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Spectral and normal mode formulations for the three-dimensional field scattered by an object
moving in a stratified medium are derived using full-field wave theory. The derivations are based on
Green’s theorem for the time-domain scalar wave equation and account for Doppler effects induced
by target motion as well as source and receiver motion. The formulations are valid when multiple
scattering between the object and waveguide boundaries can be neglected, and the scattered field
can be expressed as a linear function of the object’s plane wave scattering function. The advantage
of the spectral formulation is that it incorporates the entire wave number spectrum, including
evanescent waves, and therefore can potentially be used at much closer ranges to the target than the
modal formulation. The normal mode formulation is more computationally efficient but is limited to
longer ranges. For a monochromatic source that exbdltexident modes in the waveguide, there

will be roughly N? distinct harmonic components in the scattered field. The Doppler shifts in the
scattered field are highly dependent upon the waveguide environment, target shape, and
measurement geometry. The Doppler effects are illustrated through a number of canonical examples.
© 2003 Acoustical Society of AmericdDOI: 10.1121/1.1499135
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I. INTRODUCTION ceiver motion is also necessary because the source and re-
ceivers are typically mounted on research vessels that move
Standard active sonar and radar systems estimate thgith speeds similar to that of the target, and so induce their
instantaneous velocity of a moving target in free space byywn Doppler effects that must be differentiated from those
resolving Doppler shifts in the frequency spectrum of scatinduced by the target.
tered waves. To obtain all components of the velocity vector,  Doppler effects induced by the motion of a radiating
a multistatic measurement geometry may be necessary. Thigurce that is passively measured at a moving receiver in free
type of active scenario is well suited to the velocity estima-space have been extensively studied in acousti@oppler
tion of a distant body because the frequency spectrum of theffects for the corresponding passive problem of a moving
source is known and controllable and so can be tailored t@ource and a moving receiver submerged in a stratified ocean
the resolution constraints of the prOblem at hand. In paSSiVWaveguide have also been studied in the |itera%dry[u|ti-
sonar and radar, however, velocity estimation by Doppleimodal propagation and dispersion make the Doppler effects
shift analysis is often less reliable because the distant objeg¢ir more complicated in a waveguide than in free space. For
must itself radiate enough power to be detected. Additiona”yexamp|e, the field radiated by a time harmonic source mov-
the frequency spectrum of this radiation must be known, anghg in an ocean waveguide can be received with multiple
have sufficiently narrow bandwidth and stability for Doppler frequency components because of multimodal propagation.
shifts to be extracted robustly. A number of models exist for three-dimensional scatter-
The problem of using active sonar to estimate the veIocTng from targets submerged in a stratified medium, as de-
ity of an underwater target moving in an ocean waveguidecriped in Ref. 5. A particularly convenient and widely used
has complications not found in the free-space analogue. Thigpproach is the single-scatter theorey developed in Refs.
is because propagation and scattering effects in a waveguidg g The major advantage of this approach is that the scat-
are typically not separable as they are in the far field freetereq field is expressed in terms of the target's free-space
space scenario. Also, multiple frequency components argjane wave scattering function. This theory is valid wii&n
typically present in the field scattered from an object movingipe propagation medium is horizontally stratified and range-
in an ocean waveguide even if the active source of radiatio'ihdependent;(Z) the object is contained within an iso-
is harmonic. An accurate physical model for the field scatyeocity layer;(3) multiple scattering between the object and
tered from an object moving in a stratified ocean waveguidgyayeguide boundaries make negligible contribution at the
must then be derived before techniques can be developed facejver; and(4) the range from the object to source and
estimate the submerged object's velocity. Itis the goal of thigecejver is sufficiently large that the scattered field can be
paper to derive such a model and to investigate the Dopplétypressed as a linear function of the object's plane wave
effects induced by motion of a source, target, and receiver iQcaiering function. This theory, however, assumes that the
a stratified ocean waveguide. Inclusion of source and r€source, receiver, and target are not moving so that Doppler
effects must be negligible.
dElectronic mail: makris@mit.edu In this paper, the single scatter theory is generalized to
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include the effects of source, receiver, and target motionBy applying Green’s theorem, the total fielel; can be ex-
Analytical expressions are obtained for the field scattered tpressed &$

a moving receiver from a moving target in a stratified ocean o+

waveguide by a moving source. The formulations are fully CIDT(r,t)=f dtof dVoG(r,t|rg,te)q(rg,to)

bistatic, and all the motions are assumed to be horizontal 0

with constant velocities. Both the expressions for a simple o+

harmonic source and a source with arbitrary time dependence + j dto 4; dSO'(G(rit“O’tO)VO(DT

are derived in this paper. Spectral and modal representations 0

of the scattered field are derived from first principles using

the time-domain formulation of Green’s theorem. The spec- —(I)TVOG(r,t|r0,t0)>

tral representation makes fewer assumptions and is more ac-

curate than the normal mode representation at closer ranges, _ if dv. IG(r,t[ro,to)
but the normal mode formulation provides a compelling c? 0 o T

physical interpretation and can be used at longer ranges with-

L . ZLOB
out significant loss of accuracy. The single scatter theory of —G(1,t|ro.to) _}
Refs. 6 and 7 then becomes a special case of the present to [to=o, ©)
more general theory when the source, receiver, and target awhich differs from Eq(7.3.5 of Ref. 12 only by a 4 factor
at rest. The four listed restrictions of the stationary singledue to differing choices for the delta function normalization.
scatter theory also apply to the generalized theory developeThe first integral represents the incident fidkl induced by
in this paper. the source, and the second integral represents the scattered

It is noteworthy that when the target, source, or receivefield ®,. The third integral accounts for the transient re-
are moving, the scattered field no longer obeys reciprocity, asponse. For example, given a time harmonic source turned
is evident in our present formulation. The concept of a time-on att,=0, this integral vanishes after the source has been
reversal mirrot~** therefore is not directly applicable under operating for a time duration” large compared to the source
motion of the target, source, or receiver. This is true in bothperiod. The first two integrals then represent the steady state

free space and in a stratified medium. response, and the total field is the summation of the first two
A simple and intuitive technique for deriving the field integrals
radiated from a moving source measured at a moving re- D(r,)=D,(r,t)+Dy(r,t) (4)

ceiver using delta functions is also presented for both spec- =~ ]

tral and modal formulations. The spectral representation i¥/ith incident field

identical to the result of Ref. 4. The normal mode represen- th

tation makes more accurate approximations than those used ®i(r,t)= fo dtof dVoG(r,t|ro,to)d(ro,to) ®

in Ref. 3. The resulting expressions are used in the scatterin{gnd scattered field

problem to describe the incident field from the moving
: +

source at the moving target. ‘Ds(r,t)Zfot dt, % dSo-(G(r,tIro,to)V()(I)T

II. ANALYTIC FORMULATION

Analytical expressions for the field scattered from a — D VoG(r,t|rg,to) |. (6)

moving source by a moving object measured at a moving llow h ¢ abbreviafi . d d
receiver are derived from first principles using the time-, F]? owing the type_”o a rr(]aw?_tlng con\_/entlon_a rc])pte
domain scalar wave equation and the corresponding timd? RefS. 6 and 7, we will drop the first term in E@) in the
domain formulation of Green’s theorem. derivation to avoid cumbersome and uninformative algebra.

Some of the basic approximations and techniques uselne derivation with both terms proceeds in exactly the same
in Refs. 6 and 7 to solve the stationary scattering problem ar@nner and leads to exactly the same expression for the scat-
also applied here. The major difference, however, is that Wéered field. This expression is in terms of the object’s plane

must solve the problem with the time-domain scalar wavavave scattering function for an object with arbitrary bound-

L 57
equation instead of the Helmholtz equation to account foP"Y conditions™™" . . .
motion of the source, receiver, and target. The scattered field from a rigid surface with unspecified

The time-domain scalar wave equation for the total fieIdShape IS

@ with a source functiom(rg,tp) is tt
' o:fo wi10=— [ dty § asy{@r(ro, VG 1o 10

1 PPP(rg,t
Véd)T(ro,to)—;%O)?q(ro,to). M .
° = [“ato § asy{@iro.t0
0

The Green function for the time-domain scalar wave equa-
tion satisfies

V260t 1 °G(r,tlrg,to) 5 St +q>s(ro.to)]VoG(r,tIro.to))- @)
0G(r.tlro.to) =~ 2 Jt2 = or=ro)dt—to). For a steady wave problem, this leads to By) of Ref. 6
(2 directly.
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Ci 12 pi—'—l’ ai—i—~1 t+
Source S Dy(r,t)=— fo dt, ﬂg dsa'([q)i(raata)

%y Yy 2) Sy Py B
. +®(r,,t,) ]V, G(r,tr,.t,) |, (12
Object . . .
*,y.2) M where the surface integral is carried out on the surface of the
e < > * scatterer.
% Py & The incident field induced by a simple-harmonic source
. at frequencyQ) moving with horizontal velocityw, and re-
. z ceived at a point,, on the surface of an object moving with
Receiver horizontal velocityv,, is obtained from Eq(A10) as
e Ci+k’ pi+k’ ai+k
(x,y,2) 1 (=
_ 2 .
Ciriert Piicrr’ Bt (I)i(r(r )= E J; d gig(zu' 120 QO+ gi 'VO)
FIG. 1. Measurement geometry for a submerged object in a horizontally i&-(p2—pO) a—i(Q+ &-(Vg—V, )t
stratified waveguide ensonified by a point source. The coordinate system is xes o fo'e o e (13)
centered at the centroid of the object with positwpointing down. Each ) . .
layeri is characterized by sound spegd densityp;, and attenuatiom; . With the decomposition proposed in E@) of Ref. 7, the
depth-dependent Green function defined in E47) be-

