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The sonar equation rests on the assumption that received sound pressure level after scattering can be
written in decibels as a sum of four terms: source level, transmission loss from the source to the
target, target strength, and transmission loss from the target to the receiver. This assumption is
generally not valid for scattering in a shallow water waveguide and can lead to large errors and
inconsistencies in estimating a target’s scattering properties as well as its limiting range of detection.
By application of coherent waveguide scattering theory, the sonar equation is found to become
approximately valid in a shallow water waveguide when the object's complex scatter function is
roughly constant over the equivalent horizontal grazing anglés) spanned by the dominant
waveguide modes. This is approximately tfdg for all objects of spatial exterit and wavelength

N when 2A <<\/2L and (2) for spheres and certain other rounded objects in nonforward scatter
azimuths, even whefll) does not hold. The sonar equation may be made valid by lowering the
active frequency of operation in a waveguide. This is often desirable because it greatly simplifies the
analysis necessary for target classification and localization. Similarly, conditions are given for when
Babinet's principle becomes approximately valid in a shallow water waveguide20G
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I. INTRODUCTION Our goal in the present paper is tb) demonstrate that
the assumption that the sonar equation rests on and its impli-
The sonar equation is the most widely used analyticatations are not generally valid for scattering in a shallow
tool in applications of active sonaf? It is typically em-  water waveguide, an(®) provide conditions necessary for
ployed to estimate a target's scattering properties and limitthe sonar equation to become valid in a shallow water
ing range of detectiohThe sonar equation, in its active form waveguidé® In the process we show that the invariant scat-
for an omnidirectional source, rests on the assumption thakring properties of an object in a waveguide cannot gener-
received sound pressure level in decibels can be written asaly be described by target strength, an incoherent quantity,
sum of four terms: source level, transmission loss from theyut rather require a coherent representation that arises from
source to the target, target strength, and transmission logge fundamental waveguide scattering thé8rypon which
from the target to the receiver. This assumption has two regur analysis is based.
lated implications{1) that propagation and scattering effects First developed in World War f? the sonar equation,
are completely factorable from each other, d@d that a  analogous to the radar equatiaspnly valid when propaga-
linear combination of the incoherent quantities, targettion and Scattering dependencies are approximate'y Sepa_
strength, transmission loss, and source level completelyaple. For example, given an omnidirectional point source
specifies the sound pressure level at the receiver. and receiver in free space, propagation and scattering are
When this assumption is axiomatically adopted in anseparable when the source and receiver are in the farfield of
ocean waveguide, fundamental inconsistencies can occyke target, where the incident as well as the scattered wave
when experimental data is examined. For example, the targ@ay be approximated as planar. The sonar equation has a
strength of an object, which should be invariant, can Vanyong history of legitimate usage in deep watésvhere these
significantly with range when experimentally estimated in 3free-space conditions are effectively achieved in many prac-
range-independent environment where the direct return akica| scenarios due to the significant time separation that of-
rives together with multiple returns from the waveguideten occurs between direct and surface reflected arrivals and
boundaries. This has been noted in the classic Bitsics of  ihe adiabatic nature of refraction in the ocean.
Sound in the SeaRegardless of this inconsistency, target | continental shelf environments, referred to as shallow
strength is still used in that text to describe the scattering 5ty waveguides in ocean acoustics, multiple reflections
properties of an object because a more fundamental approaghy 1, the surface and bottom typically overlap araherently
had not presented itself, just as it is still used today by manyefere with each other and the direct arrival. No unique

practitioners of ocean acoustics. incident and scattered angle exists. To understand the impli-
cations for scattering, it is convenient to decompose the in-
dElectronic mail: makris@mit.edu cident field at a target in a waveguide from a farfield point

