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Analytic expressions for the first order bias and second order covariance of a maximum-likelihood
estimate(MLE) are applied to the problem of localizing an acoustic source in range and depth in a
shallow water waveguide with a vertical hydrophone array. These expressions are then used to
determinenecessarygonditions on sample size, or equivalently signal-to-noise K&idR), for the
localization MLE to become asymptotically unbiased and attain minimum variance as expressed by
the Cramer—Rao lower boun@RLB). These analytic expressions can be applied in a similar
fashion to any ocean-acoustic inverse problem involving random data. Both deterministic and
completely randomized signals embedded in independent and additive waveguide noise are
investigated. As the energy ratio of received signal to additive (&A&R) descends to the lower
operational range of a typical passive localization system, source range and depth estimates exhibit
significant biases and have variances that can exceed the CRLB by orders of magnitude. The spatial
structure of the bias suggests that acoustic range and depth estimates tend to converge around
particular range and depth cells for moderate SANR values.2002 Acoustical Society of
America. [DOI: 10.1121/1.1496765

PACS numbers: 43.30.Wi, 43.60.Rw, 43.60.[ELB]

I. INTRODUCTION where the likelihood function is the conditional probability
density of the data, given the unknown parameter vector,

In recent years, many acoustic techniques have been

developed to probe the marine environment. These tecrEvaluated at the measured data values. The MLE is widely

niques typically require the nonlinear inversion of acoustic!Sed in statistics, because if an estimator becomes asymptoti-
field data measured by a hydrophone af@yThe data, cally unbiased and attains the CRLB for large sample sizes
however, are often randomized by the addition of naturaP' high signal-to-noise ratiSNR), it is guaranteed to be the
ambient noise, or by fluctuations in the acoustic sourceMLE." It follows that an analysis of the conditions necessary
waveguide refractive index, and waveguide boundariesfor a MLE to become unbiased and attain minimum-
Since the nonlinear inversion of random data often yieldsvariance, and thus optimal performance, will also reveal the
estimates with biases and mean-square errors that are diffionditions necessary fanynonlinear estimate to asymptoti-
cult to quantify, it has become popular to simply neglectcally achieve optimal performance.

these potential biases and to compute limiting bounds on the  In ocean-acoustic inverse problems, the likelihood func-
mean-square error, since the bounds are usually much easi@gin can be maximized by an exhaustive or directed search
to obtain than the actual mean-square errors. The mosfa forward modeling with numerical wave propagation
widely used limiting bound is the Cramer—Rao lower boundoy scattering algorithms. While the linear least squares esti-
(CRLB)," which describes the minimum possible variance ofator is also a widely used inversion scheme in acoustics

any unbiased estimator, and has been introduced in the ocegfq geophysic& it is only identical to the MLE when the

acoustic source localization literature via Refs. 5 anq 6, 1Eordata and parameter vectors are linearly related, and when the
example. Other bounds, however, also exist in the o .
; 7_11 . data are uncorrelated, follow a multivariate Gaussian
literature,” " that are not directly relevant to the present

work distribution, and share the same variafit8ince these con-

The purpose of the present paper is not to apply a nevgliitions are .often r)ot satisfied in. practice, .the linear Ieas.t
general bound, but to demonstrate how the asymptotic propduares estimator is often supoptlmal even in the asymptotic
erties of the maximum likelihood estimatdILE) described ~régime of high SNR, making the MLE a preferable
in a companion pap& can be used to better understand thechoice.
statistical errors and biases that occur in a typical ocean The present application concerns the classic ocean-
acoustic inverse problem. The MLE has a straightforwardacoustic inverse problem of localizing a source in range and
implementation. It is obtained by maximizing the likelihood depth in a shallow water waveguide, using data received on a
function with respect to the parameter vector to be estimatedjertical hydrophone arrayalso known as the “matched-field
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processing”(MFP) source localization problefr.° [There  derivatives are defined hys=E[lg], whereRis an arbitrary
are differences between some standard matched fieldyt of indices IFRy=TFyq...T4 Ry=Fog...r are
. coTanges Rm=Fmg Ton

processors and the MLE that have sometimes gone unnoticed . - . -
in the MFP literature. For example, the “minimum-variance sets of coordinate indices in the parameter space, joint mo-

distortionless responsgMVDR) processor,” which is ments of the log-likelihood derivatives can be defined by

presented as a MLE in Refs. 3 and 5, is neither a minimumvRr, .R,....R, = ELIr,Ir, "I, ]. Where, for examplevs,
variance estimator nor the MLE for range and depth local-=E[l4ly,] andv, p c.ge=Ellalplclgel-

ization in a waveguide, as discussed by Sullivan and The expected information, known as the Fisher informa-
Middleton!® The MVDR processor is a MLE, however, tion, is defined as=E[l,l ], for arbitrary indices,s.* Lift-

for the particular problem of estimating the complex ampli-ing the indices produces quantities that are defined
tude of a plane wave arriving from &nown direction, ;47

in independent additive Gaussian nojsklere the theory

presented in the companion pajfas used to set conditions

on the sample size and SNkecessarnyfor the MLE to be-

come asymptotically unbiased and attain the CRLB in MFP Ry R;....Rn— 1181112512 . i 1n,S1n, | 21524 22522 - - "mny Smn,

source localization. These conditions can also be used in
experimental design and analyses to ensure that statistical
biases and errors are maintained within tolerable limits
set by the given scientific or engineering objective. The ap-
proach follows that given in Ref. 12 and is based on the fact
that the MLE can be expanded as an asymptotic series iwherei'S=[i"1],;. Here, as elsewhere, the Einstein summa-
inverse orders of sample siZeor equivalently an appropri- tion convention is used, so that whenever an index appears as
ately defined SNR. From this series, analytic expressions fdoth a superscript and subscript in a term, summation over
the first order bias and second order error correlation of @hat index is implied. The Fisher information matrix,has
general MLE can be found in terms of the joint moments ofg, inversei~!. known as the Cramer—Rao lower bound
parameter derivatives of the log-likelihood functirSince (CRLB),4’14‘18V;IhiCh is a lower bound on the minimum vari-
the_ first orde_r error qurelatlon is the CRLB, which is only ance an unbiased estimator can attain.

valid for unbiased estimates, the second order error correla-

tion can provide a better estimate of the MLE mean-square

error that is applicable at relatively low SNR, even when the

MLE is biased to first order. Necessary conditions for

asymptotic optimality of the MLE are then obtained by dem- . . .

. ) . - B. General asymptotic expansions for the bias and
onstrating when the first order bias becomes negligible com- .

cgvarlance of the MLE
pared to the true value of the parameter, and when the secon
order error correlation becomes negligible compared to the  With the notation presented in Sec. Il A, the first-order
CRLB.* bias of the MLE can be written &s'’
In this paper the localization performance of the MLE

for both deterministic and randomized monopole signals
embedded in independent, additive waveguide noise is

analyzed. As the energy ratio of received signal to additive

@

Xv
$11512 " *S1n, 521522 "Smn,

b(§)=E[(§-6)']

noise (SANR) des_cends to the lower operational range =L (0420 pe) O, (0 D)+, )
of a typical passive localization system, the range and

depth MLE demonstrates significant bias and has a mean- 0,07

square error that exceeds the CRLB by orders of

magnitude.

where the symboD,(n~™) denotes a polynomial of exactly
ordern™™, wheren is the sample size. It is noteworthy that
third derivatives of the log-likelihood function may be nec-
essary to compute the first-order bias.

