Asymptotic accuracy of geoacoustic inversions
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Criteria necessary to accurately estimate a set of unknown geoacoustic parameters from remote
acoustic measurements are developed in order to aid the design of geoacoustic experiments. The
approach is to have estimation error fall within a specified design threshold by adjusting controllable
guantities such as experimental sample size or signal-to-noise (BN&). This is done by
computing conditions on sample size and SNR necessary for any estimate to have a varidfige that
asymptotically attains the Cramer—Rao lower bo(GRLB) and(2) has a CRLB that falls within

the specified design error threshold. Applications to narrow band deterministic signals received with
additive noise by vertical and horizontal arrays in typical continental shelf waveguides are explored.
For typical low-frequency scenarios, necessary SNRs and samples sizes can often approach
prohibitively large values when a few or more important geoacoustic parameters are unknown,
making it difficult to attain practical design thresholds for allowable estimation error20@4
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I. INTRODUCTION is always greater than the specified design error threshold,

. the experiment will never be able to achieve its goals and
Geoacoustic parameters of the ocean floor strongly af- . . . ) .
ill necessarily fail. So the CRLB on its own is extremely

fect sound propagation and acoustic sensing in shallow water

ocean waveguides where extensive bottom interactiOt’t'(IserI szistr? t%)ll?[‘Ba',d'rI‘g ext)herlmental deISItgntlr? thelzlse S'Slja'
occurst =3 A significant amount of work has been done in 1ons. € IS 1ess than or equal fo the aflowable

recent years to develop methods for estimating geoacoustﬁ:es’ign error, on the other hand, the practicality of the experi-

parameters and to benchmark these methods against simiiental design is still questionable until it is established that

lated noiseless data as for example in Refs. 2 and 4_148he parameter estimates derived from this experiment actu-

Much less work, however, has been done to assess the péily attain the CRLB. - _ _
formance of geoacoustic inversions in the presence of Since necessary conditions for an estimate to attain the
noise211-15 CRLB are now available and depend on controllable vari-

Nonlinear inversions are often required to estimate geoa@bles of an experiment such as signal-to-noise (&#R) or
coustic parameters from measured acoustic field data. Siné@mple sizé/ and the CRLB is also a function of these con-
the measured data undergo random fluctuations due to addfollable variables, conditions are then also available to attain
tive noise, waveguide scintillation, or source randomnessany specified design error. This can be done by proper ad-
this nonlinearity often leads to estimates that are biased anigstment of the controllable variables.
exceed the Cramer—Rao lower bow@RLB) by orders of Along these lines, we follow the general estimation
magnitude. In these situations, exact expressions for the bidBeory approach introduced in Ref. 17 and use it to derive
and the variance are often difficult or impractical to deriveconditions to accurately estimate a set of unknown geoacous-
analytically. tic parameters from remote acoustic field measurements. We

Knowing both the CRLB and how to attain it is useful do this by computing necessary SNRs and sample sizes for
for a number of practical reasons. The mean-square error dhe estimates to become asymptotically unbiased, for their
any unbiased estimate of a deterministic parameter vectanean-square errors to attain the CRLB, and then for the
from random data cannot be less than the CRLB, which ex€RLB to fall within any specified design criteria.
ists given mild regularity conditions on the probability den- We note that the approach of Ref. 17 is a general con-
sity of the datd?® This is trueregardless of the method of sequence of estimation theory and so can be and has already
estimation and, for example, regardless of whether or notheen applied to obtain optimality conditions and to extract
there are significant ambiguities, sometimes referred to agew physical insights in a number of widely divergent and
sidelobesin the estimation problem. physically unrelated estimation problems. These include