. . _comes
For economy, the notation of Ref. 7 is used here and in

the remainder of this article. Figure 2 of Ref. 7 shows the  g(z_,z,: ;) =A(zy;w;)€ (V24 B(zy; ;) e (@)%
geometry of spatial and wave number coordinates. For ex- (14
ample, the object centroiak the initial location of the object

is at the center of all coordinate systems, as shown in Fig. With the shifted frequency of the incident field

Source coordinates are denoted by,l/q,2), receiver co-

ordinates by X,y,z), and coordinates on the surface of the 0 =Q+§Vo. (15
target by &,,Y,,z,) Where the positive axis points down-
ward and is normal to the interfaces between horizontal
strata. Spatial cylindricald, #,z) and sphericalf(, 8, ¢) sys- r,= rg+vgtg (16)
tems are defined byx=r sinfcos¢, y=r sindsing, z

=r cosf, andp®=x?+y?. Wave number coordinates for the with r° as its initial location at, =0 andv, as its horizontal

incident (i ,&iy,vi) and scattered field &,&,,y) also  velocity. The incident field in Eq(13) then becomes
originate at the target center and are related to polar and

azimuthal propagation angles =&+ £, where

The location of a point on the surface of the target is

1 «© .0 .
Dot = 5 | dPge e v,

&,=ksina cosp, (8)
)@l (&Pt Yi(@)Z,)
é,=ksinasing, 9) X[A(zo;wi)e
. i(frp?; Yi(0))z,)
&,=kcosa, (10) +B(zp; ;)€ 1. 17
2 The spectral representation of Green’s function for the Helm-
k=2 = Y2+ &2 (11  holtz equation in a stratified waveguide is
c .
1 (= .
The superscript 0 is used to denote the initial positions of the ~ G(r|r,;w)= Z—J d?&9(z,z,; w)e' &P Po), (18)
source, target, and receiver, for examplgt)|,—o=x°. T
A. Spectral representation of the Doppler-shifted field Similarly, the depth-dependent Green function in E) is
scattered from a moving target by a decomposed as

simple-harmonic source in a stratified waveguide

A spectral representation for the field from a moving 9(2.2,50)=C(zw)e "W+ D(Ziw)e” M. (19)
source, §cattered by a mO\_/ing target at a moying receiver, _i?he motion of the receiver is expressed as
now derived. The source is taken to be a simple-harmonic
one with frequency, and the motions of the source, target, r=ro+wt, (20
and receiver are all horizontal with constant velocity.

In order to calculate the scattered field, Ef).is applied  wherer? is its initial location at timet=0 andv is its hori-
where the incident field at a poimt, on the surface of the zontal velocity. The Green function for the time-domain sca-
target depends on tinte . The scattered field at the receiver lar wave equation from the surface of the tamggat timet,,
locationr at timet can then be calculated by to the receiver location at timet then becomes
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G(r,t

1 (= ) 1 (= . _ ‘
raita):EJ7 do e_lw(t_tg)z J‘7 d2§e|§'ﬂoe|§‘Vte—I§‘V0-ta—

X[C(Z; )€l (~EPot 71(©)20) 1 D (7: )i~ EPy~ %(@)70)]. 21)
Inserting Eqs(17) and(21) into Eq.(12) leads to the scattered field

® _ 1 ﬁd ds. - E d2£ e 1EP0ei(Q+&(Vo—Vo)t,

X[A(zy: wi)ei(§i'pg+ Yi(wi)zg) 4 B(Zo;wi)ei(ﬁi'ﬂ?ﬁn(wi)z(r)] +dy(r, ,tv)}

” 4 1 (= o .
—lw(t—t,) 2pni&p pi&vta—i&v L,
XV, f_wdwe 5 f_wd gelér'eiéve
X [C(Z; )€l (~£P0t71(©)20) 1 D(7; ) el ~ €00~ mw)zg)]) ] , 22)

whereé&-p+ yz=krn(a,B;60,¢) and
n(a,B;0,¢)=cosa cosf+sina sinf coy B— ¢) (23

is the cosine of the angle between the propagation directip) and field coordinate directiofv, ¢) where the angleg, B
may be complex. Substituting this angular representation intd Z%.yields

Dy(r,t)=— ifﬁdt é das,. ijw d2§.e—i§i'Pge—i(Q+§-(vo—vg))tU
S H 277_ 0 (o8 o 277_ Y i
X[A(ZO;wi)eik(wi)r?’”(ai(wi)’Bi O b) 4 B(zo;wi)eik<wi>r9,n(rai<wi)ﬁi :ef’,,¢f’,)]+q,s(r(r ,t(,)}

XV

o

= . 1 (= o .
f do e_lw(t_t")ﬁ f_ d2§e|§.p e|§-vte—|§-vata

% [C(Z, w)e—ik(w)rgn('n'—a(w),ﬁ;ﬁg,qﬁg)_{_ D(Z, w)e—ik(w)rgﬁ(a(w),ﬁ;9(;,(15(0,)]) ] , (24)

where (@;,B3;) is the propagation direction of the incident When the Mach number of the target motion is small,
plane waves andél,¢°) is the direction ofr?, the initial  the scattered fields on the surface of the moving target
location of a point on the target with respect to the |n|t|alq)s(r0’ki+ :w;) and d(r, ki :w;), which are induced by

2?;':\';{2? the target centroid which is the origin of all co- downgoing and upgoing incident plane waves with unit am-

plitudes, can be approximated as the scattered fields at the
initial locations of the target multiplied by a phase shift fac-
tor e'éVolo that accounts for thegid body translation of the
centroid The scattered field on the object then becomes

For low Mach number motion, the scattered field on the
surface of the object in Eq24) is approximately

D1, t,) ~Dy(r ;)€ it (25)

1 *° . 0o .
R D1y ty)=7—| d?ge 'EPog (2+E(ovots
for a given incident plane wave. The wave number vectors s(foto) 21 f_oc §
for the downgoing and upgoing waves are defined as R

X[A(zg; 0)D(rd k' 1 0;)

[

R
kiJr:§i+’yi’i\zv (26) +B(201wi)q)s(ro-lki ’wi)]' (28)

B R Introducing Eq.(28) into Eg.(24), then leads to the scattered
Ki =&~ vilz. 27 field
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Dy(r t)=—ijt+dt fﬁ ds,- iJw dzé-‘.e_i§i‘P8e—i(Q*'é’".'(Vo—vg))tg
s\t 277_ 0 (o (o 277_ . i
X(A(ZO;wi){eik(wi)rgn(ai(wi),ﬁi ;02,¢2)+(i)s(r21ki+ L))

T B(Ze w ) eK@)r I n(m=ai(@).8:6% 629 4 & (10 K= * -
(zg; wi){€ s(Io K ;0i)})

(o8

. —iw(t— 1 . 100 GEVtA—i&
XVU Jloodwe To(t tg)ﬁjide&@pelgv’[e 1&v,t,

X[C(z:w)e K @rgn(m=a(w) 500,60 4 D (7: w)e-ik<w>r2n<a<w>,5,eg,¢g>]) ] _ (29)

For sufficiently long time duratiom, the integral ovet, introduces the delta functiof(w—Q — &+(vo—Vv,) — &V,,) to the
integrand. Integrating oven then leads to

L (7 e 7 i £l [0+ £ -(Vo—ve) + £Vt
(I)S(rvt) 277_ d §I d ge e
x fﬁdSﬂ'{[A(Zo;wi){eik(wi)rg"(ai(wi)’ﬂi;9g'¢3)+&)s(f2,kr;wi)}

. 0 .,0 ,0 ~ _
+B(2o; ;) {e K@) o mai(@i) Bii05ds) 4 (10 ki s wi)}]

% V,,(C(Z; ws)efik(ws)rgn(wf a(wg),B; 03,4)2) +D(z; ws)eik(ws)rgn(a(ws)ﬁ;f?gtﬁg)) ] , (30)

where the Doppler shifted frequency of the scattered field is(z,z,: ¢, £ wg, w))

={A(Z0; 0))C(Z,we) S(T— a( ws), B; ai( i), B ; W)
+A(Zg; i) D(Z, 05) S a(ws), B; ai( i), Bi s ws)

+B(20; @) C(Z; 05) S(m— a(ws), B; 7~ ai( i), Bijws)
It is important to note that the time d_ependence has been +B(20; 0))D(Z; 09 S w), B; m— i @;), Bi s wg)}.
factored from the surface integral in going from ER9) to
Eq. (30) following our approximation for the assumed low (33
Mach number motion. This means, for example, that the obThe formulation is fully bistatic and incorporates horizontal
ject’s orientation with respect to the incoming and outgoingvelocities of the source, target, and receiver. The source is
waves is not significantly altered for a time period largeassumed to be a simple-harmonic one radiating at frequency
enough compared to the source period for the source to b@, but the received time series will contain multiple fre-
considered harmonic. This is discussed in more detail, foquency components due to Doppler effects. The Doppler fre-
example, in Sec. Il C and Appendix B. quency shifts are indicated in the argument of the complex
We can then express the scattered field in the waveguidexponential function of Eq.32).
in terms of the plane-wave scattering function When the source, target, and receiver are at rest, all in-
S(a,B;ai,Bi;w) of the object. With the aid of E¢(C19), cident frequencies; and scattered frequencieg are equal
Eq. (30) becomes to the source frequencf). In this case Eq(32) reduces to
Eq. (18) of Ref. 7 multiplied by exp{iQt) where reciprocity
for harmonic waves

ws=Q+ & (Vo= Vo) &V, (31)