Il. ASYMPTOTIC STATISTICS A necessarncondition for the MLE to become asymp-

A. Preliminary definitions totically unbiased is for the first-order terms in BE@) to
become much smaller than the true value of the parameter

let the random data vectot, givenm-dimensional parameter 0. Equatlon(Z? may then be used to determine the mini-
vector 6, obey the conditional probability density function MUM sample size necessary for the MLE to become effec-
(PDP p(X:#6). The log-likelihood functiori (6) is then de- tively unbiased.

fined asl(6)=In(p(X; 6)), when evaluated at the measured An expression for the asymptotic covariance of the MLE
values ofX. The first-order parameter derivative of the log- has been derived by Naftali and Makris in papéf yho
likelihood function is then defined ds=0dl(6)/96", where obtained the first two asymptotic orders of the MLE covari-
0" is therth component o). Moments of the log-likelihood ance as

Following the theory and notation adopted in papé&f |,
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cov( 8,00 =E[(& —E[0])(6*—E[6°])]

[ira] +[2l~mbl~ncv1mn(rrsl~la+iasilr)vs,b,c(nl)+%icdief(il'siab+iasirb)vbce,d,f,s(nZ)
——

0,(n" 1) 0

4 iru(il'siabicd+ il'diabics+ iadirbics)vsr,u,bc,d(nz)

sbm .cq;tp L rl.ao;sn  L.rs_al.on_ l.as.rl.on 2
TP 0 5 (P SO S g (1)

o n72)

ol

+%ismv]mn(imim(i”iab—l-ialirb)+2ib"i6d(ir1im+iali”)+idi’"(irdiab-l-iadl'rb))vs,,,bc,d(nz)

)

_ %irsituiawi_vzvsmv wyz— irsituiawi_vzvsmvwy,z(n1) _ irsiruiawi_vzvsr,u(n1)va,z(nl)]‘

0,(n~%)

The nOtatiObecad,f,s(r!Z) indicates that izn the joint moment X =[x7,X],....X[], C is the real-valued covariance matrix,
Ubced,f,s ONly polynomial terms of ordem” are retained. The  and u is the real-valued mean of the real random data. For
first-order covariance term of this expansion is simply thethe present study of underwater localizatiofy, represents

CRLB, and the sum of the other 10 terms provides thene real and imaginary parts of the narrow-band acoustic data

variance(CRLB) is hereafter defined as the “second-to-first harmonic-source frequency, and the parameterésepre-

order variance ratio{SFOVR), which is inversely propor-  sents the range and depth of the acoustic source. The fact that
tional to Sample size. A necessary criterion for the MLE to the number of hydrophones is half the Iength of the data

attain minimum variance is for this ratio to become negli-yeciorx; follows from the use of this real vector to describe

gible. Note that this is only aecessarycondition to attain complex data as will be discussed in the next section.
minimum variance, and not sufficientcondition, because In general both the data mean and covariance in(&q.

there IS no guarar_1tee that higher-order variance terms N&re functions of the desired parameter 8ea situation that
glected_ in Eq«(3) will not excee_d_ the second-order variance \aues evaluation of the joint moments in E¢@) and (3)
for sufficiently smalin. For sufficiently largen, the series IS yiggic it Two limiting cases, however, are of great practical

e??lterest, since they describe a deterministic signal in additive

estimate exists. In many practical scenarios the necessafy o and a completely randomized signal in noise, respec-
conditions specified here are also sufficient for establlshmgively In the deterministic scenario the covariance magix

optimality. is independent of the parameter vectihpiwhile the meanu
depends or¥. In the randomized scenario the sample cova-
rianceC depends or® and the data meap is zero. For this
latter case the sample covariance of the data is thus a suffi-

The general bias and variance expressions of E)s. cient statistic that contains all information about the estima-
and(3) are now applied to the specific case of data that obeyion parameters contained in the measured #&ta.

C. Gaussian data, deterministic, and random signals

the conditional Gaussian probability densfty Deterministic signals are typically measured in the pres-
ence of independent, additive noise in ocean acoustics. These
p(X; 0= 27"V )[ deterministic signals may arise from narrow-band sources on

seagoing vessels, or from deployed tomographic sources. A
10 narrow-band time series from such a combination of signal
xexp{ —52 (X;—m(0)TC(0)" (X and noise would have the fora(t)exp(2mft)+£(t), when
=1 measured at a single omni-directional receiver, whigtg is
the independent, additive noisgt) is a deterministic enve-
— m( 0))]. (4) lope, andf is the carrier frequency. The additive noi&g)
typically arises from a large number of independent sources
HereX; is one ofn independent and identically distrib- distributed over the sea surfat€These noise sources may
uted N-dimensional real-valued data vectors, andbe generated by wind, wave interactions, or ocean-going ves-

1892 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002 Thode et al.: Maximum likelihood estimate bias



sels. Since the total noise field is the sum of large numbers of

- . L . ; Sound speed profiles:
statistically independent contributions, it follows a Gaussian \

probability density, by virtue of the central limit theorem. 4+ Case AB: 1520 m/sf 1480 m/s
The Gaussian probability density of E@L) is then a valid Tsovelocity Case C: Case D:
representation of a deterministic signal embedded in additive 1625 m : 1500 mis Pt e aing
noise.

The second limiting case explored here is for a fully . 1505 m/s
randomized signal. A particular fully randomized Gaussian *
signal model that is very widely used and enjoys a long .
history in acoustics, optics, and radar is the circular complex .
Gaussian randorfCCGR model?* A scalar signal centered .
around a carrier frequencf, that obeys CCGR statistics .
would have the fornz(t)exp(2wft)+ &), whereé(t) is the .
independent, additive noise, and whe(¢) is an envelope .
whose real and imaginary parts are independent Gaussiar
random variables with zero mean, and equal variance. The 1% ml 1490 mis 1500 mis
instantaneous intensity of this signal thus obeys an exponen-
tial probability density functioPDP).?22?%In the radar litera- Case A.C,D: Sand CaseB.Silt .
ture the Swerling Il model for radar returns from a fluctuat- 170?.;“ g’ic‘é"‘é‘l?.li';”d 14 gfccod:rsisgee
ing target is equivalent to the CCGR model, since the 0.7 dB/A attenuation 0.3 dB/A. attenuation

InStaman?OUS intensity received in that cgse also fOllOWS 8AG. 1. lllustration of the ocean waveguide environments used in the paper.
exponential PDE>?* There are many physical mechanisms all cases employ a 100 m deep water column overlying a semi-infinite fluid
for generating ocean acoustic signals with CCGR propertiegl_alf space, and a 10-element vertical array with 7.5 m spacing, with the first

; i i ement positioned at 16.25 m depth. Cases A and B employ an isovelocit
Various types of meCham.Cal. an.d propeller.n0|se generate\;avater prc?file of 1500 m/¢Pekeris pFr)ofiIéz Case A uses geoscoyustic param- /
by the complex source distribution of a ship or Smear”"eeters representative of a sand bottom, while case B uses parameters repre-
generate incoherent source fluctuations that can be repreentative of a silt bottom. Case C uses the sand bottom, and a downward-
sented as a CCGR process in time. Even when the initigkfracting water sound—speed_prqfilt_a to simulate ‘summer conditions_in
source signal is deterministic, natural disturbances in thé&émperature latitudes. Case D is s_lmllar, except a linear upward-refracting

. . . profile is used to represent an arctic scenario.

waveguide, such as underwater turbulence or passing inter-
nal or gravity waves, lead to such randomness in the medium
that the waveguide modes at the receiver can be treated asntered in the waveguide. The ocean bottom is a fluid half
statistically independent entities. The total received fieldspace.
which is the weighted sum of these modes, can then be mod- The first environment, case A, is a Pekeris waveguide
eled as a CCGR process in time. Randomized ocean acoustigth a bottom sound speed of 1700 m/s, a density of 1.9 g/cc,
signals have been modeled with CCGR statistics since Worldnd an attenuation of 0.8 dB/wavelength, which are repre-
War 11,2>%° and as a consequence the CCGR model has besentative values for sandy environmehis case B, a silt
come a standard assumption for analyses of MFmottom is simulated, using a bottom speed of 1520 m/s, den-
performancé;!>26:27 sity of 1.4 g/cc, and an attenuation of 0.3 dB/wavelength.

