLUSION

n

By employing an asymptotic expansion of the likelihood t3 > miCC,C e, (A2)
function, expressions for the first order bias, as well as the abe
second order covariance and error correlation of a general n . . . —
MLE, are derived. These expressions are used to determine Vabc= — 5;} tr(C "C,C "CyC "Co) +NuayC e

conditionsnecessaryor the MLE to become asymptotically

unbiased and attain the CRLB. The approach is then applied n . .
to parameter estimation with multivariate Gaussian data. +§tr(C CanC "Co)
Analytic expressions for the general first order bias of the
multivariate Gaussian MLE and the second order error cova-
riance and correlation of the MLE for two special cases of

multivariate Gaussian data that are of great practical signifi- - .
vhere, for exampleZ, p, . indicates a sum over all possible

cance in acoustics, optics, radar, seismology, and signal prgv i & bande orderi leading to a total of i
cessing. The first is where the data covariance matrix is ipPermutations oa, bandc orderings, leading to 4 total ot Six
ms. Terms such &S, and u,, represent the derivatives

dependent of the parameters to be estimated, the standal the covariance matic and the mean vectoa with re-
deterministic signal in additive noise scenario. The second i§ a and 4° Vel w*
where the data mean is zero and the signal as well as thsepeCt to6” and 6", respectively.
noise undergo circular complex Gaussian random fluctua-
tions. In a companion paper, the expressions derived here are
applied to determine the asymptotic bias, covariance, andPPENDIX B: JOINT MOMENTS FOR ASYMPTOTIC
mean-square error of maximum likelihood range and deptliSAUSSIAN INFERENCE: MULTIVARIATE
estimates of a sound source submerged in an ocean waveAUSSIAN DATA WITH PARAMETER-INDEPENDENT
guide from measured hydrophone array datdlecessary COVARIANCE: DETERMINISTIC SIGNAL IN
conditions for these source localization estimates to attaif \DEPENDENT ADDITIVE NOISE
the CRLB are also obtained.

In the present paper, general expressions for the firsﬁ

order bias, second order mean-square error, and variance g ) The joint moments required to evaluate the first

s_calar maximum I_|kel|hood tlme-d_elz_ay_and_ Doppl_er-shﬁt_e_s-order bias, as well as the second order error correlation and
timates are obtained for deterministic signals in add't'vecovariance are

Gaussian noise. The time-delay MLE is the peak value of a
matched filter output. Both time-delay and Doppler-shift  iap=npaC pp, (BY)
MLEs are shown to be unbiased to first order. Analytic con-

—n2 paCTICC  pe, (A3)

For this case the covariance matrix of K@) is inde-
ndent of the parameters to be estimated, #€/76'=0

ditions on SNR necessary for the time-delay and Doppler- VapdN) = — n > e C e, (B2)
shift MLEs to attain the CRLB are provided in terms of 2&bc
moments of the expected signal's squared magnitude and N

Ua,b,c(n )=0, (B3)

energy spectrum. For base-banded signals, the time-delay
MLE, namely the matched filter estimate, attains the CRLB  y,_, (n')=npul,C 1 a, (B4)
when thekurtosisof the expected signal’s energy spectrum is
much smaller than the SNR. This can be interpreted as mean-
ing that higher SNR is necessary to attain the CRLB as a
demodulated signal's energy spectrum becomes more
peaked. The Doppler-shift MLE is found to have dual behav- _n S oWl ct (B5)
ior for narrow band analytic signals. aftq Mabew M

n
Uabcd(nl): - ga;: g /L;bc lﬂt:d
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n? 3n
Vaped)=g 2 mC wuC iy, (B vanedn')=— 5 X t(CTIC,CTIC,CTICLCTICY)

1y _
Vab,cd(N?)=0, (B7) n
ane +- > tr(Clc,,clc.coicy)
n2 T T 2a,b,c,d
Ua,b,c,de(nz): EaEbc ﬂacilﬂbﬂccilﬂdea (B8) 0
— = > tr(CT*CuC 'Ceq)
2 2 T~—1 T~—1 16a,b,C,d
Vab,cdef(N?)= > 2 MaC T pregmy,C ™ et
(a,b)x(cd,ef) n 2 . .
- tr(C~1C,,.C 1Cy), c5
+nzﬂ-c|:—dcill‘efﬂlcilﬂb, (B9) 12,%¢c.d ( abc d) (CS5)