Or=2 J j Qg (i ) doG(1,/10:0) = d,G(rlr ;) (34
e s was invoked for the incident field and the medium densities
@l E07= &Pl 1[0+ &-(vg—V,) + E(v,—V) ]t do andd,, in the layers of the source and target depth were
assumed identical.
XF(z,29;¢,& 05, 0,), (32 In Eq. (33), all coefficients(A’s andB’s) of the incident

field are evaluated at the incident frequengy, and all the

coefficients of the scattered fie{@'s andD’s) are evaluated
which is an expression for the field scattered by a movingat the scattered frequenay,. The wave number normaliza-
target with arbitrary shape, where tion k~! and the plane-wave scatter functiSrare evaluated

J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003 Y.-s. Lai and N. C. Makris: Dopper field scattered by an object 227



at the scattered frequenay; as well. The equivalent eleva- C. Normal mode representation of the Doppler-shifted
tion anglese; of the incident plane waves are evaluated atfield scattered from a moving target by a _
the incident frequencyw;, and the equivalent elevation Simple-harmonic source in a stratified waveguide

scattered frequencys. target, the scattered field can be well represented as a sum of
B. Spectral representation of the Doppler-shifted field normal modes. The modal representation for the scattered
scattered from a moving target by a source with field with a simple-harmonic source is derived in this sec-
arbitrary time dependence in a stratified waveguide tion.

. o Green'’s function for the time-domain wave equation in a
The Doppler-shifted scattered field induced by a source . . ) .
. . . waveguide can be written as an inverse Fourier transform of
with arbitrary time dependenagt) and frequency spectrum ) :
. : L the modal form of Green’s function for the Helmholtz equa-
Q(Q) can be obtained in the receiver’s frame of referencetion

from Eq.(32) by Fourier synthesis as

1 (= )
1 (= o e 1 G(r,t|r,,t )=—f do G(r|r,;w)e @t
_ 2442 & ’ grto 2 _DO o
R I I I e ™
1 (= .
><ei[§-p0_g-pg]e—i[ﬂ+gi-(vo—vg)-#g-(va—v)]t — 2_j dw e—lw(t—ta)
mJ) -
XF(2,20;¢,& 05, 0)). (35 id
A direct implementation of Eq(35), however, will be XZEm: Unn(Z; @) Um(Z, ;@)
inefficient because the four-dimensional wave number inte- L
grals are coupled with time in the argument of the complex XHG (€m(@)[p—po)). (40)

exponential function and so need to be evaluated at ea%hereu (z:w) and &,(w) are the amplitude function and
individual time instant. Similar difficulties for the passive hOI’iZOﬂtn;J wave num'tT;er of thth mode at frequency. We

problem of modeling propagation from a moving source to & ssume — 5 |>1. and the asvmptotic form of the
moving receiver are discussed in Ref. 4 by Schmidt and Ku En(@)|p=pol>1, ymp

perman. They note that by transforming the Doppler-shiftedzemth-order Hankel function of the first kind is used
field from the “source frequency” to a representation in H5"(£ém(w)|p—py)
terms of the “receiver frequency,” the wave number and
frequency integrations can be integrated independéntly. —+/ 2 el (ém(@)|p—p,| —7l4) (41)
The frequency spectrum of the scattered field in the re- Tém(®)|p— pol '

ceiver’s frame of reference is obtained by applying a FourierFOr a moving target, the horizontal position vecpgris
transform to Eq(35),

pU:p2'+v(ftU

r — * o't
Vy(r,w )_ledtew Wy(r,t) (36) :(pgcos¢gix+pgsin¢giy)
wherew’ is the frequency in the receiver’s frame of refer- (0ol COSPLIx T UL, SiNgiy), (42)
ence. Integrating over introduces the delta functioA(w’ wherepg is its initial position att, =0 andv,, is its horizon-

—Q=§+(Vo—V,) —&(v,—V)) in the integrand. Upon inte- 5] velocity. Similarly, the horizontal position vector of the
grating over (), the frequency spectrum of the Doppler- receiverp is

shifted scattered field in the receiver’'s frame of reference

then becomes p=p°+vt
- w’)=ijw J»w Peste 1 el =(p®cosg’i,+ p°sin¢Ciy) + (vt cosei,+ vt sineiy),
s T)ow) o "k(wy) (43
X Q(w' — &-(Vo—V,) — &(Vy—V)) zv;:g;atg‘.) is its initial position att,=0 andv is its horizontal
XF(z,29;¢,& 0g,0,), (37 For the bistatic configuration used in the scattering prob-

lem, the horizontal range to a point on the target is much

where the shifted frequencies and wg in terms ofw’ are smaller than the range to the receiver so {at<|p|. For

equal to low Mach number motions of the target as in typical sonar
wi= +ENV-V,)+EV, (38)  scenarios, the displacemenigt,| of a target point andivt|
of the receiver are also much smaller thigh so that the
and azimuthal angle of the vectcp°+vt—p?, is approximately
i 0 0
W=+ EV. (39) equal to the azimuthal anglg” of the vectorp” even for a

time durationt so much larger than the source period that the
Equation (37) can be implemented efficiently and directly source can be considered harmonic. An approximation for
without the need for time domain processing. |p—p,| can then be made that
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lp—p,|=|p°+ vt—pg—vgtg| and the incident field are now expressed as a linear superpo-
sition of equivalent plane waves in the layer of the target via

~|p%+vt—pd| —v,t, cod 4%~ ¢,). (443
Similarly, the azimuthal angle of the vectpP—pg is ap- 1 (= (it
- 0 - Grtryty)=—| dwe '@t
proximated asp® becausép,|<|p|. This leads to o) T o |
[p—p,|=p°— Pyl +vt cog ¢°— @) —v,t, cog 47— ¢,). XD [An(r0w)e K@rgn(m=an.¢%05.67)
(44b m
Then sincd p?|<|p°| we have — B, (r%w)e k(@ onlan %00 40)]

. 0 . 0
0 0 X @l ém(@)v cod¢”—o)tg—iém(@)v, o d™— )t
|p=pol=p°—py cog ¢°— ¢o) +vt cod O~ )

—v,t,co8 "~ @,). (449 (46)

Green'’s function for the time-domain scalar wave equa-
tion from a point on the surface of the target at retarded
time t,, to the receiver locatiom at timet then can be ap-
proximated as 1

Di(ry ty)=2

1 o . Uo 0_
G(r,tlrg,tg)=ﬁj_ dwe 1@t t) 1+ mcoi% ®0)

. 0 0.,0 ,0
XLA|(rg; o)) ek@ramter ™= ¢oi05¢q)

y id e"(”"‘)E Un(Z; 0)Up(Z, ;) i o
V8 m VEm(w)p® —By(r3 )@@ o7 w0050,

- 0_ 0 0_,0 .
% @i ém(@)[p°—p, cod "= ¢,)] Xefl(w|+§|(w|)uaCOid)g*:pa))t(,’ (47)

X @l ém(©@)v co8 ¢7— @)tg—iém(w)v, cog 60— o)ty

(45) where Eq.(47) is derived in from Eq(B11), and w, is the
Doppler-shifted frequency of theh mode as defined in Eq.
As in Egs.(41) and (42) of Ref. 6, the Green function (B10). Substituting Egqs(46) and(47) into Eg. (12) leads to

wiro=- 5 [ ot fas,| 3 = A1 ekt m= by
sth 27 )0 1T 1+ [voloP(Q)]cod pd—pp) O

) 0 0.,0 ,0 A 0
_ B|(I’8;w|)e'k(“")rrr”(”7a' T ¢0,0,,,¢{,)]efl(w|+§|(w|)v(,005(%*%))%_,_ d(r, ,tg)}

XV fx dow e 10> [A(r% w)e KorGn(m=an %6,.6))
. >

— B, (1% w)e~ K@ronlam 4%65.0,)|giém( @) °°f‘¢°¢>tei§m(w)v”cowo%)t(r) ] ' 9

For low Mach number motion, the scattered field on the k|_:§|? _ 7|iAz- (50)
surface of the object in EQ.(48) is approximately ’
D(r,,t,)~D(r,;m)e ' for a given incident plane

wave. We define the wave number vectors for the downgoing

and upgoing waves for thigh mode as
The scattered field on the surface of the target given in Eq.