J. Acoust. Soc. Am. 112 (5), Pt. 1, Nov. 2002 0001-4966/2002/112(5)/1797/20/$19.00 © 2002 Acoustical Society of America 1797



source, into modal plane waves. Each incident plane wavaeous, for example, may have a narrower scatter function
arrives with a specific elevation angle from the azimuth ofmain lobe due to interference from distinct parts of the tar-
the farfield source and then scattesherentlyfrom the tar-  get. In the limit, the scatter function of an object consisting
get into outgoing plane waves in all elevation and azimuthakolely of two point scatterers separatedlbijas the narrow-
angles. The target affects both the amplitude and phase @fst main lobe of angular widtih/2L. When the angular
each scattered plane wavihis phase change cannot be de- width of the object’s scatter function main lobe is much
scribed by an incoherent quantity such as target strengjth  smaller than that spanned by the propagating matds)
a farfield receiver, the scattered field is t@herentsum of  about the horizontal, which is often limited by the critical
all scattered plane waves from all incident plane waves. Justngle of the seabed beyond a few water column depths in
as waveguide propagation models must account forcthe range, the modes of the waveguide are scattered nonuni-
herentinterference of multiple arrivals from a source to re- formly. This leads to strong coupling between propagation
ceiver to accurately determine transmission loss, waveguidend scattering in both the forward and backscatter azimuths.
scattering models must account for tt@herentinterference  The sonar-equation approximation is found to be in error,
of all scattered waves from every wave incident on the taroften by tens of decibels, when applied to such highly direc-
get. Propagation and scattering are in this veajperently tional targets in shallow water waveguides.
convolved for objects submerged in a waveguide. These findings explain the physical basis for the discrep-
To establish when the sonar equation can be applied in ancy noted in Ref. 9 between the sonar equation and a wave-
shallow water waveguide, we calculate the scattered fielguide scattering model. Some special cases were previously
from a variety of target types in various shallow waternoted. For example, Ingenito pointed out that propagation
waveguides using a physics-based waveguide scatterirend scattering become factorable in a waveguide that sup-
model® that takes into account the coupling between propaports only a single modeMakris noted that this factoriza-
gation and scattering. We then compare the results to thog®n is possible for compact objects, i.e., those wita
predicted by the sonar equation. The waveguide scattering 7wL/\x<1.2 We note that the sonar equation is always valid
model, based on Green’s Theorem, expresses the scatterienl compact pressure-release objects since the scattered field
field in terms of normal modes, convenient for long-rangeis effectively omnidirectional, but is more approximate for
propagation, and the plane wave scatter function of the obrigid compact objects since their scattered fields always
ject. The only assumptions needed for the waveguide scattemaintain some directionality dsa decreases.
ing model to be valid are that the propagation medium is  As a general conclusion, we find thtae sonar equation
horizontally stratified and range independent, multiple scatis valid when the target’s scatter function is roughly constant
tering between the object and waveguide boundaries is ne@ver the equivalent horizontal grazing angtes\ ¢ spanned
ligible, the object lies within a constant sound speed layerby the dominant waveguide modéthis is approximately
and the range from the object to the source or receiver isrue (1) for all objects when A y<<\/2L and(2) for spheres
large enough that the scattered field can be expressed asaad certain other rounded objects in nonforward scatter azi-
linear function of the object’s plane wave scatter function. muths even wheiil) does not hold. For homogeneous con-
Under these conditions, the plane wave scatter functiowex objects conditiorfl) is the less stringent2¢<<\/L. A