Once C and p have been obtained from either signal Case C retains the sand bottom parameters, but uses a
model, the joint moments are evaluated and inserted intdownward-refracting water sound-speed profile, measured
Egs.(2) and(3), to compute the asymptotic bias and covari- during the Swellex-93 experimeA?$°conducted off the San
ance. The appropriate formulas for the joint moments aréiego coast in 1993, under typical oceanic summer condi-
provided in Appendixes B and C in the companion paper, tions in temperate latitudéS.Finally, case D illustrates the
for both deterministic and fully randomized signals, respeceffects of propagation through an upward-refracting sound
tively. speed profile. The profile linearly decreases from 1500 m/s at

the ocean bottom to 1480 m/s at the surface.
For ranges greater than a few ocean depths, the Green
function for the acoustic field received by timeth hydro-

ll. WAVEGUIDE, SIGNAL AND NOISE MODELS phone array element from a monopole source at horizontal
ranger and deptle at angular frequency can be expressed

Four simple shallow-water ocean waveguide environ
as a sum of normal modés

ments have been modeled to examine the effects of varyin
bottom composition and sound-speed profile on the bias and
variance of a MLE for the location of an acoustic source. —iml4 elkir

Figure 1 displays the selected array geometry, sound @(zm,z,r,w):—E v(2)¥(zn) —, (5a
speed profiles, and bottom composition for each environ- P(Z)\/ﬁ ! \/E
ment. All simulations employ a 100 Hz monopole source at
50 m depth, and a 10-element vertical array with 7.5 m spacwhere k; is the horizontal wave number of modewith
ing, in a 100 m deep range-independent waveguide. Thenodal amplitude¥,(z). Equation(5a) defines themth ele-
shallowest element lies at 16.25 m depth, so that the array iment of the spatial vectd for m=1,2,3,...N/2, whereN/2

ie
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is the number of hydrophones in the receiving array. For a  For a completely randomized signal in additive noise,
source with amplitudé\;(w), the jth sample or snapshot of the SANR and SNR are not equal, however, for consistency
the received field measured across the entire hydrophone ae still define SANR=nSANR 1] in this case. Consider, for

ray is comprised of the components of both a complex signaéxample, the case of a scalar measurement of a randomized
vectorA;(w)g and an additive CCGR noise vectgy such  signal with no additive noise. Here the SNR is independent

that of signal intensity because the variance of an instantaneous
intensity measurement equals the square of the expected in-
_ [RG(A j(@)9) . (5b) tensity. The SNR, which is the ratio of these two quantities,
T ImA()g)] is unity for an instantaneous intensity measuremefthe

SANR of this same signal, however, is infinite, because no
additive noise is present. More generally, for finite time mea-
Re(q) Re(%,) surements of intensity, the _SNR _for a _scalar measur_ement of
Im(g) |" Im(?;—)}' (50 a completely randomized signal is defined as the ratio of the
y square of the expected intensity to the variance of this inten-
andx are real vectors of |engtN In the deterministic Sig_ Sity, as has been described in detail in Refs. 22 and 19. Under

nal modeIA i(w) is a constanA\(w), for all . In the random such circumstances the SNR is then approximately equal to
signal model theA, /(») are independent and identically dis- the number of independent sampfes a measurement time

tributed CCGR variables that describe a stationary randond Where asymptotic convergence tooccurs forn>1. For
process wherdA;(w))=0 and(|A, (0)|?)=(|A(w)|?) for =~ measurement times much greater than the coherencertime

i=1,2,3,..0. for fluctuations in the received field, is well approximated

The portion of the covariance matrix due to additive by T/7c.****?*The number of fluctuations is also equiva-
background noise for a S|ng|e Samp|e: 1,ora S|ng|e snap- lent to the time-bandwidth prOdUCt of the received Slgnal,
shot, of data across the vertical array is assumed to be sp@here the bandwidth of the fluctuating field is7l/in the
tially white, since this is typically what is measured in con- limit as T> .

for j=1,2,3,...n where

9= 7=

tinental shelf environments, For example, if a fast-Fourier transfor(FT) is applied
to a data segment from a completely randomized signal of
Cadditive_ <71ﬁlj+>— <7)j><77,‘+> =02, (6) durationT, the effective number of independent sampids

T times the signal bandwidth, which is another way of stating
wherel is the identity matrix,c? is the instantaneous vari- that the signal is expected to fluctuatetimes during the
ance of the additive noise on each hydrophone and+the measurement. IT is much shorter than the coherence time
superscript represents a Hermitian transpose. Computations of the random signal, then this measurement represents a
using the spatially correlated Kuperman and Ingenito wavesingle statistical sample where=1.
guide noise modé& for the given environments are not While the SANR has traditionally been the quantity of
shown here, but produce results similar to those derived frorpractical interest in MFP, the difference between SANR and
Eqg. (6) since the theory predicts weak spatial correlation. SNR is important because a signal with high SANR might

In general, for a properly defined SNR, terms in E@$.  still have low SNR, due to signal-dependent fluctuations dur-
and(3) that are of orden™™ must also be of order SNR". ing measurements with low time-bandwidth products. All the
In the matched field processing literature, the signal to addirandomized signal examples in this paper are computed for
tive noise ratio(SANR) is typically used, which is not nec- an instantaneous measurement, whetel and the SNR is
essarily the SNR nor is it necessarily proportional to thel. Measuring the data over longer periods leads to a linear

SNR. For a single sample=1, we define the SANR as increase in the sample sipaf the signal is deterministic or
a nearly linear increase in which is asymptotically linear

SN2 (A(@)|D)]8(2y 26T o) |2 for n>1 if the signal can be described as a CCGR process.