(48) can then be represented in terms of downgoing and up-
going plane incident waves with unit amplitudes

k|+=§|iAp+7|Tz, (49 <i>5(rg,k|+ o)) and&)s(r(,,kf ;w)), respectively, via
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—iaqtu. R R
O, t)= ° [A(rS o) (r o ki 10— By(rS ) Doy ki )], (51)

| Uo 0_
1+ 25 cod o~ o)

Just as in the derivation for the spectral representation, in Sec. Il A, approximations are médgérf,quf’ ;w)) and
D(r,,K ;) that account for rigid body translation. Equati¢si) then becomes

1 . 0
<I>s(ra,ta)=2 e i@+ §(0)v, cod¢g— )ty

. 0
U—IG@COS{% ®0)

XA o) Do(r0 ki o) — B (1S o) (1% ki ;o). (52)

g’

When this is inserted into E¢48) the scattered field takes the form

e (1 &(0)v, oL b~ ety

1 (o 1
<I>S(r,t)=—ﬂfot dt, f}g dsg-[E

T 1+ [volv(Q)] cos g — ¢o)

. 0 0.,0 ,0 oy
) (Al<r8;wl>[e'k<w'>rv”<“' Tl D K )]

. 0 0.,0 .0 o _
—By(rg; )[4 T b0 00 b 1 (1 K ;w|)])

XV, J " doe @S [AL(r%w)e KO0 an. %660 _B_(10; ) e K nlam 4% 60,401
o =
X gl ém(@)v cos¢°<p>tei§m<w>vr,cos(¢°«»,,)t(,) J _ (53)
|
For sufficiently long time duratiot, integration ovet, in- dh(w) dém(w) o
troduces the delta functiod(w— o, — & (w)v, COSEI— ¢,) do 1 4o UoCodd—o,)

— & (w)v,, cos@’— @,)) to the integrand.

In order to integrate ovew®, we need to solve the tran- _ U, o
scendental equation for the arguméilitv) of the 6 function =1- Uﬁ(w) cod¢"— ¢y, (59
h(w)=0— o~ &(o)v, cog g~ ¢,) wherev$(w) is the group velocity of therth mode at fre-

_ 0\ guenceyw. For low Mach number motions, E(G5) is close
Em(@)v, COL "~ @y) =0. (59 {0 unity, so thah(w) is nearly linear around the roots of Eq.
Equation(54) can be solved numerically. However, an (54). Using the Newton—Raphson method with the frequency
approximation that can be evaluated analytically is desiredw; as an initial guess, the first iteration yields a reasonably

The derivative oth(w) with respect tow is accurate solution of Eq54) as
h(w) &(@)v, Co8 po— @) + Eml@))v, COL 30— ¢,)
wm’|=w|— m:(m v y (56)
- —+—cog ¢°— ¢,
vs](an) P —9,)

wherev S](w|) is the group velocity of thenth mode at frequency, . Herew, | is the doubly Doppler-shifted frequency with
respect to théth incident mode and thenth outgoing mode. Using the property of t@dunction for any functiond, h [Eq.
(9.6) in Ref. 2] it must hold that
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, (57

fw f(w)o(h(w))dw=| 7

=w*

wherew* is a zero ofh, i.e.,h(w*)=0. Integrating ovew gives

1 1
1+ [vg/vP(Q)] cod d3— @o) 1— [v,/v5(wm))] cOd 6°— ¢,)

. 0 0.,0 ,0 ~
X (A(rd; op[ekenrontan 00040+ D (12 k' w))]

<Ds(r,t)=—2 % ffdsg-

. 0 0.,0 ,0 -~ _
—By(rg; o[t Tman T b+ D (rg K w)])

XV,

o

([Am(ro;wmyl)e—ikwm,nrﬁnw—am,¢°;02,¢2>_Bm(ro;w)e—ikwm,.)rﬁln(am,¢°,03,¢2>]
X @~ (©m1 = &m(0m v cos¢°¢))t) ] _ (58
With the aid of Eq.(C19), the scattered field can finally be written in terms of the scattering function of the target as

1 1 1
k(wm,l)

c1>s(r,t)=4w§l‘, >

m 0 Uy

_UYo 0_ __ Yo o_
1+U|G(Q)COS(¢0 ®o) 1 vﬁ(wm,l)cos(¢ ®s)

XLA(rg; @) A(r% om ) S(7— am(@m,), 6% ai(@), 7= ¢ om,)
—A|(I’8;w|)Bm(rO;a)m'|)5(am(a)m'|),¢0;a|(w|),77— ¢8;wm,l)
- Bl(rg;wI)Am(ro;wm,l)S(W_am(wm,l)vd)o;ﬂ'_ a)(w)), = ¢8;wm,l)

—i(wm|— w v 0_
+Bl(rg;wI)Bm(rO;wm,l)s(am(wm,l)ld’o;ﬂ'_al(wl):'ﬂ_(bg;wm,l)]e H(@m, = mlwm,)v cosé <P))t- (59)

When there is no motion of the source, target, or reswhere®d(r,t) is given in Eq.(59).
ceiver, all the incident and scattered frequencies are evalu-

special case Eq51) of Ref. 6 multiplied by exp{iQt). because the modal summation needs to be evaluated at every

If the number of modes that truncates the modal sumtime instant. Just as in the spectral representation of the scat-
mation excited at the source frequen@yis N, this same tered field from a source with arbitrary time dependence,
number can be used to truncate the incident and outgoingansformation to the frequency spectrum in the receiver’s
modal summations for low Mach number motions. The totalframe of reference can speed up the computation signifi-
number of discrete frequency components will then becantly.
roughly N? due to the coupling between incident and scat-

tered modes at the target. Applying a Fourier transform to Eq60) is not de-

sired because both shifted frequencigsand w,, of the

) ) incident and scattered field are approximations obtained
D. Normal mode representation of the Doppler-shifted .
field scattered from a moving target by a source by the Newton—quhspn method m_ terms of the' sogrce
with arbitrary time dependence in a stratified frequency Q). A derivation for the shifted frequencies in
waveguide terms of the receiving frequency’ based on those ap-
proximated values will give inaccurate and complicated
results. Therefore, the frequency spectrum in the receiver’s
frame of reference needs to be derived from intermediate
expressions for the incident field and scattered field before
>}he approximations by the Newton—Raphson method are
made. The derivation is lengthy and is given in Appendix D.
L With the aid of Eq.(C19), the scattered field of EqD14)
‘I’s(fvt):ﬂf_wdﬂ Q(Q)Dy(r 1), (60) :Sexpressed in terms of the scattering function of the target

For a source with arbitrary time dependerg@) and
frequency spectrun®(€2), the normal mode representation
of the Doppler-shifted scattered field can be formulated b
Fourier synthesis as
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Qim 1 1
EQ(I)

m Klom 1- ———cod % ¢) 1+ —5—2—cod B3 ¢y)
oo 3T A Sy NP0

XA 0] AR 0 S(T— an(wh), ¢% a( ] ), 7= g wf)
—A(rd; 0 ) Bm(r% o) S(am(w)h), % a(w] ), 7= ¢ 0l

—Bi(13; 0 mAn(r% o) S(T—an(w), % 7= ay( 0] o), 7= 3 0})

«Irs(r,w'):4w2

+Bi(r3; @] m)Bm(r% o) S(am(wp), ¢% 7= a(w] 1), 7— ¢g 0], (61)

where the frequency of the source spectrum is with carrier frequencyf,=200 Hz,t;=1s ando=0.1s. Its
, , frequency spectrum is
Y= 0]t &(0] Vo COL GG~ o). (62  reduency sb

Equation (61) can be implemented efficiently and di-

rectly without the need for time domain processing. 2 2
Q(f ):e—(1/2)0' [2m(f—f¢)] e|277ft0_ (64)

1. ILLUSTRATIVE EXAMPLES
_ o _ B _ The amplitude and phase of the time series of the source
Equation(61) is implemented with a modified version of gemodulated by the carrier frequenty=200 Hz is shown

the normal mode COdRRAKENC. The formulation is fully  , Figs. 2a) and 2b). The frequency spectrum of the source
bistatic and incorporates the motion of source, target, an% shown in Fig. 2)

receiver. For simplicity, only monostatic configurations are
illustrated. These have the strongest Doppler frequency shifts
when only the target is in motion and the source and receiver
are at rest.

The source function to be used in all examples is a
Gaussian modulated wave form
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Frequency (Hz) FIG. 3. The magnitude of the free space plane-wave scattering function

S(0=90°,8=¢;a;=90°,8,=0°) for (@) a pressure-release sphere with
FIG. 2. Plot(a) and(b) show the amplitude and phase of the source func-ka=12 at 200 Hz andb) a pressure-release circular disk wkh=12 at
tion, demodulated by the 200 Hz carrier frequency, versus time. (BJot 200 Hz. The incident wave is parallel to the disk’s surface normal, i.e., at
shows the magnitude of the frequency spectrum of the source. broadside to the disk.
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FIG. 4. Measurement geometry for object scattering in a Pekeris waveguide.
The source and receiver are collocated at a depth of 20 m, and the centroid
of the target is at a depth of 50 m.

All time series illustrations in this paper follow the same
convention used in Figs.(® and 2Zb). They show the mag-
nitude and phase of the signals demodulated by the carrier
frequency at 200 Hz. The phase is only shown at times when
the signal amplitude is not negligibly small. All horizontal
axes of time series plots in this section are labeled with “re-
duced time,” which is the actual time minus the round-trip
horizontal range divided by the sound speed.

Two types of targets are used as to illustrate scattering
characteristics, including a pressure-release sphere and a per-
fectly reflecting circular disk which both hakea= 12 at 200
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FIG. 6. The scattered field and its scaled phase rate for the Gaussian modu-
lated source. The bottom type is silt. Source and receiver are colocated at
20-m depth with 50-m target depth. The horizontal range of the target is
2000 m from the source. The object is a pressure-release spheae-P at

200 Hz. The dashed curves are for a stationary target. The solid curves are
for a target moving toward the source at 10 m/s. P{atsand (b) show the
amplitude and phase of the time series demodulated by the 200 Hz carrier
frequency. Plot(c) shows the scaled phase rate of the demodulated time
series Eq(65). Plot (d) shows the frequency spectra.