of the object, which depends on absolute object orientatiomuantitative definition ofAy is provided in Sec. Il B. It
and direction of both the incident and scattered plane waveshould be noted thatys is range dependent in realistic ocean
is the invariant quantity that describes the scattering propemwaveguides and is not necessarily equal to the critical angle
ties of an object in a waveguide. The scatter function is af.. This is true even in Pekeris waveguides at small ranges
coherent quantity. The object’s incoherent target strength isvhere the leaky modes with elevation angles larger than
simply 20log of the scatter-function-magnitude-to-wavemake substantial contribution to the scattered field and at
number ratio. Target strength then only contains the amplilong ranges where modal stripping reduces the dominant
tude but not the essential phase information necessary tmodes to elevation angles much smaller than
describe the scattering process in a waveguide. This conclusion is significant because, in an active sce-
We show analytically that if the scatter function of the nario, the sonar operator has the ability to lower the fre-
object is approximately constant over the equivalent angleguency of transmission until the target’s scatter function be-
spanned by the waveguide modes for the given bistatic gesomes approximately constant ovetAy. The sonar
ometry, the scatter function of the object, which effectivelyequation then becomes a valid approximation whien
couples the modes of the incident and scattered field, can bec/(4L A). Operating in this frequency regime is desir-
factored with little error. This leads to an approximation for able because when the sonar equation is valid, only a single
the sound pressure level of the scattered field that is the sonparameter is necessary to characterize the scattering proper-
equation. Many rounded objects, such as spheres and certdias of the target for that measurement. This greatly simpli-
spheroids, exhibit this behavior in nonforward scatter. Flafies target classification by making the classic approach of
homogeneous objects, such as plates and disks, are the mestimating a single-parameter target strength valid in a shal-
highly directional convex targets. These have nonuniformow water waveguide. It also simplifies other problems such
scatter functions with strong main lobes in the forward andas estimating target depth in a waveguide. When the sonar
backscatter directions of diffraction-limited angular width equation is not valid, the problem of classifying the target
ML, for N/L<1, whereL is the object’s length and the  becomes much more complicated. Up to R{j2 parameters
wavelength. Other targets that are nonconvex or inhomogewrould be necessary to characterize the scattering properties
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of the target, for a waveguide that suppadxtsnodes, because tical wave number of the down and upgoing components of
the amplitude and phase of the object’s scatter functiorthe nth mode arey,, and — y,, respectively, where Re,}
would have to be determined for each incident and scattereg 0. Moreoverk?= £,2+ y,2, and the wave number magni-
pairing of each mode’s equivalent up- and downgoing plandude k equals the angular frequenaydivided by the sound
wave elevation angles. speede in the object layer. For economy, the notation of Ref.
Babinet's principle maintains that the forward scatteredll is used here and in the remainder of this article. Figure 2
fields of impenetrable objects that have identical projectedf Ref. 11 shows the geometry of spatial and wave number
areas with respect to a given incident plane wave in freeoordinates.
space are asymptotically equal for large'*'>*3This also The spectral component of the scattered field from the
holds true for some penetrable objetts:or an object sub- object at the origin for a source B§ and a receiver at is
merged in a waveguide, the incident and scattered fields are M max M max (4m)?
often characterized by a wide angular spectrum of plane ‘I’s(r|ro)=u4m21