Parameter estimates only have practical value if theitime-delay and Doppler shift estimatidhsource localiza-
errors fall within the design thresholds specified for the givenign in an ocean waveguidé and pattern recognition in 2-D
experiment. Ir_1 the inversion of geoacoustic parameters, foi‘magesl,gwhere aroptimal estimatén this context is defined
example, design errors are often set by the needs of thogg peing unbiased and having minimum variance following
who run propagation and scattering models to evaluate son@fandard practic® A basic advantage of this approach is that
system performance. If the CRLB for a particular experimenty is wypjcally straightforward to implement and provides ana-

lytical insight into the mechanics of asymptotic optimality
dElectronic mail: zanolin@mit.edu and consequently attainable accuracy for the given estima-

J. Acoust. Soc. Am. 116 (4), Pt. 1, October 2004 0001-4966/2004/116(4)/2031/12/$20.00 © 2004 Acoustical Society of America 2031



tion problem. Brute force numerical calculation of estimatoris the CRLB, which is the minimum variance for an unbiased
moments does not easily offer such insight, but is the onlyestimate and also the asymptotic value of the variance in the
alternative currently available. limit as the sample siza and SNR approach infinity.

Our present analysis focuses on aiding experimental de- The sample size necessary for the MLE variance to as-
sign by determining necessary SNRs and sample sizes tamptotically attain the CRLB is found by requiring the
attain practical accuracies in estimating geoacoustic paransecond-order variance to be negligible compared to the first
eters of the seafloor from standard ocean-acoustic inverse
experiments. We consider narrow-band deterministic signals [varx( 6")/n?| 3

received with additive ambient noise by both vertical and var,(6")/n 2
horizontal arrays in continental shelf waveguides. Given the

large number of unknown environmental parameters in suckvhich implies

problems, it is common practice to invert for tens or more

parameters simultaneousty: =23 Various combinations of lvar,(6")] 3
geoacoustic parameters for simultaneous inversion are con- '~ var,(6") ©)

sidered and criteria necessary for accurate inversions are pre-
sented. The conditions are found to become significanthOnly for sample sizes satisfying this condition is it possible
more stringent, sometimes to the point of being prohibitive for the variance to be in the asymptotic regime where it
as the number of unknown parameters to which the measurezbntinuously attains the CRLB. This follows from the fact
field is sensitive increases. that each term in the expansion is proportional to a unique
In Sec. Il, conditions necessary for asymptotic optimal-power in 1h.

ity are summarized in a more explicit form than has previ- In a similar manner, a necessary sample size for the
ously appeared, and a far more condensed and efficient forinversion to be asymptotically unbiased is found by requiring
of the asymptotic variance is also provided. An explicit ex-that the first-order bias is negligible compared to the true
planation of how these necessary conditions may be used t@lue of the parameter:
achieve design specifications for error thresholds in a given
experiment also appears in Sec. Il. Analysis of illustrative [by(6")]
problems in geoacoustic inversion appear in Sec. lll. Since 6|
the data are modeled as deterministic signals measured with
random ambient noise, we have not investigated the effects The conditions(3) and (4) provide insight into the per-
of model mismatch or uncertainty in sensor location, both oformance of any estimate in the limit of large sample size or
which may also lead to significant errors. These effects, howSNR. In fact, in this regime any estimate that satisfies these
ever, will only make the necessary conditions more stringentconditions must be the MLE

As noted in the Introduction, parameter estimates only

OPTIMAL ESTIMATION AND FOR ATTAINING P 9 p '