Hz, wherea is the radius of the sphere and disk. The free
space plane wave scattering function of the sphere is given in
Eq. (A2) of Ref. 7. The scatter function of the disk is given

in Ref. 14. Figures &) and (b) show the magnitude of the
scatter functions versus scattering angle for the sphere and
the disk, respectively. The incident wave is parallel to the
disk’s surface normal, i.e., at broadside to the disk.

Before illustrating the problem in a waveguide, ex-
amples of object scattering in free space are shown for com-
parison. The measurement geometry is the same as that
shown in Fig. 4 but without the waveguide boundaries.

A monostatic sonar with collocated point source and re-
ceiver senses a pressure-release sphere keithl12 at f,
=200 Hz. The sonar and target are in water with a sound
speed of 1500 m/s, and they are initially separated by 2000
m in the horizontal and 30 m in the vertical. Equati@i18)
is used to perform the simulations. The dashed curves in

FIG. 5. The scattered field and its scaled phase rate for the Gaussian modE—igS- Fa) and Kb) ShQW the amp“tUde an(_j phase of the
lated source in free space. The object is a pressure-release sphere @@modulated time series of the scattered signals from a sta-
ka= 12 at 200 Hz. The dashed curves are for a stationary target. The soliionary target. The dashed curve in Figdbshows its fre-

curves are for a target moving toward the source at 10 m/s. @losnd(b)
show the amplitude and phase of the time series demodulated by the 200

\Juency spectrum. Since free space is nondispersive, and the

carrier frequency. Plotc) shows the scaled phase rate of the demodulatedSCatter function is nearly constant over the frequency band of

time series from Eq(65). Plot (d) shows the frequency spectra.
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the source, the received wave form appears effectively as a
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FIG. 7. Same as Fig. 6 except bottom type is sand. FIG. 8. Same as Fig. 6 except bottom type is limestone.

true value of the radial velocity of the targets, 0 m/s and 10

scaled and time-shifted version of the transmitted signal
m/s for the examples shown.

with negligible spectral distortion. The time series after de- 0l _ | f thi ) |
modulation and the spectrum of the field scattered from a !N @l lllustrative examples of this section, a water col-

sphere moving at 10 m/s toward the source are shown as " of 100 m depth is used to simulate a typical continental
solid curves in Figs. &), 5(b) and §d). It can be seen that shelf environment. The density of the water is 1000 Kg/m

the free space Doppler-shifted spectrum can be very closel he §(gund speed i_s 150_0 m/s, and the attenuatiqn is 6.0
107> dB/\. The simulations are performed over different

approximated by a translated version of the stationary spec- :

trum since negligible distortion is introduced by the DopplerSeabed types to |IlustraFe the dependence of the Doppler ef-

shift, dynamical factors described in Appendix C, and scattef€ctS 0n bottom properties. All seabeds are modeled as half-

function over the frequency band of the source. The phasgPaces. The source and the receiver are collocated at a depth

angle versus time in Fig.(B) shows that the phase is nearly of 20 m without motion, and the centroid of the target is at a

a constant versus time for a stationary object. For the moving€Pth of 50 m. _

target, the phase angle is decreasing with respect to time ata ' /rst. We show how different bottom types affect the

constant rate, which represents a single frequency shift in20PPIer shifts. Sand, silt, and limestone are used as the ho-

duced by the target motion. mogeneous material of the.bottom half-space. The d3en3|ty,
The frequency shift is linearly porportional to the radial sound speed, and attenuation are taken to be 1900°kg/m

component of target velocity in free space when the scatteI:L7OO m/s, an_d 0.8 dis/for .sand, 1400 k_g/r?n 1520 m/s, and

ing funcion of the target does not vary significantly versusC-3 dBA for silt. The density, compressional speed and shear

frequency within the band of the source. Active sonar andP€ed Of limestone are 2200 kgin2500 m/s, and 800 mis,

radar systems in free space typically take the scaled phaggspectively. The _attenuation coefficient_s are 0.1 and 0.2
rate dB/\ for compression and shear, respectively.

A silt bottom is used for the simulations in Fig. 6. A
pressure-release sphere with=12 at 200 Hz is used as the
u( __L@ (65) target. The dashed curves in Figga)oand &b) show the
4mf, dt amplitude and phase of the demodulated time series of the
scattered signals from a stationary target, and the dashed
as an estimate of the target’s radial velocity whérg&) is  curve in Fig. §d) shows its frequency spectrum. Both the
the phase angle of the sonar return after demodulation by themplitude of the time series and frequency spectrum appear
carrier frequency. The dashed curve and the solid curve ito be Gaussian, which indicates that the dispersion due to
Fig. 5(c) show that the scaled phase ratét) matches the multipath effects in the waveguide is weak for this type of
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FIG. 9. Same as Fig. 6 except the bottom type is sand and target velocity i5IG. 10. Same as Fig. 6 except the bottom type is sand and target moves
changed. The target is moving toward the source at 5 m/s. away from source at 10 m/s.

bottom. The scattered field is dominated by the lowest ordewhen the sphere is stationary. We see that the time series has
mode. The solid curves in Figs(éd and 6b) show the re- not only the arrival from the first mode but also the late
ceived time series scattered by a sphere moving toward tharrivals from the higher order modes with slower group ve-
source at 10 m/s, and the solid curve in Figd)éshows its  locities. This indicates that the dispersion is much stronger
frequency spectrum. The shape of the time series still lookfor a sand bottom than a silt bottom. The received signals
Gaussian, and the arrival time is slightly earlier than thefrom a moving spherésolid curves in Fig. @)] show that
stationary case due to the shortening of the horizontal disaot only the first arrival is earlier than in the stationary case
tance. The frequency shifts due to Doppler effects can béut the contributions of the higher order modes are also dif-
observed in the solid curve in Fig(d. The spectrum also ferent. From Fig. @), we can see that the spectrum of the
looks Gaussian but is shifted with the frequency shift of thestationary casédashed curveis distorted due to multimodal
first mode, which is close to the frequency shift of the scat-effects. The shifted spectrugsolid curve is also distorted
tered field in free space. Similar to the examples for freeand is not simply a translated version of the stationary spec-
space, the phase versus time shown in Fip) & nearly a trum (dashed curve This is because the lower order modes
constant for the stationary target, and the phase is changirttave larger frequency shifts than the higher order modes so
at nearly a constant rate for the moving target. Applying Egthat energy is nonuniformly shifted across frequency. The
(65), the scaled phase raje(t) is calculated for both the phase of the demodulated time series in Figp) 8hows that
stationary and the moving targets and is plotted as the dashéle phase angle versus time for the stationary ta(iadgthed
and the solid curves in Fig.(6), respectively. Because the curve varies slowly but is no longer nearly a constant like in
sonar return is not significantly distorted by the multimodalfree space and for a silt bottom. This is because of the higher
dispersion and Doppler effects, the scaled phase rate is closeder modes introduce different phase changes. The phase
to the target’s true radial velocity for both the stationary andchange versus timésolid curve is not changing at a con-
the moving target. This indicates that the scaled phase ratgant rate as in free space or for a silt bottom. The higher
w(t) in EqQ. (65) can be used to estimate the radial velocity of order modes introduce multiple Doppler shifts and alter the
targets for this particular scenario of a weakly dispersiverate of phase change. Figur&)yshows the scaled phase rate
waveguide. w(t) of the demodulated time series calculated by 6&&).
Figure 7 shows demodulated time series and frequencyhe dashed curve is for the stationary target and the solid
spectra for a sand bottom. The same spherical scatterer ¢sirve is for the moving target. The strong late arrivals in the
used as in Fig. 6. The dashed curves in Fi@) and 1b) received field shown in Fig.(@) introduce significant distor-
show the amplitude and phase of the demodulated time seri¢®n of the phase angle in Fig.() and make the scaled
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FIG. 11. Same as Fig. 6 except the bottom type is sand and the target is 5{G: 12. Same as Fig. 6 except the bottom type is sand and the target is a
3000 m horizontal range from source/receiver. perfectly reflective disk wittka=12 at 200 Hz.