SANR[”ZSJ_ (7 Since SANR is a function of both source range and

additiv
trace (C K depth, for consistency, we adopt the convention of setting the

SANR[1] of the field across the array to unifgr a source
docated at r=1 km range and any depthfar all simulations
presented in this paper. This implies that the SANR is made
constant over source depth for any fixed range separation

that are of orden~™ are also of order SANR™ when the Petween the source and receiver array by appropriately vary-

additive noise is zero-mean Gaussian and spatiaityorre- "9 the source amplitude with source depth. B
lated, in the deterministic sighal model, as shown in appen- ~ We define the complex mega and covarianceC that
dix B. This is not the case when the noise is spatiatiyre- ~ are related to the real meanand covarianc€ of Eq. (4) by
lated In the correlated case, terms in EG&) and (3) must  the following expressions

be expanded in powers of a more generalized quantity that

cannot simply be factored into the ratio of a signal term and

a noise term. The tenant that SANR and SNR should con- -
form to such a factorable ratio must be abandoned in this Mz{Re(’f)}
more generalized framework. Im(z) ]’

which is a function of source rangeand depthz. For mul-
tiple independent and identically distributed samples in th
deterministic signal model, SANRNSANR[ 1], for a given
source range and depth. Moreover, terms in Egjsand (3)

1 ReC) —Im(C)

- - 8
2/ Im(C) ReC) ©

1894 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002 Thode et al.: Maximum likelihood estimate bias



Wthh are Va"d under the assumption that the CompleX datE . Range Performance: Deterministic, Pekeris Profile, Sand Bottom "

measured at each hydrophone follow a circularly complex ¢ = sort@nd-order var)
H . 10° {{-— Blas magnitude 1s0
Gaussian random densifywhen the mean is subtracted. Ji| © sancRLB) “
When modeling deterministic signals, the complex mean "’3
10" F 430

vector becomeg=A(w)F, and the complex covariance ma-
trix C is taken to beC2%Ve for 3 single sample=1.

When modeling randomized signals due to random
source amplitudé\;(w), m is set to zero, an€ is defined
for a single sample=1 as

SANR (dB)

6: <|A(w)|2>§§+ + Eadditive_ (9)
It is noteworthy thatC ! becomes singular when the addi- " Depth Perfor Deterministic, Pekeris Profile, Sand Bottom o
tive noise vanishes in the random signal model given by Eq. [ = ;’gn(znd-u_rtd:rvar) o
~ . . . = -— -Blas maghnitude . . . E
(9) whenT is not a scalar. For sufficiently high SANR, the 1°4 o ;qr:‘(gREB)
error in estimating range and depth fraronscalarmeasure- 10 SR N 1%
10° b . 430

ments of a randomized signal then approaches zero as th
additive noise approaches zero, as is shown in Appendix ngz
If the signal randomness is due to fluctuations in the wave- & 1'
guide rather than at the source, K@) is not an appropriate 10

SANR (dB)

model. A more appropriate model would repl&@g in Eq. 10°

(9) with a diagonal matrix that has the same diagonal ele- 4o :

ments agig*, as might arise from equipartion of modesina 4+ ; ‘ ; ‘ } ‘ . . ‘ 30
fully saturated waveguid€:?>This random signal model due () ° > * ° % e = W%

to waveguide fluctuations would be well defined even in the o _ o
absence of additive noise. FIG. 2. Deterministic ocean acoustic localization MLE performancedpr

. . range estimation an@) depth estimation versus source range, for a 100 Hz
Note that the definition presented in E@) does not  soyrce placed at 50 m depth in the case A environment, a Pekeris waveguide

account for potential improvements in the SANR from arraywith a sand bottom. The first-order bias magnitigelid line), the square

gain, which is 10 IOg(VZ) for the ideal case of a plane wave root of the Cramer—Rao lower boungircles, the square root of the
econd-order variancécrossey and the average input signal-to-additive

Slgnal embedded in spatlally uncorrelated white nOIS?' Th%oise ratio(SANR, dashed—dotted lipénto the array are shown. Note that
10-element array modeled here could then have an “arrayte input SANR plotted here does not incorporate array gain effects. Al
gain-augmented SANR” that is up to 10 dB greater than thatjuantities are expressed in units of meters, except for the SANR, which is

indicated by Eq.(7) for the given array. For this reason. it plotted in dB units. The background noise level has been scaled so that the
' input SANR is 0 dB at 1 km source range. Whenever the second-order

will sometimes be necessary to distinguish th_e SANR of EQyziiance attains roughly 10% of the CRLB, the total variance of the estimate
(7) as “input SANR” as opposed to “array-gain-augmented will not attain the CRLB.

SANR.”

In the given signal models, evaluation of Eqg) and Eqg. (2) and Eq.(3) are zero, and those that remain do not

(3) requires knowledge of the higher-order derivativegyof : A : : :
. noticeably alter the localization estimates, as illustrated in
with respect to parametersand z. The normal-mode depth . .
the Appendix B figures.

derivatives must be computed to obtain the Green function
depth derivatives. Since numerical differentiation of the
modes can lead to instabilities, the modes at a given SOUIGE |LLUSTRATIVE EXAMPLES
depth are decomposed instead into upward and downward-
propagating plane waves, so that depth derivatives can be The asymptotic biases and variances depend on the
derived by analytic differentiation. This procedure is dis-source signal characteristics, measurement geometry, SANR
cussed in detail in Appendix A. and SNR, and surrounding propagation environment. To iso-
If source amplitude is sought as well as source positionlate and illustrate these contributions, a number of simula-
a three-dimensional parameter estimation problem must béons are performed. First, the source level and source depth
solved. However, as shown in Appendix B, the additionalare held fixed, and the first-order bias and second-order vari-
uncertainties introduced by estimating the source amplitudance are computed as a function of source-receiver range for
do not noticeably affect the localization performance of ei-various waveguide environments, using both deterministic
ther deterministic or randomized signals. One reason behindnd randomized signals. Localization estimates are shown to
this is that the source amplitude parameé$éw) for the stan- degrade rapidly ag10log of the array-gain augmented
dard monopole source assumed in M is linearly re- SANR descends below 0 dBWhen SANR or SNR are dis-
lated to the measured data, which in this case is the complesussed in decibels, 10log of SANR is assumédext, the
pressure field across the array. Because the second-order aeinimum sample size necessary for the MLE to attain the
rivative of the measurement with respect to amplitude iSCRLB is computed. A fundamental difference between the
zero, many of the higher-order joint moments that appear isample size requirements for randomized and deterministic
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Range Performance: Randomized, Pekeris Profile, Sand Bottom

Range Performance: Deterministic, Pekeris Profile, Sand Bottom, 200 Hz
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FIG. 3. Same as Fig. 2, recomputed for a single samptel) of a com-
pletely randomized signal.

at 200
signals is demonstrated. Finally, the spatial structures of the
asymptotic bias and variance are investigated. It is shown
that range and depth estimates tend to be biased toward cer-
tain waveguide locations as the array-gain augmented SANF

Hz.

Range Performance: Randomized, Pekeris Profile, Sand Bottom, 200 Hz

falls below 0 dB. w = ;‘j‘;‘s‘f‘:‘;’;;;ﬂg’e"a"
In all cases where the deterministic signal model is used, . ° ;1';}33']-3) x 0 s
the bias and variance terms are plotted as a function o P i
SANR=NSANR[ 1], since these terms are all proportionalto ™ . gsrost g
SANR™ ™, as shown in Appendix B, whem is the integer ~ §' ¢ Mn’“m =
. . . . . . 1 R X . 4
order of the term, i.e.n is either 1 or 2 in the illustrative 1 &; | “ E
examples. In all cases where the random signal model is 1§ T EI
used, the bias and variance terms are plotted as a function ¢ 1o™ ;i) L (1 N S
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sample size is unityn=1. The input SANR for the deter-

FIG. 4. Same as Fig. 2, except the deterministic source signal now radiates

ministic signal examples and SANE for the random sig-
nal examples, computed from Eg7), are shown as a

FIG. 5. Same as Fig. 3, except the randomized source signal now radiates at
200 Hz center frequency.
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FIG. 6. Deterministic ocean acoustic localization MLE performancedbr  F|G. 8. Deterministic ocean acoustic localization MLE performancedpr

range estimation an() depth estimation versus source range, for a 100 Hzrange estimation angb) depth estimation versus source range, for a 100 Hz

signal placed at 50 m depth in the case B environment, a Pekeris waveguidggnal placed at 50 m depth in the case C environment, which consists of a

with a silt bottom. See Fig. 2 caption for plot descriptions. downward-refracting profile over a sand bottom. See Fig. 2 caption for plot
descriptions.
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FIG. 7. Same as Fig. 6, recomputed for a single sample of a completelffIG. 9. Same as Fig. 8, recomputed for a single sample of a completely
randomized signal. randomized signal.
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FIG. 10. Deterministic single-sample ocean acoustic localization MLE per-FIG. 11. Same as Fig. 10, recomputed for a single sample of a completely
formance for(a) range estimation antb) depth estimation versus source randomized signal.