2
n
Ua,b,c,def(nz): ?azbc M;Cilﬂbﬂzcilﬂdefl (B10)
" 2
n
where the notatior® , p)x (cder) indicates a sum over all va,bycyd(nz)zs—2 > tr(clc,cieytr(cic.cicy),
possible permutations af and b orderings combined with ab.cd

permutations otd andef orderings, leading to a total of four (C6)
terms.
APPENDIX C: JOINT MOMENTS FOR ASYMPTOTIC n
GAUSSIAN INFERENCE; MULTIVARIATE va,bycd(nl)z 5
GAUSSIAN DATA WITH ZERO-MEAN: RANDOM
SIGNAL IN NOISE
-1 -1 -1 -1
For this case the mean is zero in E6). The joint mo- X(a,b) (c.d) (€ 7CC TGC TCLC)
ments required to evaluate the first order bias, as well as the
second order error correlation and covariance are then +g tr(C~1C,C1C,C1Cyy), (C7)
a,b
n
iabzztr(cilcacilcb)a (Cy
v (n1)=E > tr(clc,clc,cic,) 2 n? 10 -1
abc a,b,c a b ¢ Ua,b,c,de(n )=—5 2 tr(C™C4C™"Cy)
24 ap,5x(d,e)
n 1 1 xtr(C~lc,c~tc,c1c,)
— 7 2 t(CTiCuC T Cy), (€2 a "ot e
a,b,c
o 2
n
n —g .. 2 t(CTIC,CTICy
vapo(n')=g X tr(CIC,LTIC,CICy), (C3 (ab o7 (de)
b,
e xtr(C-1c,Cc-lc,c 1C,)
n
1y — -1 -1 -1 2
Vapc(n)=—= >, tr(C~*C,C1Cy,C1Cy) n
abe 2%% & ¢ +— > tr(c tc,cicy)
8 a,b,c
n _ _
+5U(C1CaC ICy), (C4) Xtr(C™'C.C™'Cyo), (C8)

n? 1
Vabcgef(N?)= 3 (tr(C‘ lc.cicy [ tr(cc,c c,c lc.c1cy)— Str(C™ lc,cic,c 1cef)} ]

(cdef)x(ab)x(cdx(ef)

n2 1
+— tr(C-lc,C !c,)|=tr(c lc.c icy,cic,cicy)
8 (cdef)x(abx(c.d)x(ef) 2

1
—ztr(c*lc:cc*lcdc*lcef) + gtr(clccdclcef)H

2

n
+ — tr(C-'c,clc.cicytr(c tc,cic.cicy)
8 (cd,ef)x(a,b)x(c,d)x(ef)
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2

§(cd ef)x(ab) tr(CC,C IC tr(C™1C,C1Cy)
n2
- §(Cd ef)x(a,b)x(c,d)x(ef) tr(C_lCaC_1Ccd)tr(c_1CbC_1Cec—1Cf)’ -
2
PabiandT)= 18(ap.oflde.f) tr(C7'CaC'CyC ICo)tr(CCyC'CC1Cy)
n2
- z1(.’:1 b,c)X(d,e,f) tr(c_lcac_lcbc_lcc)tr(C_lcdeC_lcf)
2
! §(a b,c)x(d,e f) {tr(cilcacilcb)[tr(Cilcccflch*lCecflcf)
—tr(CT*C,C T CyeC ™ Cp) +#tr(C*CC ™ Caen I} (C10

The notation , b ¢yx(d,ef) iNdicates summation over all
possible permutations af, e, fanda, b andc, leading to a
total of 36 terms.

APPENDIX D: DERIVATION OF THE ASYMPTOTIC
EXPANSION OF THE MAXIMUM LIKELIHOOD
ESTIMATE

Following Barndoff-Nielsen and Co%Eq. (1) is first
inverted for (9— 6)" to obtain the expansion

(8= 0)"=]" s+ 3] 15 (6= 0)'(8— )"+ 3]l st
X(6—0)'(0—0)"(6—0)"+--, (D1)

where ' is the inverse of the observed information matrix
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