SPECIFIED ERROR DESIGN THRESHOLDS tain a specified design error threshold by the present ap-
proach, the sample sizemust be large enough thét op-
Consider a set ofi independent and identically distrib- timality conditions (3) and (4) are satisfied andll) the
uted experimental data vectox§ of dimensionN obeying  CRLB falls within the required design error threshold.
the probability densityp(X; 6), whereX=[X1,... X" and
6 is an mdimensional parameter vector. The MLEof 6
maximizes the log-likelihood functioh(X;8) =In(p(X;#)) We consider the field generated by a deterministic nar-
with respect to the components @fIf the rth component of row band source that is received by an array of hydrophones
0 is denoted by#', the first log-likelihood derivative with  with additive stationary ambient noise. One vector sample in
respect tod" is then defined ak=41(6)/060". The elements the frequency domain of the measured field can be obtained
of the expected information matrix, known as the Fisher mafrom the Fourier transform of a time window of the acoustic
trix, are then given by,,=E[l,l,], and the elements of its measurements. Statistical independence of the samples re-
inverse byi?®=[i"1],,, wherei ™! is also known as the quires them to have a sample spacing that is at least the
CRLB. coherence time of the total received fiékExplicitly, the jth
The moments of)" for r=1,...m can be expressed as a spectral data sampbé (w; ) for j=1,...n is given by
series in inverse powers of the sample siz€'*® provided B B
that the required derivatives of the likelihood function Xj(w;0)=A(w)g(w)+ 7(w), (5
exist?* The variance can then be expressed as

4

A. Statistical model for the acoustic data

whereA(w) is the Fourier transform of the source amplitude,
var,(6") var,(8") ( 1) U(w)=[01(w;0),....9n(w; 0] is the vector of Green’s func-
+ +0| —=|,

var(6')= (1) tions in the frequency domain connecting the source location
to the N hydrophone locations on the array, aﬁ;;i(w)

where O(1/n®) represents integer powers higher than?1/ =[7;J-1(w),...,7]jN(w)] is the noise spectral sample which is

andvarq(6") andvar,(60") depend only on a single sample given by a Fourier transform of a finite time window of the

probability distribution. The first term on the right-hand side noise.

n n2 n
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FIG. 1. Waveguide model and experimental setup. An
isovelocity water column overlies a two-layer bottom: a
15-m-thick fluid sediment layer with a sound speed lin-
early increasing with depth stands above a basement
with constant sound speed and density. A narrow band
point source is located at the center of the wave guide
and receiving arrays. A ten-element vertical array and
horizontal arrays with 10 and 100 elements are consid-
ered. The spacing between the elements is 7.5 m and
the arrays are centered in the water column.

FIG. 2. yvar, (black, V|var,|
(gray), and b, (dotted for single pa-
rameter estimates afs, gs, as, ps,
hs, andpy, are presented far=1 as a
function of range between 0.5 and 10
km for a 100-Hz source and ten-
element vertical array centered at mid-
depth in the watercolumn.

4 6 8 4 6
range (km) range (km)
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is specified by the spectral complex covariance matrix of the
noise across the arre@ whose elements are given @n
=E[7)(0) njy(®)]=0%8,, with &, equal to 1 forl=n
and O forl #n. Note that the expectation eliminates the de-
pendence on the sample indpxHere we assume spatially
uncorrelated noise for both the horizontal and vertical aper-
tures based on our experience with experimental data in shal-
range (km) low water environments. An alternative would be to use the-
oretical predictions based on uniformly distributed surface
FIG. 3. SNR as functions of range between 0.5 and 10 km. Same experfoise sources such as in Ref. 27.
mental setup as Fig. 2. In the present formulation, while the measured field con-
tains parameter information, the sufficient statistic for opti-
‘mal estimation in a measurement is not the measured field or
its ensemble average from measured data but the entire ar-
gument of the exponential, known as the Mahalobinos
distance?® This preserves all the relevant intersensor phase

The noise spectrum is well described by a circular com
plex Gaussian random variabl€CGR,?>?® so that the
probability density for the real measured da(a with |
=1,...n becomes

p(X,0)=(2m)~"N?C|~ "2 information as the ensemble average of a positive semi-
1 definite quantity.

Xex;{ - 52 (Xj—m(0)TC™HX;— 0))}, For this statistical model, the expressions given in Ref.