Which consiss of an upwaltdreitacting profle over a sand botiom, See FiglNCe: AS the input SANR descends belowl0 dB, the
2 caption for plot descriptions. second-order variance magnitude grows much more rapidly
than the CRLB magnitude, for both signal types. Beyond 6
dashed—dotted line plotted relative to the right vertical axiskm range the second-order localization variances of the de-
In all figures the source level has been adjusted so thaerministic signal equal or exceed those of the CRLB. For
SANR or SANR1] at 1 km is 0 dB. Note that it is the square randomized signals, the second-order localization variances
root of the CRLB and the second-order variance that haare even greater, exceeding the CRLB by nearly two orders
been plotted in the figures. of magnitude at 6 km range. In both cases the CRLB under-
Figures 2 and 3 show the results of propagation througlestimates the true parameter variance, and tens to thousands
the case A environment, which consists of an isovelocityof data samples are required to make the second to first-order
sound speed profile over a sandy bottom. The randomizedariance ratio(SFOVR negligible, and so have the MLE
signal MLE biases are much larger than those from arasymptotically attain minimum variance.
equivalent deterministic signal and the degradation in the Figures 4 and 5 show the results of using a 200 Hz
range estimation performance is especially notable. Hunsignal to estimate source position in the case A environment.
dreds to thousands of data samples are required to reduce tbme might expect the greater number of available propagat-
randomized bias to less than 10 m at 20 km range. At rangdag modes to improve the MLE localization performance.
less than 6 km, when the input SANR is greater that0  Indeed, the localization bias magnitude for both signal types
dB, the range biases are negligible for deterministic signalsjecreases slightly. Doubling the frequency also reduces the
less than 1 m, but roughly 10 times more significant, 10 myange and depth second-order variance terms by factors of 4,
for randomized signals with SANR] greater than—10 dB  for both signal types. However, the deterministic CRLB is
at ranges of 6 km or less. For deterministic signals, as thalso reduced by a similar factor. Therefore, while the local-
input SANR descends below 10 dB, the bias magnitude ization variance decreases with increasing frequency, the
increases by an order of magnitude, so that at 20 km rang&FOVR remains unaffected, so there is no reduction in the
where the input SANR drops te-19 dB, the asymptotic number of deterministic data samples required to attain the
range and depth biases reach maxima of 1 and 30 m, respe€RLB. In contrast, the randomized signal SFOVR does de-
tively. The corresponding maxima for the randomized signatrease with increasing frequency.
biases are 8000 m and 800 m, for a 20 km range source. Figures 6 and 7 show the effects of a different bottom
Even at a typical operational range of 6 km, where the arrayeomposition, in this case, silt, on the localization perfor-
gain augmented SANR] is roughly 0 dB, the randomized mance, using the original 100 Hz source. The localization
signal localization biases are greater than 10 m. performance has worsened noticeably relative to that of the
A similar pattern is evident for the second-order vari- sand bottom, due to the absence of higher-order modes. For
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FIG. 12. Minimum independent data sample s{&#SS) necessary for a i ) )
deterministic ocean acoustic MLE to effectively attain the CRLB. The MSSFIG. 13. Same as Fig. 12, recomputed for a completely randomized signal.
is defined in Eq(13) as the minimum sample size necessary for the second-

order variance to be reduced to 10% of the CRLB. The MSS is plotted forsample sizéMSS) is defined here as 10 times the ratio of the

(a) range estimation an@db) depth estimation versus source range and source . . .
level, for the case A environment. The 100 Hz source is located at 50 n?‘econd'.to'f'rSt order variance fo'_' a single sample. In Other
depth. Values less than 1 indicate that a single data sample is sufficient twvords, if vag(n) represents the first-order variance term in
attain the CRLB. Eg. (3), derived fromn samples, and vafn) represents the
sum of all the second-order terms, also derived fram

example, the deterministic depth bias exceeds the 100 samples, then our necessary criterion becomes
waveguide depth beyond 9 km range, whereas for a signal
propagating over a sand bottom,.the bias is Igss than 100 m van(n)  van(1)
out to 20 km range. The randomized depth bias exceeds the van(m = var 1) =01,
waveguide depth beyond 5 km range in the silt environment, 1 i
compared with 12—14 km for the sand environment. Even atvhere
typical operational ranges of a few kilometers, randomized
signals received with an array-gain augmented SANREf O

. . var,(1)
dB will have range and depth biases on the order of tens of MSS=10—="_—. (10b)
meters. var(1)

Figures 811 illustrate the effects of including the moreA single sample is sufficient to achieve the CRLB, for MSS
complex sound speed profiles of cases C and D. A comparizalues less than or equal to unity. The required MSS has
son between these figures and Figs. 2 and 3 suggests that théen plotted as a function of range for the case A environ-
variations in the sound speed profile illustrated in Fig. 1 havenent in Figs. 12 and 13, for both deterministic and random-
relatively minor effects on localization performance, as com-zed signals. For a deterministic signal with an input SANR
pared with changes in bottom composition. of 0 dB at 1 km, as modeled in Fig. 2, an MSS of 20 is
necessary to attain the CRLB at a range of 10 km and a depth
of 50 m. If the input SANR increases by a factor of @D
dB), only two samples would be required to attain the deter-

Figures 12—-15 show the minimum sample sizes necegninistic CRLB, since MSS is inversely related to SNR
sary for the second-to-first-order variance rd~OVR to  and SANRL1] for deterministic signals, as discussed in Ap-
be less than 0.1. We take this as a necessary condition for grendix B.