phase rates in Fig.(@ inconsistent with the target’s true 8(c). As in the waveguide with a sand bottom, rapid changes
radial velocities. Even if the target is not moving at all, aof scaled phase rate occur making it differ by more than 10
rapid change occurs in the scaled phase rate when a stromg's from the true value of the target’s radial velocity. All
late arrival corresponding to a higher order mode with slowethese results indicate that the Doppler shifts in the scattered
group velocity arrives. The difference between the scaledield are highly dependent on the ocean environment.
phase ratew(t) and the target’s true radial velocity can be Since Doppler effects are a function of target velocity,
greater than 10 m/s when a strong late arrival is receivedarget velocity may be estimated by measurements of Dop-
This example shows that when the sonar return is signifipler shifted fields given a known source function and wave-
cantly distorted by multimodal effects, the scaled phase ratguide environment. The sensitivity of the Doppler shifted
w(t) in Eq. (65 cannot be used to reliably estimate the tar-field to variations in target velocity then becomes an impor-
get’s radial component velocity. tant factor. To investigate this issue, consider again the case
Limestone bottoms typically have relatively low attenu- of a sand bottom with a spherical target as in Fig. 7, but now
ation, support many higher order modes and so lead to highlwith the target moving toward the source at 5 m/s rather than
dispersive shallow water propagation. As shown in the red10 m/s. Figure 9 shows the time series and spectrum of the
ceived field scattered by a stationary sph@tashed curvgs resulting scattered field, where the solid curve in Figl) %
and by a sphere moving at 10 m/s toward the sogsoid the Doppler shifted spectrum. As expected, the dispersive
curves in Fig. 8(a), several late arrivals are present with long effect in the time series and the frequency shift in the spec-
time delays induced by the higher order modes. The highlyrum is smaller for reduced target speed. The phase of the
distorted spectra for a stationary sphere and a sphere moviriemodulated time series for the target moving at 5 m/s also
toward the source at 10 m/s are shown in Figl)8Again,  changes slower than when the target is moving at 10 m/s as
the Doppler-shifted frequency spectrusolid curveg is not  shown in Fig. 9b). These effects are significant since the
simply a translated version of the stationary spectrunreduction in time spread of the higher order modes is on the
(dashed curve Figure 8b) shows that the phase changesorder of tenths of a second and the frequency spectrum is
significantly versus time due to the multimodal effects eversignificantly altered over the entire bandwidth of the signal.
if the target is not moving. While the target is moving, the When the target is moving away from the source, the Dop-
phase change is complicated due to the multiple Dopplepler frequency shifts are negative. To illustrate this, Fig. 10
shifts. The scaled phase ragi€t) of the demodulated time shows the time series and spectra for the scattered field from
series in Eq(65) for both the stationary and moving target a sphere moving away from the source at 10 m/s, where the
are shown as the dashed curve and the solid curve in Fidpottom type is sand as in Fig. 7. The first arrival for the
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Feo @ ‘ ‘ ‘ ] scattered field from a stationary disk and a disk moving to-
3 ward the source at 10 m/s. These time series are also much
%;40 less dispersive than the scattered field from a spherical scat-
=50 terer. The unshifted and shifted frequency spectra in Fig.
5 13(d) are both less distorted than the spectra with a spherical
% scatterer in Fig. &l). This is because scattering from the disk
1805 is much Stronger in the specular dirgction than the other di-
rections. Figure ®) shows the magnitude of the free-space
20 plane-wave scattering function of the circular disk. Compar-
o ing Figs. 3a) and(b), we can see that the scattering function
-90 of the sphere does not vary too much near the specular re-
-180 flection direction. This leads to relatively uniform coupling

0 o5 L L5 2 25 between different modes of the incident and scattered field.
© On the other hand, the disk is highly directional near the
| specular reflection direction and gives strongest coupling be-

Scaled Phase Rate (m/s) Fhase angle (degrees)

18 tween a given mode of the incident field and the same mode
~10 of the scattered field, i.e., diagonal terms of a coupling ma-
-20- 1 trix. Since higher order modes attenuate more than lower
3005 1 15 2 25 13 order modes and the coupling term between a lower order
920 Reduced time t-t/c (s) mode and a higher order mode is weaker, the received signal
=7 @ is dominated by the lower order modes of both the incident
3 and scattered field from the disk. Time-frequency spreading
310 is also significantly weaker than for a spherical scatterer.

% It is not always true that the scattered field is stronger
5 ? ‘ o when the target is moving toward the source than at rest in a
90 195 Frequgggy (H2) 205 210 waveguide. For a moving source in free space, the sound
field in the forward direction is always more intense than that
FIG. 13. Same as Fig. 12 except the bottom type is limestone. in the back direction because of the fadttr- M cosé] * in

pressure, which accounts for free-space dynamics, wiere

moving target in Fig. 1@) arrives slightly later than in the IS the Mach number _and i.s the angle_ betwegn the direction
g farg 9. 1& gnty f motion and the direction of the field poifitn a wave-

stationary case because the target is moving away from the | o .
source. The negative frequency shift is significant, and on thgwde, although there are similar dynamical factors
order of the signal bandwidth, as is evident in the spectrum -1
in Fig. 10d). The negative frequency shift is also shown as
the positive rate of phase change of the solid curve in Fig.
10(b). On the other hand, the rate of phase change is negative U, 0
for a target moving toward the source and receiver. N mcos{q& ~¢0)
The next example illustrates Doppler effects at greater ' )
target ranges. Using sand as the bottom type and the sphdfe th€ modal expression of ES9), they are so close to
at 3000 m initial range from the source, the time series!Nity for low Mach number motions of the source and target,
[dashed curves in Fig. (4] is dispersed less than the respectlvely, gnd are not the domlpant facftors forthg changes
dashed curves in Fig(& where the horizontal range is 2000 of signal amplltudes. Ina ngeQU|de th_e_ field magnitude can
m. The scattered field from a target moving toward thelluctuate rapidly as a function of position, frequency, and
source at 10 m/Esolid curves in Fig. 14)] is also dispersed waveguide env!ronm_ent_due to qual mterferencej The ob-
less than those in Fig.(@. This indicates that Doppler ef- served flyctuatlons in field magnitude of thel various ex-
fects are highly dependent on the measured geometry. amples given are dpmmated by such changes in moda_l |.nter-
A perfectly reflecting circular disk facing the source ference as a fu_nct|on of frequency .due to_ Doppler shifting.
with the same radius as the spherekaf=12 at 200 Hz is O €xample, Fig. @) shows that with a silt bottom and a
used to illustrate variations in the scattered field for flat ver-{argét moving toward the source, the scattered field is actu-
sus rounded targets. A sand bottom as used in Fig. 7 is alYly weaker than the scattered field from a stationary target

used in Fig. 12. Figures 1@, 12(b), and 12d) show the because the modal interference with Doppler shifting is more

scattered field from a stationary disk and a disk moving to-destructive than without.

ward the source at 10 m/s. With the same measurement ge-

omgtry_anq 2000 m as the initial h(_)rlzontal distance, the tim&\, conCLUSION

series in Fig. 1@) appear to be dispersed far less than the

time series in Fig. (&). The unshifted and shifted frequency Analytical expressions for the three-dimensional field

spectra of Fig. 1@l) also exhibit this phenomenon. The samescattered by a moving target from a moving source to a mov-
measurement geometry and scatterer is used in Fig. 13 birtg receiver in a general horizontally stratified ocean wave-
with a limestone bottom. Figures 3 and 13b) show the guide are derived from first principles using the time-domain

1+ 52— cos 2~ o)
V| () 0

-1
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formulation of Green’s theorem. Spectral and modal repre- fo=f8+Voto, (A1)
sentations of the Doppler-shifted scattered field for a simple
harmonic source and a source with arbitrary time dependenq;ehererg is the initial location of the source &=0 andv,
are obtained. The expressions are valid when the source aigl its horizontal velocity. For simple-harmonic radiation at
receiver are sufficiently far from the target that multiple scat-frequency(), the source function(rs,to) is
tering between the target and waveguide boundaries can be
neglected and the scattered field can be expressed as a linear q(r,tg)=e " 08(rs—r5—voty). (A2)
function of the target’s plane wave scattering function. The
source, target, and receiver are assumed to move horizontallyhe location of a moving receiver is denoted by
with low Mach numbers, as is typical in many active sonar
scenarios. r=ro+wt, (A3)

The modal representation has a compelling physical in-
terpretation exhibited by the fact that a simple harmonicwherer? is the initial location of the receiver &0 andv is
source that excitesl modes in the Wa\/eguide, for examp]e, its horizontal VE|OCity. After Changing the variables of inte-
will excite roughly N? distinct harmonic components in the gration in Eq.(5) from rq to rg andV, to Vs, and applying
scattered field due to coupling between the incident modeEd. (A2), Eq. (5) becomes
and the scattered modes. The spectral representation, how-
tez;/rzre,}tis more general and can be used at closer ranges to the @ (r,t)= ft+dt0G((r°+vt),t|(r8+v0t0),to)e‘““o.

. 0

Simulations show that Doppler shifts induced in the (A4)
scattered field by target motion are highly dependent on the
Waveguide environment' target Shape’ and measurement &reenls function for the time-domain scalar wave equation
ometry. For a highly dispersive waveguide that support®f the waveguide can be obtained by applying an inverse
many trapped modesl the frequency Spectrum of the fie'EOUrier transform to Green’s function for the Helmholtz
scattered by a moving target typically exhibits significanteduation at frequency,
distortion compared to that of a stationary target or the same
tgrget moyir_lg in_ free space. Round_ed scatterers with r_ela- G(r,tlro,to)=ifx G(rlrgw)e " Wdw,  (A5)
tively omnidirectional scattering functions, such as spherical 2
scatterers, have greater coupling between incident modes and
scattered modes than flat objects that scatter strongest in thiéhere the spectral representation of Green’s function for the
specular direction. The scattered field from an object in aielmholtz equation of a stratified waveguide is given by
multimodal waveguide tends to suffer greater dispersion as

i 1 (= .

mgrfrgjri;?difggggzarlr.\ore rounded and the scattering becomes G(rlrew)= = f_mdzfig(z,zo;w)e"fi'“"‘"o). (A6)

It is noteworthy that when the target, source, or receiver
are moving, the scattered field no longer obeys reciprocity, a¥he depth dependent Green functigfz,z,; ») in Eq. (A6)
is evident in our present formulation. The concept of a time4s defined as
reversal mirrot ! therefore is not directly applicable under
motion of the target, source, or receiver. This is true in both 1
free space and in a stratified medium. 9(2,29;0) = ﬂf

A new derivation for the Doppler shifted field radiated to
a moving receiver from a moving source in a stratified me\yherep’ = p— p,. With this Eq.(A5) can be expressed as
dium that proved advantageous in the present work is also
presented. The new modal formulation is more accurate than 1 (= _
previous formulations, since for example, it accounts fo@(f,t|ro,to)=zj dwe '@t
variation in mode shape due to Doppler shift. o

dp'G(rlrgw)e 5%, (A7)

1 (= |
Xﬁj d?£9(z,2;w)e'& PP (A8)
APPENDIX A: SPECTRAL REPRESENTATION N
OF THE DOPPLER-SHIFTED FIELD RADIATED
BY A MOVING SOURCE TO A MOVING RECEIVER
IN A STRATIFIED WAVEGUIDE

After inserting Eq.(A8) into Eq. (A4), the incident field
becomes

Aspectral representation for the wave field i_nduced by a ()= ifﬁdt 1 foc doe-1oti0- 010
moving source and measured at a moving receiver has begﬁ' ’ 27 Jo - 02w ) .
presented in Ref. 4. An alternative derivation utilizing Eq.
(5) is presented here to represent incident fields in the scat-
tering problem. The result is consistent with prior research
but is better suited to the problem at hand.