waves. Despite this difference between waveguide and free n=1 Kk

space scattering, simulations in several typical shallow water

waveguides with a variety of targets types show that Babi- X[An(NA(ro)S(7—am, B an. Bi)

net's principle can hold approximately in a waveguide¢he —Bn(NANre)S(am, Bian,Bi)
forward-scatter azimutlif the equivalent propagation angles

of the modes are sufficiently close to horizontal, as if often —An(N)Bn(ro)S(m—amn,B;7—an,Bi)

the case after long-range propagation in lossy media. By +B(1)By(ro)S(ap, Bim—ap, B, 1)

Babinet's principle, objects that are large compared to th&vhere

wavelength cast the same free space shadow as flat objects

with the same projected area. Since flat objects of Riglre A (r)= ——(87&mp) ™ Y2up(z) NV el émp T YmD =714
the most directional, the sonar equation approximation d(0)

breaks down rapidly in a shallow water waveguide kas

i .
increases beyond unity for scattering in foeward azimuth By, (r)= W(Swgmp)_”Zum(Z)Nﬁ?)e'(fm"”m[’_”m).

for all object shapes, including spheres. Extreme caution @
should then be used in applying the sonar equation in for- [ ‘

ward scatter. An(ro)= TZO)(8W§npo)_l/zun(zo)Ng“e'(fnPO*YnD‘”"‘),

In Sec. I, we describe the waveguide scattering model
that takes into account the coupling between propagation and
scattering in a shallow water waveguide. A detailed derivaBn(fo)= d(z)
tion of the sonar equation from Green’s Theorem is provided o .
in Sec. Il to show when propagation and scattering becom@e the incident and scattered down- and upgoing plane wave

decoupled and when incoherent target strength is sufficient gMPlitudes in the layer of the object, is the source ampli-

describe the scattering properties of an object in a wavet-“deD is the depth of the object center from the sea surface,

guide. lllustrative examples are presented in Sec. IV. Babig(z) is the density at depth uy(z) are the mode functions,

net's principle and issues involved with applying it in a S(“"B_'“i"gi) is the object's plane_wave scatt_erfunctlon, and
waveguide are discussed in Sec. V. M nhax IS the mode number at which the series can be trun-

cated and still accurately represent the field. The definition of

Il. WAVE-THEORETIC MODEL FOR 3-D SCATTERING o Piane wave scatter function here follows thai defined in
FROM AN OBJECT OF ARBITRARY SHAPE IN A ef. 8, where the Incident plane wave on the object Is de-

STRATIFIED MEDIUM scribed in terms of the direction it goes to so that for forward
. scatter in free space=a;, B= ;. The product ofe™ 2"
We adopt a wave-theoretic normal mode model based 0gnd the right hand side of Eq1) yields the time-harmonic

Green's Theorem for the field scattered by an object in &cattered field. The mode functions are normalized according
stratified medium, following Refs. 7 and 8. In the formula- g

tion, the origin of the coordinate system is placed at the

object centroid. The source coordinates are defined oy = Un(Z)up(2)
=(Xg,Y0.Zp) and the receiver coordinates boy=(x,y,z), nm= J_DT
where the positive axis points downward and normal to the

interface between horizontal strata. Spatial cylindricaland can be expressed in the layer of the object as

(p,¢,2) and spherical systems,p,¢) are defined byx — NDaivn(z+D) _ N\(2) a—iyp(z+D

=r sin 6 cos¢, y=r sin @ sin ¢, z=r cosh, and p=x> Un(2) = Npen(E 01— N e, @
+y?. The horizontal grazing angle ig=m/2— 6. The hori-  whereN{" andN{? are normalization constants.

zontal and vertical wave number components for tile A more general expression than Edq&)—(4), for the
mode are, respectively,,=k sina;,, and y,=k cosy,, where scattered field from an arbitrarily shaped object in a stratified
a, is the elevation angle of the mode measured fromzthe medium, is given in Refs. 9 and 11 in terms of wave number
axis. Here G< a,,< /2 so that the down- and upgoing plane integrals. A number of assumptions have to be satisfied for
wave components of each mode will then have elevatioithe above formulation to be valid, as noted in Ref. 8. In
anglesa,, and m— «,, respectively. The corresponding ver- particular, multiple scattering between the object and wave-

(87 &npo) Hun(2Zo) N[l EnPo™ 70D,

dz, (3
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mode, into one of the two outgoing plane wave components
Downgoing > of the mth mode. The farfield physics of the interaction is

g‘dd:‘l“ plane wave determined by the scatter function that depends on the eleva-
tion angles of both the incident and scattered plane waves.

+ The scatter function is a coherent quantity that affects both
] / the amplitude and phase of the scattered plane waves. The
Eﬁf;;‘fplm wave Jﬂ/-<®?i: scattered fields from each incident plane wave are coherently
mode 1 vs\ superposed to form the total scattered field at the receiver.

The scattering process couples the modes so that propagation

+ i and scattering are coherently convolved for objects sub-
Downgoing ﬁ merged in a shallow water waveguide. A conceptual diagram
incident plane wave —— of scattering in a waveguide is given in Figalfor a wave-
mode 2 guide that excites only two modes.
- We would like to point out some errata in Ref. 8. In Egs.
(14)—-(17) and (37) of Ref. 8, the functionsB,, and B,
Upgoing > should be replaced b, andA;, respectively, in Eqsi41)
iﬁﬁf:‘; B w and (43)—(45), the functionsB, and B} should be replaced
by A, and A]" respectively, and in Eqg14) and (15), the
_ anglesa,, and «,,, should be replaced withr— «,,, and 7
= — a,y respectively. In Eq942)—(45), the vertical wavenum-
Source Obicct seetver ber y, should be replaced with- y, and the vertical wave-
‘*b J 4)—(—' b number— y,, should be replaced by y,,.°