MLE estimate to approximately attain the CRLB in the The randomized signal results in Fig. 13 display some
asymptotic regime. For convenience a necessary minimurfundamental differences from their deterministic counter-

(109

B. Minimum sample size necessary to attain CRLB
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FIG. 14. Minimum independent data sample size necessary for a determif=/G- 15. Same as Fig. 14, recomputed for a completely randomized signal.
istic ocean acoustic MLE to effectively attain the CRLB for the case B
environment. All other parameters remain unchanged from Fig. 12.

parts. First, the randomized MSS is always much larger thaRIas m_agmtude, bias sign, and the MS_S for a de_term|n|st|c
those required for deterministic signals. For exam|0|e’5|gnal .|n the cgse A environment. As discussed in Sec. lll,
roughly 1000 data samples are required to attain the CRLEN€ Nnoise matrix has been rescaled so that SANR from a 1
at 10 km range and 50 m depth, for a signal with an inputkm range source will be 0 dB for every source depth. Figures
SANR[1] of 0 dB at 1 km range. The randomized MSS even-18 and 19 show the corresponding results for randomized
tually plateaus to approximately 10 as the SANRin-  signals in terms of SANR].

creases. Indeed, the MSS uniformly converges to a value of The general features of the contour plots are similar for

10 at all ranges, as the SANR increases past 20 dB at 1 both signal types. As SANR follows a decreasing trend with

km range. In other words, the second-order variance conrange, both the CRLB and MSS increase together in a highly
verges to the same magnitude as the first-order variance abrrelated fashion. Locations with a large CRLB also tend to

large SANR1] values. When the additive noise term is zerorequire a large MSS to attain the bound. For a given source
andN/2>1, however, the random signal model is not well range in this environment, the waveguide center and bound-
defined as is discussed in Appendix B since the covariancgies tend to produce the lowest CRLB and MSS. In Fig. 17

given.in Eq.(9) is rc‘jo Iongher in\aertiblg.sf q o donIy the depth bias displays any significant depth depen-
F'gwes 1.4 and 15 s ow the M or etermln!stlc an dence, where it increases sharply near the waveguide bound-
randomized signals, respectively, in the case B environment

a Pekeris waveguide with a silt bottom. While the MSS val-a”es' An examination of the depth bias sign of both signal

ues are generally much greater than the values obtained fort pes reveals that the large biases at the boundaries tend to

signal propagating over a sand bottom, the overall trends 'Tt the estimates toward the \{vavegwdg 'center,' so that lo-
visible in the MSS are the same as observed for the santflizations near the surface will be positively biased, and
bottom. The deterministic signal MSS follows the expected©calizations near the ocean bottom will be negatively bi-
inverse relationship with SNR], and the randomized signal ased.
MSS asymptotically approaches 10 as the input SANR The depth bias shows other sign reversals with depth,
becomes large, converging SNRto O dB. for both deterministic and randomized signals. The 100 Hz
signal in the case A environment generates 11 distinct sign
reversals over the waveguide depth, out to ranges of 5 km.
Another factor that influences localization performanceBeyond this range the bias sign structure dissipates as the
is the source depth. Figures 16 and 17 illustrate the CRLBinput SANR falls below—10 dB. The consequence of these

C. Effect of source depth on localization performance
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depth patterns is that MLE depth estimates will have a tenef range convergence, particularly at the waveguide mid-
dency to converge toward depths where the bias sigdepth.

switches from positive to negative, with increasing depth. In  These spatial effects are more dramatic when an envi-
terms of the contour plot, these regions lie wherever a blackonment with fewer propagating modes is analyzed. Figures
(positive biag layer overlies a whitgnegative biaslayer.  20-23 illustrate the results of applying the same asymptotic
The range bias sign also shows alternating patterns indicatiieias and variance computations to the case B environment,

(@
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0 f 40
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- 20 -
£ 40 13
£ £
=% o ik
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0 FIG. 17. Contour plots ofa) deter-
80 10 ministic range bias magnitudé)) de-
terministic depth bias magnitudéc)
100 _20 deterministic range bias sign, arid)

depth(m)

5 1 0
range(km)

15

depth(m)
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deterministic depth bias sign, for the
same scenario described in Fig. 16.
The top row is in dB units, with a con-
tour interval of 10 dBre 1 m. The bot-
tom row displays positive values as
black, negative values as white. Note
the horizontal layers of alternating
sign in the depth bias sign plot.
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FIG. 18. Same as Fig. 16, recomputed
for a completely randomized source
signal. The contour interval is 10 dB.

characterized by a silt bottom. In both propagation environtanges and depths. For example, deterministic signal local-
ments depth localizations near the waveguide boundariggations will tend to converge toward the waveguide mid-
lead to the best performance, in terms of both the CRLB andlepth and toward range cells evenly separated 2.5 km apart,
MSS. For the silt case, the CRLB and MSS reach theiwhich is the modal interference length between the two
maxima at the waveguide midpoint. The localization biasepropagating modes in the system. The randomized signal lo-
clearly display strong tendencies to converge at certairalizations display similar features.
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FIG. 19. Same as Fig. 17, recomputed
for a completely randomized source
signal. The contour interval for the top
row is 10 dBre 1 m, and the bottom
row displays positive values as black,
negative values as white.
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V. DISCUSSION a reduction in the biases and variances presented here, due to

It is convenient to frame the discussion in terms ofthe effects of array gain. In the presence of spatially uncor-
SANR, starting in the high SANR regime. The results pre_related white noise, aN/2-element array increases the array-
sented in Figs. 2—23 have been computed using a 10 eleme@@in augmented SANR by 101dgf2) over the input SANR
array. As indicated above, an increase in the number of arragefined in Eq.(7). Since the bias and variance have been
elements used to perform the inversion is expected to lead tshown to be primarily functions of the signal SNR, these
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FIG. 21. Same as Fig. 17, but recom-
100 -20 puted for a deterministic signal propa-
5 — 13('““) 15 20 5 ran 1:(km) 15 20 gating through the case B environ-
©) 9 ) 9 ment. The contour interval for the top

row is 10 dBre 1 m, and the bottom
row displays positive values as black,
negative values as white.
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FIG. 22. Same as Fig. 16, but recom-
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(b) (d) signal propagating through the case B
CRLB,dBre1m min sample size, dB environment. The contour interval is
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quantities decrease with increasing array gain. For exampléhe CRLB with a single sample or snapshot of the field
a 10-fold increase in the number of hydrophone elements iacross the array, for sufficiently high SANR values, as Figs.
expected to generate a 10-fold decrease in the deterministl? and 14 attest. In other words, at high SANR levels the
bias and MSS, provided that the background noise covarisecond-order variance computed from EB8). is negligible
ance has similar characteristics to uncorrelated white noiserelative to the first-order variance, even whes 1. How-
Estimates extracted from deterministic signals can attaiever, Figs. 13 and 15 illustrate how the situation for ran-
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FIG. 23. Same as Fig. 17, but recom-

100 0 puted for a completely randomized
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range(km) range(km) sign_al propagating through_ the case B
©) (d) environment. The contour interval for
the top row is 10 dBre 1 m, and the

bottom row displays positive values as
black, negative values as white.
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domly fluctuating signals is more complex, in that estimates  In some sense, the results provided here are still optimis-
derived from these signals do not attain minimum variancetic, as the ocean environment has been assumed perfectly
unless at least 10 data samples are used to construct tabaracterized. In most practical situations, the waveguide pa-
estimate. The reason behind this limitation is outlined in Sectameters are insufficiently known, and this environmental
I, where the difference between the SANR, SANRand  uncertainty will further degrade the localization perfor-
the SNR of a measurement is discussed. mance. The effects of this environmental uncertainty can be
For example, Figs. 12 and 14 show that as the inpu{ncorporated into Eq92) and(3) by adding geoacoustic pa-

SANR of a deterministic signal descends belew0 dB, the ~@meters to the parameter vecrand then computing de-
magnitude of the second-order variance begins to exceed thE at|ves_ Of Eq.(5) with respect _to thesg parameters. T_h|s
CRLB, so a deterministic estimate derived from a single datéilfferennatmn may be z_accomphshed either via numerical
sample fails to attain the CRLB. As stated earlier; 20 dB methods or by perturbation theaty.