The location of a moving source is denoted by For sufficiently long duration, integration ovet, leads to

Xfx dzgig(zyzo;(l))eigi'(po+wfpgfvoto)_ (Ag)
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|Po— Pol=~po— P COL Y~ B2) +voto COK g — @)

—v,t, COL P~ ¢,), (B4)

as in Eq.(440¢. After substituting these expressions in Eq.
(A5), Green’s function for the time domain wave equation of

1 (= .
=5 f_ d2£9(z,29;Q + &+v) the waveguide becomes
G(ro'vto'|r01t0)

1 (= ) e
(I)i(r,t): % J,xdwe_lwtj,xdzfiﬁ(w_ﬂ_fi'VO)

X (2,205 )6 0710

><ei§i'[p°—ﬂg]e_i(Q+‘§"(V°_V))t, (A10) 1

. id
which is consistent with Eq14) of Ref. 4. =_— dwe '@t td——gI(74
ql4) o ) B

U(Z,; 0)ui(zo; @)
APPENDIX B: NORMAL MODE REPRESENTATION X2 -
OF THE DOPPLER-SHIFTED FIELD RADIATED ! Vé(w)po
BY A MOVING SOURCE TO A MOVING RECEIVER _ _
IN A STRATIFIED WAVEGUIDE X gl (g o5~ I lgifi(w)uo cos 45 ¢olto

The incident field from a moving source at a moving X @ (@)vy COtB5— 0oty (B5)
receiver is derived with an alternative modal method andSimilarly
compared with prior results of Ref. 3. '

Green’s function for the Helmholtz equation of the 1 ® et aie—O)t
waveguide can be expressed in terms of normal modes by bi(ry tp)= o fo”dtoﬁxdwe Coete o

the incident field in Eq(A4) becomes

id .
G(rylroi0) = 7 2 Ui(2y;0)uy(20;0)HG (&(w) [ p = pol) L R Ui(Zg ;) Ui(2o; )
_ V8 T Va(weg
. id e,i(ﬂ./4) U|(ZU.;C())U|(ZO;(1)) ) 0 o o 0
J8r T J&(0)p,—pol X elfllpory 050 40))
% el é1(0)po=pyl (B1) % gl i()vg cos dg—eo)to
We take the receivep,, to be a point on the target for con- Xe—ia(w)vocowg—%)ta_ (B6)

sistency with the derivation of the target scattering problem. o ) _ )
For a moving target, the horizontal position vecigy of a For sufficiently long time duration,,, the integral ovet,

point on the target is can be approximated as

=g° °° , id :

Ps pu-"‘Vu—tu— (I)i(raita):f dwe_lth e—|(7r/4)
= (p% cospli+ p% sin ¢y o V8w
+(va't(rCOSQDUiX+vUtUSinQDo’iy)! (BZ) ><2| 5(&)—Q+§|(0))UO Cog(ﬁg—(po))
wherepﬁ’r is the initial horizontal position at,=0 andv, is
the horizontal velocity of the target point. Similarly, the hori- u(z,; 0)u(zg; )
zontal position vector of the moving sourpg is X Je(@)pl
0

0
Po=PotVolo
= (pg cosegix+ pg Sindoiy)

+(Uot0 COS(PoiX+ Uoto Sin(poiy), (83)

@l é1(0)pg—py cot ¢~ )]

X @ (@), 001¢8—¢0>ta. (B7)

0. o _ N _ In order to integrate ovew, we need to find the value @b
wherep” is the initial horizontal position &,=0 andvo is  that makes the argument of ti#gfunction zero. It is a tran-

its horizontal velocity of the source. _ scendental equation im that cannot be solved analytically
We assume the horizontal ranggof the source is much 0
larger than the range to the target pojnt. In the present h(w)=w—Q+§(w)vocog ds—@o) =0. (B8)

formulation, the displacements due to motion are assumed tpaking the derivative ofi(w) with respect tow yields
be much smaller thap,. This is typically a good assump-

tion for low Mach number motions of the source and target dh(w) _ dé(w) vocos - oo)

even after they have been operating after many periods of the  dw deo ° 0™ %o

simple-harmonic source, i.eg, t,>2m/). Therefore, the

azimuthal angles of the vectop§+voto— p, andpy— pf; are —1+ 2 cod 40— ¢p), (B9)
approximately the same. An approximation can then be made v (w)
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Wherevf(w) is the group velocity of théth mode at fre- The scattering of plane incident waves from a target
guencyw. For low Mach number motion of the source, the moving in free space can be formulated using Green’s theo-

term rem for the time-domain scalar wave equation, described in
v Eq. (12.
———cog ¢3— @) The location of a point on the surface of the target is
vy () denoted by
is much smaller than unity. Therefore, the change of slope of o
h(w) is small for a small change ab and the Newton— re=retr, (CI)

Raphson method with only a single iteration gives a reason-
ably accurate solution for EqB8). Using the source fre- Wherer is the centroid of the object with elevation angle
quency() as the initial guess, the first iteration of Newton— and azimuthal anglé. . The surface point, relative tor is
Raphson method yields denoted by the relative position vecto] with elevation
0 angleag and azimuthal angldf’, with respect to the object’s
w=0— h(®) —0— £1(€1)vo cOs do— o) . (B10) centroid. Since the shape of the object does not change and
h'(Q) 14 Do 0 the motion is assumed to be irrotationd), 6%, and ¢2 are

uF Q) cos éo~ ¢o) all independent of time. By defining the cosine between di-

rections(a,B) and(6,¢) as

The horizontal wave numbej and the group velocityuG of
the Ith mode are both easily evaluated at the source fre-
quency(). With the property of thes function in Eq.(57),
the incident field in Eq(B7) becomes

n(a,B;0,¢p)=cosa cosf+sina sindcogd B—¢) (C2)

an incident plane wave with unit amplitude and frequeagy
1 can be expressed as

id ,
Di(ry ty)=——=e ("
V8 I Uo -

0_ Di(r, t,)=elkiTeeits]
Cco ilgsto
U|G(Q) Lo~ ¢o)

= @llki-(re 1)~ wity]

1+

U(Z, s 0)ui(Zp; )

VE(w)pd

@l €1(@[pg—por cos ¢g— bo)]

:eiki-rceikirgrl(ai \Bi ;03,¢g)e—iwita, (C3)

wherek;=w;/c. Green’s function in free space can be rep-
resented by an inverse Fourier transform of Green’s function
- ilo+&(w)v, cot 8- oyt (B11) for the Helmholtz equation via

This expression accounts for the changes in mode shape due 1 (= R
to Doppler shifts in frequency that were not considered in G(r,t|fmta):EJ_DOG(WU:w)e it l)dw,  (C4)
Ref. 3. An additional amplification factor

Vo o -1 where Green'’s function for the Helmholtz equation is
1+ U_GT)COS(%_ ®0)

) l o 1 1 eik|r—r(7\ 1 eik|r—rc—r2|

arises that is similar to thel — (vq/c)cosd]™ - factor for the G(r|r, ;)= — = 5

field induced by a moving source in free space as discussed Am |r—r,| 4w |r—r -1,

in Refs. 1 and 2 and shown in EGC18).