—v_=

Waveguide Scattering . .
(@) A. Sonar equation model for the scattered field from

an object in free space

Ill. THE SONAR EQUATION

Here we derive the sonar equation from first principles
using Green'’s theorem and some steps from Appendix A of

Source / Receiver Ref. 8. With the object centroid at the origin of the coordi-
Object [ nate system, let the coordinates of a point on the surface of

the object be defined byr,=(x;,Y:,z). Using the

Helmholtz—Kirchoff integral equatiotf, the harmonic field

Free Space Scattering scattered by an object can be expressed as

(b)

FIG. 1. (a) Scattering in a waveguide with only two modes. Each mode is (I)S(r) @At

composed of a downgoing and an up-going plane wave. Each incoming

plane wave is scattered by the object into various outgoing plane waves. The P

scattered fields from each incident plane wave are coherently superposed to _ G(r|rt)_[q)i(rt) + q)s(rt)]
N

aG(r|ry)

[Di(ry) +Dg(ry)]
an,

dA, ©)

form the total scattered field at the receivéy) Scattering in free space.
Scattering by the object depends only on the direction of the source and

receiver relative to the target in free space in the farfield. whereG(r|rt) is the medium’s Green’s function anbl;(r;)
is the incident field, each satisfying the Helmholtz equation

guide boundaries is negligible, the object lies within a layerdriven by a source at angular frequenoy-2f. The area

of constant sound speed, and the range from the object iptegral encloses the scatterer and the surface normal points
source or receiver must be large enough that the scatterddfo the enclosed volume.. _ .

field can be approximated as a linear function of the object’s N free space, for a point source at locatigy the field
plane wave scatter function and by modal summations. ~ incident on the object is approximately planar fge-r; and

In Eq. (1), the field radiated by the source is decom-can be expressed as

posed into modes incident on the object. Each incoming elklr=rol  gikro
mode is composed of a pair of plane waves: one downgoing ®;(r)=A——~A4 gikrem(ai, Bi. 6n. ) (6)
with amplitude A,(rg) and one up-going with amplitude re=rol o

Bn(ro) with incident elevation anglesy, and 7—an, re-  where (;,8;) is the direction the plane wave from the

spectively. Each scattered mode is also composed of a pair @hyrce travels to, and the cosine between the directions
plane waves with amplitudB(r) and elevation anglery, (¢, 4,) and (a;,) is

for the downgoing plane wave and amplitullg(r) and el- _ )

evation angler— a,, for the upgoing plane wave.Each of ~ 7(@i;Bi, 61, ) = COS a;COSH; +Sin a;sind; oS (Bi— dy).
the four terms in Eq(l) represents theoherentscattering of @
one of the two incoming plane wave components ofritte  The Green'’s function in free space is
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1 eiklr—r 1 ekr where the last approximation is for a receiver so far from the
G(rlr)=———~-——e km®aBbd) (8  opject thatr>r,. By application of Green’s theorem, the

A |r—rt| 41 r . . ! . .
scattered field at this distant receiver then can be written as
ikrg eikr ) ro . J )
dyr)=—A A elkrin(@ifibud) 4 — e~ klog (1) | — e~ Krun(@h.oudy
ro 4r t A t

_e—ikrmw,ﬁ,wt)i(eikrm<ai,ﬁi,at,¢[>+ fo -ikrogp 1) | Ldia, . )
A s\it t

an,

By definition of the plane wave scatter functi®«, 8, «;,8;), however, Eq(9) can also be written as
ikrg aikr

_S(arﬂ!ai!ﬁi)! (10)
kr

dy(r)=A
o
in an object-centered coordinate system, which leads to the equality

k . r . J )
B y— ikr p(ai,Bi 0pdp) 1 O a—ikrg 7 a—ikrgn(a,B. 0 dy)
S(e, B, i, Bi) ype @At[ (e i"Bi + Ae @S(rt))& e