input SANR across a 10-element array yields an approximate

array-gain augmented SANR of 0 dB. VI. CONCLUSION
For every 10 dB decrease in SANR, the deterministic Asymptotic expressions for the first-order bias and

SFOVR increases by an order of magnitude, resulting in %econd-order variance of a MLE have been applied to the

10-fold increase in the MSS. This inverse relationship be'problem of localizing an acoustic source in an ocean wave-

tween the MSS and SANR] is a consequence of the fact gide, for the cases of deterministic and randomized signals
that given spatially white noise in the deterministic signal eceived with independent and additive background noise.
model SNR=SANR=NSANR[1], as discussed in Sec. lll. The results suggest that as the array-gain augmented signal-
The MSS itself is relatively insensitive to Changes in Sourc&op-additive noise ratigSANR) at the array output descends
frequency, sound—speed profile, and even bottom composielow 0 dB, the MLE exhibits significant biases and vari-
tion, for the cases investigated. For exam@es kmrange  ances that can exceed the CRLB by orders of magnitude. The
source in a sandy environment yields the same input SANRocalization biases tend to concentrate the estimates around
(=10 dB as a 4 kmrange source in a silt environment. particular source ranges and depths for moderate SANR val-
Examination of Figs. 12 and 14 show that the MSS is theues.
same for both situations, suggesting that the deterministic In principle, if enough data samples are available, unbi-
signal results presented here can be used to guide analysisagaed estimates can be derived from low SANR signals. How-
other propagation environments and array geometries, if thever, if the acoustic source is changing position with time, as
transmission loss curves are known. is usually the case, the number of independent data samples
No simple relationship between SAR and MSS ex- available to construct a localization estimate is limited, be.—
ists for randomized signals, because the SANR is not propof@use the estimation parameters themselves are changing
tional to SNR in this case. As Figs. 13 and 15 demonstraté’,‘”th time. Therefore, under many practical operational sce-

the SFOVR, and thus the MSS, are nonlinearly related tfrarios, localization estimates are expected to be significantly

SANR{1] and are very sensitive to propagation effects. epPiased, and the CRLB will underestimate the true variance

vironments dominated by only a few propagating modes, irpy orders of magnitude.
particular, seem to create situations where the SFOVR and

MSS can change by an order of magnitude with only a smalACKNOWLEDGMENT
change in source range. However, at high SANRevels

the MSS asymptotically approaches a value of 10 at all
ranges and for all environments investigated, which seems to
imply that forn=1 the CRLB cannot be attained for large APPENDIX A: ANALYTICAL DERIVATIVES OF MODES

SANR[1]. Our analysis indicates that this is only the caseUSING PLANE-WAVE DECOMPOSITION

when =1 because for more th_an one rece!ver the eIror  The moments presented in Appendixes B and C in paper
tends to zero for large SANR] as is discussed in Appendix |12 require expressions for multiple-order depth derivatives
B. This asymptote is due to the fact that with our definitionof the Waveguide normal modes. These are achieved by de-
of SANR[1], in the random signal model terms in E®)  composing an individual mode into an upward and down-
and(3) that are of orden™ ™ are not necessarily also of order ward propagating plane wave at the desired source depth.
SANR[1]"™. Both 1st and 2nd order terms may then ap-Suppose that the values of modg, at depthsz andz+H
praoch zero with the same power law in SANR are known, whereH is a small depth increment. Assuming
As the array-gain augmented SANR descends below @hat the sound—speed is constant between the two depths, the
dB the localization biases are no longer negligible for eithercoefficients of the upgoing and downgoing plane waves con-
signal type. The spatial distribution of the bias sign revealdiecting the two points are obtained by a matrix equation:
that the maximume-likelihood localization estimates tend to 1 1 n
. V¥ n(2) A
converge toward particular ranges and depths at low SANR. v ik ik _
. . m(z+H) ekmzH g~ ikmH || A
The exact convergence locations depend on the propagation
environment; however, the localizations are generally biasedherek, ,= \/kz—kf'm is the vertical modal wave number.
away from the waveguide boundaries. The above matrix is easily inverted to solve for the coeffi-

This research was sponsored by ONR.

; (A1)
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FIG. 24. Deterministic _signal single-sampla=1) ocean gcoqstic MLE  EFiG. 25 Random signal single-sample={1) ocean acoustic MLE perfor-
performance fofa) amplitudeA, (b) range, andc) depth estimation versus  mance for(a) amplitudeA, (b) range, andc) depth estimation versus source
source range, for a 100 Hz signal placed at 50 m depth in the case fange for a 100 Hz signal placed at 50 m depth in the case A environment,

environment, a Pekeris waveguide with a sand bottom. The true sourcg pekeris waveguide with a sand bottom. The true source amphtusid.
amplitudeA is 1. A comparison of these results with Fig. 2 shows that the o comparison of these results with Fig. 3 shows that the addition of ampli-

addition of amplitude as an estimation parameter has negligible effect on thg,qe a5 an estimation parameter has negligible effect on the MLE localiza-
MLE localization performance. tion performance.

cient vectorA. The modal derivatives with respect to depth

— 2 ;
can then be written in terms @f: model and source powéf,={|A(w)|?) for the randomized

signal model as a third estimation parameter in addition to

v, (2) source range and depth, has only a minor effect on localiza-
U.= W/ (z+H) tion performance. The bias and the variance terms are inde-
) . pendent ofa for the deterministic case arld, for the ran-
| iKmg —ikm,; AT domized case, provided that the SANR remains fixed.
ik ek md —ik, e km || AT Variations between two-parameter and three-parameter-case
estimates of range and depth are negligible in our localiza-
=D,A. (A2)

tion scenarios, as we show in the simulations presented in the
Second and third-order derivatives can be computed by derigs. 24 and 25. No new derivatives are required to apply
fining matricesD, andDs: Egs.(2) and(3) to the three-parameter estimation problem,
5 since the source amplitude is linearly related to the data.
Uz=DoA,  Dij2=[Dijal% We first present analysis for the deterministic scenario

(A3) and then we discuss the completely randomized case.

U, =D3A, Dj;3=[D;; 1%
Use of Egqs(A1)—(A3) allows computation of the modal

derivatives using only the values of the modes at fixed S

points, without having to recourse to numerical differentia-1. Deterministic signal model

tion. In the deterministic signal model, according to E¢),

(5b), and(8), the expected complex vector field can be ex-
APPENDIX B: THE EFFECT OF THE SANR AND pressed as a real vector

SOURCE AMPLITUDE ESTIMATION ON

LOCALIZATION PERFORMANCE p—a cog )l —sin( ¢>)|HR6(§(r,Z))
[ [ I || Im(g(r,z
It is demonstrated here that the addition of the modulus sin(¢) cos4) (a(r.2))
of source amplitudex=|A(w)| for the deterministic signal =afdg(r,z), (B1)
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where ¢ is the phase ofA(w), € is a rotation matrix of  the error is not controlled directly bg'g, , but by the com-
dimensionN, I is the identity matrix of dimensiofN/2 and  ponent ofg, orthogonal tog.

g(r,z) is formed with the real part and the imaginary part of A similar analysis is performed for the components of
9(r,z). In our complex representation the source phase conthe bias when the tensors

veniently scales out of the problem since the matixis

orthogonal QTQ=1). It follows that u, = «Qg,(r,2), u,

= afg,(r,2), m,=Q9(r,z), andu,,=0, where in this Ap- Ugaa=0, (B6)
pendix only the subscripts z, and « represent derivatives

with respect to range, depth, and source amplitude, respec-

tively. The noise covariance, according to E@®.and(8) is . 90

a diagonal matrix whose trace is given by Qrfditv Vaar= =207 B7)
=0?(N/2). From Egs.(2) and (3), Egs. (B6)—(B15), and