Our result is consistent with Eq35) of Ref. 3 to first  With k=w/c. In the far field where>r; andr>rJ, Green'’s
order. The major difference is that all terms in the formula-function for the Helmholtz equation can be approximated as
tion of Ref. 3 are evaluated at the source frequefigybut
several terms in our formulation are evaluated at the Doppler
shifted frequencies. For example, changes in mode shape due
to Doppler shifts in frequency are taken into account in our

1 . ,
G(r]r i)~ g—eTe Wremhdife.de)

0 .0 ,0
formulation but not in that of Ref. 3. The additional accuracy X e Ko 0:8:05:4;), (CH)
of the current formulation requires computation of normal
modes at shifted frequency components. Inserting Eq.(C5) into Eq.(C4) yields
1 1 ” ikr a—ikren(0,¢; 6 ,¢¢)
APPENDIX C: DERIVATION OF THE PLANE-WAVE G(r,t|rg,tg)= 27 Amr e*fe™Memb@:%. Pc

SCATTERING FUNCTION FOR A MOVING SCATTERER

IN FREE SPACE FROM GREEN'S THEOREM X e M08 g0t g, (CH

The purpose here is to derive a surface-integral expres-
sion for the plane-wave scattering function of an object mov-Substituting Eq.(C6) into Eq. (12), the scattered field be-
ing in free space at low Mach number. comes
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~ 1 tT 1 * e”“ o " 1 1 eiw*((r/c)—t)
‘I)s(ht):—EJo dtaﬁ do —e 1@t Py(r,t)=——

—o r 47
X 4) ds,.

xe ltot d(r,,t,)]

(2 .
1- ?77(9|¢’9C'¢C)
[eiki'rceikirg”(ai ,Bi ;Hg,¢2)

. 3g dS,- ([eik”g”(“i B0+ D0 ki)

><Vg[e_i(w*lc)r2”(0‘¢;0g‘¢2)]). (C12)
XV, [e Krem(0.6i60 b g= ki gn(6.6:05.40)] |
In the far field, the scattered field can be approximated
(C7) as a point source radiating with an angular weighting factor
given by the object’s plane-wave scattering function via
ik|r—rg|

heredy(r, , t,) is the scattered field on the surface of th
whered(r,,t,) is the scattered field on the surface of the U (r|r )~ T S(0,b: B 0), (C13
C

object induced by an incident plane wave with the wave
number vectok; and unit amplitude. For low Mach number which for r>r. reduces to
motions of the target, approximations can be made for the

scattered field on the target such tdaf(r,,t,) is approxi- W (r|r g w)~ ieikrefikrcn(gyd,;gc'(/,c)

mated as the scattered field at the initial location of the sur- sshe k

face, with a phase shift fact@'*i"c due to rigid translation _ _

of the centroid, modulated by exp{wit,) so that XS0, piai,Bisw). (C14
The field induced by a moving point source can be expressed

= 0. —iwit, ik as
Dy(r,,t)=Dy(r, ki;w)e “itee™iTe, (C8)

o tt
If the centroid of the scatterer is moving with constant ve- ~ ®s(It)= fo dtaf dVeW(r.treto)alre.ty)  (C19

locity v,, then ) ,
with source function

re=v,t,, (C9 q(rc,tg):e—iwitaé‘(rc—vgtg)_ (C16

where the initial location of . at t,=0 is the coordinate Equation(C15) then becomes

, .. . . . N + 1 © ) )
?é%e;:dsorlgm. Substituting Eq$C8) and (C9) into Eq. ‘Ds(f,t)=ft dtgﬁf do e 90 1]y, t: ) ot
0 —0o0
. + 1 s eikr .
~ 1 t+ 1 0 e'kr ) %ft dt _f do— —lw(t—t,)
- - — aio(t-ty) o w e
Dy(r,t) yp= Jo dt, o ﬂgdw ; e 0 27 ) o r
1 . . —i(wj—kjv, )t
” ffdsg.([eikir?m(ai By 100,40 X S0, ¢iai,Biiw)e T
xXe~ ikv ,t, (6,6, QC‘PC)‘ (Cl?)

—i(@=KiVolto 4 b (10 K. - o)~ (@i —KiVe)ty . . . :
Xe teith T D1 Kijwj)e el Using similar techniques as before to integrate ayendw,

the scattered field becomes

XV, [e_ik”“t“”(a’¢;9°’¢°)e_ikr?’”(6’¢;ag’¢g)] : 1 iw* ((rlc)—t)
g ~ ew -
Dy (r,t)=
(€10 (1= — =
1=~ n0.¢:6c.60) 1
For sufficiently long time durationt, the integral over XS(6,¢:a;,B; %) (C18

t, introduces the delta function §(w(1—(v,/cC)

X 7(0,;0.,0:))— w;+k;-v,) to the integrand. The prop-
erty of the § function described in Eq57) in this case leads
to

where[1—(v,/c)n(6,¢;6s,¢:)] * is a dynamical factor
due to the motio.By equating Eq(C12 with Eq. (C18),
the plane-wave scattering functi®{i6, ¢; «;,B; ;»*) for an
object moving at low Mach number in free space can be
o — KoV written in terms of a surface integral over the object by

I | g

w* = » s (Cll) S( 0,¢, o4 ,Bi ;a)*)
1- ?U 77(9,¢;0c.¢c)

w*

47rC

é dsa.([eikirgv(ai B 16%,69)

wherew* is the Doppler shifted frequency in the direction of S it IO (0,60 0
propagation(d, ¢). Integrating overw then yields +D(rg.ki; )V, [e7 @O0 88nd.)]) - (C19)

J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003 Y.-s. Lai and N. C. Makris: Dopper field scattered by an object 241



If the object is not moving, Eq(C19 leads to the special _ 0. o _. “iwgty
case Eq(C9) of Ref. 6 directly. Bi(ro;00) o1y ki o) ]e ' ©2)

APPENDIX D: DERIVATION OF THE NORMAL MODE - .
REPRESENTATION OF THE DOPPLER-SHIFTED _ For low Mach number motion®(r, k" ;wo) and
FIELD SCATTERED FROM A MOVING TARGET d(r, .,k ;wp) are approximated as the scattered fields at
BY A SOURCE WITH ARBITRARY TIME
DEPENDENCE IN A STRATIFIED WAVEGUIDE

Using the incident field described in EB7) and de- A
composing the field into upgoing and downgoing plane€

waves yields Equation(D2) the becomes

the initial location of the surfaceti)s(rg,kﬁ;wo) and
Ci)s(rf’,,kf;wo) multiplied by the phase shift

1£(wo)v, COSBY— @)ty

(I)i(rovto')

:fld“’ozl: 8(wo—Q+ &(w0)voCOL g~ ¢o)) Dy(r 1)

— * 0
X[Al(rg;wo)eik(axo)rgﬂ(m,777(158;02,(;32) _f,wdwoz| 5(wO—Q+§|(wO)UOCOS(d)0—(po))
0. ' o, _,0.,0 ,0 N
~Bi(rgiwo) e e e T o 4] X[A(13w0) P10,k swo)

. 0
x @~ 1wt §(wp)vy COLdy— ¢, 0. I 0K~
e (Dl) _BI(rO,wO)CDS(r(r’k| ,(l)o)]

As in Sec. Il C the total scattered field on the surface of
the target can be represented as

(DS(rovtO')

« @~ (@t & (v, Ot $0— e o))ty (D3)

o Substituting Eqs(46), (D1) and(D3) into Eq.(12), the scat-
_ _ 0_
B f,md“’og (o= 0+ &(wo)voCOS do~ o)) tered field induced by a simple-harmonic source with source

o - . frequency() is expressed as
X[A|(rg;wo)Ps(r K" ;wo)

l t+ o ) 0
(DS(r’t)%_Zfo dt, % dSrr.[ f, dwOZ. S(wo— Q-+ &(wo)uo COY g — o) e (w0 ilolvo Cosdo ety
0. ik(wg)rCn(a; 71— ¢3:6%6%) 1 F (0 I+
X|A|(rg; wg)[ €0 e 0% P+ Dy(r K" ;wo)]
. 0 0.,0 ,0 ~
_ Bl(rg;wo)[elk(wo)r”ﬂ(wfm ,w*¢o,00,¢”)+¢s(r2 ,k|7 ;wo)])

XV
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For an arbitrary source with frequency spectr@t(1), the er’'s frame of reference is obtained by applying a Fourier
normal mode representation of the Doppler-shifted scatterettansform to Eq(D5),
field is formulated by Fourier synthesis

\Ifs(r,w')=f dte W (r,t), (D6)

1 o
‘I’S(I’,t)=zf OOdQ Q(Q)D(r,t). (D5)

wherew' is the frequency in the receiver frame of reference.
The frequency spectrum of the scattered field in the receivintegrating ovett leads to
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In order to integrate ovew, the roots of the transcendental equationvofieed to be computed
h(w)=w—0'—£n(w)v cog ¢°— ) =0. (D9)

Newton—Raphson method is used to find the approximated solutions ¢DBJ.First iteration withw' as the initial guess
gives

., —Em(e v cogd ¢’ o)
=o' = )

(D9)

1—;%cos¢°— ¢)

wherevS(w') is the group velocity of thenth mode at frequency'.
Integrating overw yields aé function of wy. Performing integration ovef) yields

1 (¢ o .
W)= [ § dSo'[ | 400S Qo+ &iworwocos 6§ one oo oo ottt
B X Y
By (13 w) [0 T 050 bo) 4 (10 k- iwo)])
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Vol 2 T o108 (wh)] cot 4 )

o

—Bn(r’; wr'n)e‘ikwéq)fgﬂ(am ) I °°5<¢°‘%>]‘a) ] . (D10)

For sufficiently long time duratiot, the integration ovet,, introduces the delta functiof(wy— w/,+ & (wg)v, cos(¢8—<p(,)
+ &0l cos@’— ¢,)) to the integrand. Once again, a transcendental equatier fior the argument of the delta function
needs to be solved by means of Newton—Raphson method

h(wo)=wo— W+ &(@o)v, COL ho— @,) + ém( )V, COL HO— ¢,) =0. (D11)

The derivative ofh(w) with respect tow is

dh(a)o) o Vg 0
dorg =1+ U|G(w0) cos dp— @,)- (D12

First iteration of Newton—Raphson method witt}, as the initial guess is
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Integrating overw finally yields
~ 0
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