=1 17 for the numerators of the first-order bias and the first two

(6) orders of the variance can be expressed in the much more

whereX; and u(6) are specified by compact form
Re<>~<j(w;0)>} Re(A(0)3(w))
i:[ ~_ . ’ M(O)ZL A A ’ (7)
Im(X;(w;0)) M(A(w)g(w)) by 67) = — §i72ibeyT ©
with Re(.) and In(.) indicating the real and imaginary parts.
The real covariance matrix
C:l Rd;é) _|m£6)) (8) varl(Hi)z—i”, (10)
2\Im(C) ReC)

FIG. 4. n, and n, as functions of
range between 0.5 and 10 km for
single parametefa) n, for hg (black),
4range (k?n) 8 2 4range (kﬁ,) 8 pp, (gray), and o (dotted. (b) n, for
ps (black), c (gray), and g (dotted.
(c) n, for hg (black), py, (gray), andpy
(dotted. (d) n, for ps (black, cs
(gray), and g (dotted. Same experi-
mental setup as Fig. 2.

4 6
range (km)

4 6
range (km)
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FIG. 5. Jvar, (black, \Jvar,|

(gray), andb, (dotted are shown as a

m/s

4 6
range (km)

\J var,

1var1

function of range forn=1 between
0.5 and 10 km in inversions focg
with one other unknown parameter.
The unknown is successivelp) «,
(b) ps, (c) g5, and(d) hg. Same ex-
perimental setup as Fig. 2.

4 6
range (km)

4 6
range (km)

10

0.5

vary( gi) ="M pq( qu'}’pm_ 'y-an')’pq_ YquYn

+ij2t

YWY 1
? Ym¥zp

+ (VYo T %Tnpyn)ﬂtyq) ) ,

+ (2~ Ygn¥) Yom?s

(11)

4 6
range (km)

where y....q=[A(w)/o]g....q and the subscripts---d indi-
cate that derivatives of the Green’s function with respect to
the parameterg,: -- 64 have been taken. The Einstein sum-
mation convention is used so that if an index occurs twice in
a term, once in the subscript and once in the superscript,
summation over the index is implied.

The SNR for a single sample collected across the array

by

Vo, —— vy

b, Jvar2 —  yvar,

FIG. 6. Jvar; (black, +l|var,|
(gray), andb, (dotted are shown as a
function of range forn=1 between
0.5 and 10 km for successive two-

Pos 4 6 10 %05 4 6
range (km) range (km)
2
10 ‘ ;
s by —— QVatr2 — yvar;

parameter estimates () «as, (b) ps,
(¢) g5, and(d) hg with c5. Same ex-
perimental setup as Fig. 2.

4 6
range (km)
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L2 FIG. 7. For the estimation afs when
1o a second parameter is unknown, is
= 1, for cg(g, unknown) VNVJW n, for cg(h, unknown) presented wherfa) s (gray and g
kn kn (black are unknown(b) ps (gray) and
» n, for c (o UNKNOWN ) = n, for c (p  unknown) h (black) are unknown anah, is pre-
Wos 2 4 5 8 10 Wos 2 4 6 g8 10 sented when(c) as (gray and g
range (km) range (km) (black) are unknown andd) p (gray)
10' ‘ ‘ 10* ‘ i ‘ ‘ and hg (black are unknown. For the
ny for g 0 (f) vi, estimation of a sediment parameter
(e) 10° 1 when acg is unknown,n, is presented
10° | 5 | for (e) ag (gray) andgs (black and(f)
‘ 10 ! ps (gray) andhg (black), andn, is pre-
2 } [ h N ‘ 810" | i sented for(g) a; (gray) and gs (black
i ““‘ m \| ’\ i H ‘ “N il 2% h, p.| and(h p, (gray andh, (black.
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107 !
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as been defined as the ratio ;0 u(w; r , 1lA(w) J(w;0)g(w; 0)*
has b defined th tio SN 0 0)* /tr(C 2
=|A(w)|?g(w; 0)g(w; @)* /Na?. In most geoacoustic inver- =N 1045 ‘ (12
sion experiments performed in shallow water the SNR varies range=1 km