Egs. (B18)—(B21), we then observe that the first-order bias

and the CRLB are proportional to 1/SANR, where SANR 9.9 9o
—SANRIn]=n(2x"w/No?)=n SANR[1], while the Varr = ~Na| 7 +2-—5|, (B8)
second-order variance is proportional to 1/SANRThis
property explains the dependence of the curves in Figs. 12
and 14 on SANR. 9o
We first consider the problem of estimating two param- Vs = —3na? pe (B9)
eters, amplitude and range, to illustrate the issues. We then
extend the results to the three-parameter case of amplitude,
range, and depth. 9 g
From the Appendix of Ref. 12 and the definition above v, =na—s, (B10)
for the meanu, the Fisher information becomes 7
1 d'g T
il 99
N| o ag'g o) Vara=N"7" (B11)
i=SANR- B2
2| d'e oo
Ty AT
ag'd gg U aa=0, (B12)
from which the Cramer—Rao bound becomes
o 1 Ur.aa=0, (B13)
CRLB= —SANR( - (ngr)Z)N
grgr_ ng ? T
\ / Or O
amplitude Urra=Na ?2_1 (814)
——
o’glg, —oag's
x : (B3 o g
—ag'g, g's Urrr=n Z.zr1 (B15)

range
are substituted i1iB2). The first-order bias then becomes

While the CRLB for the source amplitude scales with the

CRLB for range is independent af, for fixed SANR. For a 1 T Tg)2

bt _ b*(1) ag ol v+ (99
range estimation, the square root of the CRLB, which repre- ()TN g 0,9—2—7
sents a first approximation to the error, becomes SANRSE ' 99

1
VCRLB(1)= —r , (B4) [ed'e: ( oo nggnggr” ©16
\/ > SANR 2L g'g || S TgTg /|
2 g

where

whereé=g/g,—[(g"g,)?/g"g]. For fixed SANR, the range
g, l|2:ngg'(l'gr_(g;l'g)2_ (B5) biasb'(1) is independent of while the amplitude bias is
' proportional toa.
As expected, the error decreases for increasing SANR. How-  The analysis of the second-order covariance is simpler if
ever, in Eq.(B4) there is also a geometrical interpretation: we express the terms of ord@rp(nfz) in Eq. (3) as
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C N i pimyjng 1 L
coVvo(i,j)=—i"=i"MI"PYv g mpt Umgnpt Vnmpgt 3VngpmT 2Vnmpgt 2V mpgnt 2Vnpgm)
iimijnipziqt 1 1 5
+i'minip |q(§Unptvm,q,z+ 2Vmp®n,q.zT Unpn? gzt 2UnpgUmzt
1
+Un,qzvmtp+vm,qzvntp+2Unmtvqp,z+3Unt,zvmpq+3vnpqvmt,z+ 2Un,mtVpqz

1
T 3UntmVpazT Vng,2Vpt,mT Uma 2V pt,n T UngmVpt,z T Umgnlpt,zt Ung,pl mt,z)’

(B17)
|
wherei,j=r, zor @« and we use the explicit expression of the where
tensors in(B3)—(B12) as well as the tensors
I
n K=—=5g" +1 B24
Umnpq:?(Manﬂq"’I"Innqﬂp"’ﬂIpqﬂm a 9 (B24
+ ,U,quyn-i— ;leﬂpq-i- /-‘-Ir;pﬂnq"' l‘;qﬂnp)! and tr()=N/2. We define SANRL]=2I,9"g/No?
(B18) =1,5"9/No?. Let us consider the properties 6fandC*
as the additive noise vanishes. Note @@t is a matrix that
N projectsN/2-dimensional real vectors onto the subspace par-
Umnpq™ 2 MmnpHq (B19) allel to'g, annihilating the components in all other directions.
If we introduce a unitary matrix) that rotategj in the first
n ) .
i T component of aiN/2-dimensional complex vector space, we
v =imnipg— , (B20) ~
mnpa=imnpa ;2 Hmaftoq can then writeC as
v = —imnlpg> (B21) -
mn,p.g mn' pq _ C=0QDQ*, (B25)
where m, n, p, q are equal toa or r. We find that
covy(a,a)*a?/SANR? and coy(r,r)<1/SANR, wherex | hore
meandinearly proportional to The second-order covariance
for the range MLE is then independent @& while the -1 07 -1 07
second-order amplitude variance scales with
If we include depth as a third parameter, the bias and 0 1
variances of both range and depth will still only depend onD=1,|g|? + a?
SANR and not onx alone. For example, if we consider the
Fisher information matrix for the three-parameter case, we
have | 0 0] L O 1)
1 dgo ] [ a8+ 0 07
o ag'g agf o’
N| d's 9o g = , (B26)
i=SANR- B22
2|ag'g g'g d'g (623
g'e. 9% % L 0 o]
ag'y g'g g’y . . .
- - where [§|2=9"G. From this expression the inverse can be
from which it can be inferred that CRLE{«) written asC~ '=QD 'Q*, where
«a?/SANR, CRLB(,r)«1/SANR, and CRLBt,z)

«1/SANR.

- 1 -

The functional dependencies of these biases and vari-
ances on SANR, clearly differs from the two-parameter case.
A comparison of Fig. 2 and Fig. 24 for deterministic signals
and Fig. 3 with Fig. 25 for randomized signals, however,
shows that this difference is negligible for our estimation
scenarios.

D*l

2. Random signal model

For a randomized signal, the complex covariance matri

l|g*+ o*

(B27)

1

0_2

is given by

C= 0'2K,

(B23)
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"Since the determinant & is equal to the determinant &f
which tends to zero in proportion &’ (N2~1] as5—0, the

rank of C approaches unity as— 0. From(B26) and(B27)
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we observe that for=0, in the scalar case, where one re-tude alone. This can be seen, from the definition of the Fisher
ceiver only is employed, the model remains well definedinformation matrix for the randomized casd,y;

because the data vector is one dimensional(itdoes not =tr(C~'C,,C 'C,), where m=a, r and n=«, r, C,

exist for N=2 because the determinant ©fvanishes. =9Clal ,=Tg" andC,=adClar=1 (55" +gg’), and
With the present definition of SANR in the random sig-
nal model, terms in Eqg2) and (3) of ordern™™ are gen- I—“~g§+
erally not of order in SANR™, in contrast to the situation C—l_i - o? (828)
found for a deterministic signal. T o2 l, :
For randomized signals, however, the first order bias, the 1+ ?|9|2

CRLB, and the second-order variance for range and depth
still depend only on the SANR] and not on signal ampli- The Fisher information matrix becomes

Ny |\ 1 1G5+5D)
N Rt iz L[5
B N 1G99 1 N PN
L SANRALL | == W((g*g+g*g)2+2 1+ §SANR[1])(Igrlzlglz—gfgg*gr)
(B29
with CRLB,
1 N o 12112 o 9 9+3'G
IiW((g*g+g*g>2+2 1+ §SANR[1])(Igrlzlglz—gr*gg*gr)) 2
CRLB= > - —t )
r9t9 0
n| = SANR[ 1] =21, — 1
2 [e]
(B30)
[
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