2
ref

Ny
_e—ikrtmaﬁﬂt,asoi oikren(ey. By, 0. 4 1O e“k’od)s(rt)) dA,, (11)
an, A
|
that relates Eq(9) directly to the Green’s theorem when Equation(10) can be recast as a sonar equation by tak-
>r,. ing 10 log of the squared magnitude of both sides,
Using the free space Green’s function, E§), we can
i [y
write Eq. (10) as 10 o s

) =SL—TL(0ro)+ TS—TL(r|0), (13

D(1) = A0l (7o) T LA

(120 whereP,=1 uPa,r,=1 m, and

From Eq.(12), we see that the Green’s functions that de- SL=20 Io% dB re 1 wPa at 1 m, (14)

scribe the propagation of waves from source to object
G(0|ry) and from object to receive@(r|0) are decoupled

from the scattering functio®(«, 8, «;,8;) of the object that TL(O[rg)=20 Iogr—o dB re 1 m, (15)
governs the scattering process. Only the directions of the
source and the receiver relative to the object matter for

refl ref

ref

farfield scattering in free space where propagation and scat- S(e,B,,Bi)

tering effects become factorable from each other. The ap- TS=20 Io% KT 1o ‘ dB re 1 m, (16)
proximation given in Eq(12) is always valid in the farfield,

wherer, ro>L?/\, and may be valid at much closer ranges r

for certain targets, such as sphetékhe incident wave ef- TL(O[r)=20log— dB re 1 m. 17)
fectively arrives at the target as a plane wave propagating Fref

from the direction of the source and the scattered wave at theollowing the sonar equation, the radiated sound has a
point receiver behaves as a plane wave propagating from theource level of SL, which is the sound pressure level mea-
target centroid. The scatter function of the target determinesured &1 m from the source. This is reduced by the trans-
how a plane wave from the source is scattered in the direanission loss TL(y|0), from source to target centroid. The
tion of the receiver. level is augmented by the target strength TS, and further
It is important to notice that Eq12) is in the frequency diminished by transmission loss TQl¢) from target centroid
domain for a time harmonic source. If the source was broadto receiver. The level of the scattered field in decibels, Eq.
band with spectrunQ(f), the received field would be the (13), is a linear combination of these incoherent quantities.
inverse Fourier transform of the product Qf(f) and the The incoherent target strength is obtained from the magni-
right-hand side of Eq(12). For a broadband source signal, it tude of the free space scatter function following ELf). It
is impossible to separate scattering from propagation even icontains only the amplitude but not the phase information of
free space. For a narrow band sourdey Q(f)df. the coherent scatter function and depends only on the direc-
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tion of the source and receiver, relative to the target. A conscattering are then separable, and the sonar equation be-

ceptual diagram of free space scattering is given in Higl.1 comes valid in a waveguide where and «; are approxi-

mately 77/2 in Eq. (21). Target strength, along with the other

incoherent terms of the sonar equation, SL and TL, then

become sufficient to determine the scattered field level in

decibels. We approximate the horizontal grazing angle span
It is common practice when using the sonar equation irof the waveguide modes by

a waveguide to replace the transmission loss in free space

with that in the waveguidéThis can be done analytically by A | T

replacing the free-space Green'’s function with the waveguide  — Ay== 27 MMy (22)

Green'’s function in Eq(12). Using a modal formulation, the

Green’s function in the waveguide between a point at thevhere

origin 0 and a field point at can be expressed as a sum of

B. Application of the sonar equation in a waveguide

normal modes, meax
ay_ =tant (23
i  Nmax elém " MM e
G<r|0>=m(8w)*l’2e*'”’42 Unn(Z2)Upy(0) ——.
o V§m€18) Here M s and Ay are range-dependent, even in realistic

range-independent waveguides, and tend to decrease with
Using Egs.(2) and(4), we can express the Green’s function range due to attenuation from absorption and scattering in

in the waveguide, Eq.18), as the ocean, following the process known as “mode strip-
My ping.” This is significant because the sonar equation approxi-
G(r|0)= % [A(1)—B(N)]. (19 mation improves ad s decreases for fixedl/L.