between 10 and 20 dB?°*°sometimes reaching values be-
tween 30 and 40 dB! In the examples presented in this !ll- ILLUSTRATIVE EXAMPLES

paper the SNR_ is set to 15 dB _at a range of 1 k"_‘ frpm the The conditions necessary to obtain an optimal parameter
source, or, equivalently, the variance of the noise is fixed bygtimate in a given experimental scenario depend on a num-
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FIG. 8. Simultaneous four-parameter
estimation ofcg, gs, ps, and ag
wherevar, (black, V[var,| (gray),
and b, (dotted are presented fo(a)
Cs, (0) g, (©) ps, and(d) as for n
=1 as a function of range between 0.5
and 10 km. Same experimental setup
as Fig. 2.

05 2 4 6 8 10 Yos 2 4 6 8 10
range (km) range (km)

ber of variables, including the parameters involved in thesediment layer overlays a bottom half-space, as shown in
inversion, the number of parameters simultaneously estiFig. 1 using a modal formulation for the field as in Ref. 18.
mated, the frequency of the source, the range of the receivihe numerical field derivatives approach used was bench-
ers, and the SNR. In order to isolate and illustrate these cormarked analytically in a Pekeris waveguitfeField deriva-
tributions, a number of simulations are performed in atives were also checked with three independent propagation
waveguide representative of the continental shelf where aodes including OASIS, SNAP, and a modified version of

FIG. 9. Source frequency is 100 Hz.
Necessary sample sizes for the simul-
taneous four-parameter estimation of
Cs, Os, Ps, and ag: (@ ny for cg
(black and g (gray), (b) ny, for pg
(black and ag (gray), (c) n, for cg
(black andgs (gray), and(d) n, for ps
(black and ag (gray). Same experi-
mental setup as Fig. 2.

6 4 6
range (km) range (km)
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(3) that the second-order variance is ten times smaller than
the CRLB for all parameters,

20

—_
)]

vary(6"
Uarl( Hr)

-
S

(13

10 log (SNR)
o

Similarly, the necessary sample sizes for the inversions to be
unbiased are computed by requiring in conditidhthat the
first-order bias be ten times smaller than the true value of the
parameter, orn>n,=10b,(6;)|/|6;| except for sound
speeds where>n,=200b,(6;)|/|¢;| is used instead since
these biases strongly affect the acoustic field. The conditions
for an inversion to be optimal are then given by n, and
n>n,. If the computed values afi, and n, are less than
unity, then only one sample is required and the figures can be
used to determine how far the SNR can be lowered without
sacrificing single-sample optimality. We especially note sce-
narios wheren, and n, are large but the corresponding
CRLB is small and vice-versa.

It should be noted that the illustrative examples can be
used to determine SNR outside of the ranges explicitly
shown due to the equivalence of and SNR in the
asymptotic expansions. For example, this means that the
10,5 5 4 6 s 10 conditions(3) and(4) can be reformulated in terms of SNR,

range (km) and thatn, andn,, are proportional to 1/SNR.

A. Single-parameter inversions

l’lh n
(c) Here we investigate the requirements for estimation er-
0 rors to attain specified design thresholds for single-parameter
@ inversions. To do this we compute the sample sizes necessary
E‘ for inversion optimality as well as the magnitude of the
s CRLB for a single sample. It is important to note that the
former optimality condition need not be related to the param-

eter sensitivity expressed by the single-sample CRLB. This
H ‘ ‘ " “” “MI m N is because the optimality conditions involve higher order pa-
- H“ 1 i ‘ ‘ l t u l l “ rameter derivatives than the CRLB.
5 2 4 6) 8 10

The biases, variances, and necessary sample sjzes
andny, are computed as a function of source-receiver range
FIG. 10. Single parameter inversion of using a ten-element horizontal for all eight single-parameter estimates allowable in the
array with 7.5-m spacing. The array is located at 50-m depth with 100-Hznodel. For our purposes only six of these need to be pre-
source frequency. Shown far=1 as a function of range between 0.5 and 10 sented in Figs. 2 and 4. These are the thickness of the sedi-
ET@E&? igﬁf%@ (black, vvara| (gray, andb, (dotted, and(©) ot averh | the compressional wave speed at the top of

the sediment layecg, the gradient of the compressional
wave speeds, the attenuation in the sedimemy, the sedi-
KRAKEN. The sound speed profile in the sediment can banent densityps, and the basement densjhy.

range (km

specified in terms ofcg and g5 as c(z)=cs+gs(z—H), The decreasing trend in inversion accuracy with range
where thez axis originates at the water—atmosphere interfacdor all parameters is mostly due to the decrease in SNR
and is directed vertically downward. shown in Fig. 3 from both spreading and attenuation loss.

To represent a typical experiment, in Secs. Ill A andStripping of higher order modes with range also plays a role
[IIB a ten-element vertical array is centered in a water col-in the decreased accuracy. Estimatesgf ps, ag, andgg
umn of depthH=100m with 7.5-m spacing between each require smaller sample size to be optimal than the basement
element so that the shallowest element is at 16.25-m deptldensity p,,, and significantly smaller sample size than the
The source is placed at 50-m depth. In this paper a 100-Hthickness of the sediment layér, which has particularly
deterministic monopole source is employed. Inversions perstringent optimality conditions. Hundreds of samples are
formed with horizontal arrays are presented in Sec. Il C tonecessary for thég estimate to be unbiased even at rela-
investigate the effect of array length and orientation on intively close ranges and thousands of samples are necessary
version performance. for the variance to attain the CRLB indicating that the sedi-

The necessary sample sizes for the variance to attain theent layer thicknessg has a highly nonlinear relationship
CRLB are computed by conservatively requiring in conditionwith the acoustic measurements.
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m/s

10° ¢ 10 1 FIG. 11. Simultaneous four-parameter
i estimation ofcg, gs, ps, andag using
i a 100-element horizontal array with
10 1 2 4 8 10 107 : ‘ : 7.5-m spacing. The array is located at

6 1 2 4 3 8 10
range (km) range (km) 50-m depth and the source frequency
1 1 is 100 Hz.\varl (black, V|var,|
10 : 10 ‘
oy W — (gray), andb; (dotted are shown for
2 1

n=1 as a function of range between 1
and 10 km for(a) c, (b) gs, (©) ps,
and(d) as.

VAl  — var
q 2 Y L bl

6 8 4 6
range (km) range (km)

We note that whileps and a5 have similar optimality  through 44 parameters, wherd! is the number of modes,
conditions ascg, the ratio of the square-root of the single- making 4V an upper limit on the number of bottom param-
sample CRLB, which is inversly related to the sensitivity of eters that can be unambiguously estimated regardless of the
the measurement to the parameter, to the true parametgimper of receivers in the water column. Such limitations

value is on the order of at least 0.1 for and a; butis eSS can pe potentially overcome by increasing the bandwidth.
than 0.01 forcg. This highlights why theéwo requirements

explicitly stated in Sec. Il are necessary for a parameter es-
timate to attain a specified error threshold and knowledge o
the CRLB alone is not enough. Simulations presented in this section show that estima-
The inversion ohg, p,,, and the other basement param- tion performance worsens as the number of parameters si-
eters not explicitly presented here are significantly more difmultaneously inverted increases. To see this, the quantities
ficult than the other sediment parameters because they rb,, var,, var,, ny,, andn, are plotted as a function of
quire either prohibitlvely large sample sizes to attainsource—receiver range for the simultaneous estimation of two
optimality or because the square root of their single-sampl@arameters, namelg, together successively withg, pg,
CRLBs are large compared to the true parameter valugys, and thenhg in Figs. 5—7. Each pairing affects the esti-
Sound in the water column is apparently less sensitive tanation ofcg in different ways as can be seen in Fig. 5. In
basement parameters due to attenuation in the sediment féact, estimation ot is effectively uncoupled from that eig
the given sediment thickness and acoustic frequency. Simildrecause the two-parameter estimates yield results nearly
observations about this lack of sensitivity have been noted ifdentical to those of the corresponding single parameter es-
Ref. 20 solely through CRLB analysis. timates. This can be seen by comparing the moments in Figs.
At lower frequency, penetration into the basement mays(a) and Ga) with the corresponding ones in Fig(a?, and
be more substantial, but there may also be fewer modes. Thike necessary sample sizes in Fig. 7 with the corresponding
could lead to difficulties in unambiguously inverting large ones in Fig. 4.
parameter sets. The modal structure of the acoustic field, for The optimality conditions for an estimate of, how-
example, imposes limitations on the number of bottom paever, do become far more stringent when the estimate is
rameters of the given model that can be unambiguously demade simultaneously with either the sediment dengify
termined with a single frequency source. To illustrate thegradientgs, or thicknesdg. This is consistent with intuition
situation, consider receivers in the water column of a Pekerisince c5, ps, gs and hg are expected to be statistically
waveguide. Each mode is then described by four parameterspupled since they are physically coupled in a nonlinear way
the real and imaginary components of the vertical wave numthrough the bottom reflection coefficient and through a
ber and of the mode’s equivalent plane wave amplitude sincenodal or wave number representation of the acoustic field. It
the up- and downgoing plane wave amplitudes are the negas also reasonable that; and cg be statistically uncoupled
tive of each other in this case. This means that the effect ofince the attenuatioag leads to very slow decay in the field
bottom properties on the acoustic field can only be expresseghile the sediment sound speed affects coherent modal

. Multiparameter inversions
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propagation and interference that varies far more rapidhsimultaneous inversion af;, ps, s, andeag in Figs. 8 and
over range(this follows because the two parameters appea®. The biases, variance terms, and necessary samples sizes
in separate factors in the modal representation of the waveare consistently higher than in the cases where the param-
guide green funciton It is interesting that thousands of eters are either inverted alone or with only one other param-
samples are necessary for the variancecoto attain the eter. We find the trend can become less strignent for the
CRLB when the sediment thickneBsis also an unknown as estimation of upper sediment layer parameters as the source
can be seen by comparing Figgdband 7b) with Figs. 2  frequency is increased, but the opposite is typically true for
and 4. Simultaneous inversion for the sediment layer thickdeeper parts of the bottom.
nesshg in these examples tends to induce extremely stringent
optimality conditions, such as prohibitively large necessary
sample sizes. This implies that sediment thickness and sedi~
ment sound speed are highly coupled for the given scenario Parameter estimates made from horizontal array mea-
where sediment thickness equals the acoustic wavelengteurements are now examined to investigate the effect of ar-
This is sensible since as the sediment thickness varies fromay length and orientation on inversion performance. The
the wavelength scale in a decreasing manner, for exampleyoments of & estimate from a horizontal array of the same
the acoustic field will become less sensitive to sedimentength and center depth as the vertical array of the previous
sound speed. The couplings described in this paragraph asxamples are shown in Fig. 10. No improvement is found in
not apparent if only the CRLB is considered, as shown inthe trend but much larger fluctuations appear upon compar-
Fig. 5 ing these moments with those for the vertical array in Figs. 2
The trend of more stringent optimality conditions con- and 4.
tinues as the number of parameters to be simultaneously es- The horizontal array has much poorer angular resolution
timated is increased. This is shown for the four-parametethan the vertical array at the shallow horizontal grazing

Horizontal array versus vertical array
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