By reciprocity,
IV. ILLUSTRATIVE EXAMPLES IN SHALLOW WATER

M max

G(0lrg)=G(ro|0)= > [An(ro)—Ba(ro)]. (20 We now use examples to illustrate the fact that the sonar
" equation is valid when the scatter function is roughly con-
Substituting the waveguide Green’s functions, E49) and  stant over the equivalent horizontal grazing angles spanned
(20) into Eq.(12), we obtain the sonar equation approxima- by the dominant waveguide modes. We show that the sonar
tion for the scattered field from an object in a waveguide: equation is generally a good approximatidn for all objects
when 2A ¢y<\/2L, for homogeneous convex objects when
2Ay<\/L, and(2) for spheres and certain other rounded
objects in nonforward scatter azimuths, even wkBndoes

M

¢s(f|fo)=A(47T)2( ; [An(ro) —Bn(To)]

not hold. We proceed by analyzing active sonar examples for

« e )S(a,ﬁ,ai,ﬁi) a variety of target types and shallow water waveguides with

; [An(1)=Bm(n)] (21)

K : both the sonar equation and the waveguide scattering model.
In all the illustrative examples, a water column of 100 m
The wave-theoretic model for object scattering in adepth is used to simulate a typical continental shelf environ-
waveguide, Eq(1), differs significantly from the sonar equa- ment. The sound speed in the water column is isovelocity at
tion model in Eq.(21). In the waveguide scattering model, 1500 m/s with a constant density of 1 gitand attenuation
the scattered field depends on the direction of each incomingf 6.0x 10> dB/\. The seabed is either perfectly reflecting
and outgoing modal plane wave. Each incoming plane waver comprised of sand or silt half-spaces. The density, sound
is coherentlyscattered to each outgoing plane wave by thespeed, and attenuation are taken to be 1.9 §/&00 m/s,
object depending on the scatter function, which can varyand 0.8 dBX for sand, 1.4 g/cth 1520 m/s, and 0.3 dB/for
with the azimuth and elevation angles of the incoming andijit. The receiver is either colocated with the source, in which
outgoing plane waves. In the sonar equation model, sincgase we calculate the backscattered field where 0, B
propagation and scattering are assumed to decouple, the scat~, or in the forward azimuth of the object whef=
tered field depends only on the direction of the source and-0 and we calculate the forward scattered field. The scat-
receiver relative to the object and not the direction of thetered fields from a disk, sphere, spheroid, and composite tar-

individual modal plane waves. _ get are computed as a function of increasing range between
The sonar equatiofR1) is a special case of the general source—receiver and object. In all the examples, the range
coherent Scattering formulation for a Waveguide of Eq, increases a|ong the axis and depth a|0ng theaxis.

and so is only valid under restrictive conditions. If the scatter
function remains constant over the horizontal grazing ang|
span of the waveguide modesAy for the given measure-
ment scenario, the scatter function factors from the modal We use examples to illustrate how the validity of the
sums of the waveguide scattering model, EL), that then sonar equation depends on the bottom type through the graz-
reduces to the sonar equation, E@1). Propagation and ing angle span of the waveguide modkég. In a Pekeris

. Effect of bottom type on the validity of the sonar
equation
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FIG. 2. The backscattered field from an upright 10 m radius rigid circular disk at 300 Hz in Pekeris waveguidé® siith (b) sand, andc) perfectly
reflecting bottoms, respectively, calculated using the waveguide scattering mod€l),EBnd compared to the sonar equation, &1). The water depth is
100 m with the source—receiver and object at 50 m depth in the middle of the water column. The range increasesaiotig dne depth along theaxis.

The circular disk is aligned with its plane normal to thaxis. The results are plotted in decibels, i.e., 2Qdag;, as a function of increasing range between
the object and monostatic source—receiver. The source level isr® #BPa at 1 mkais 12.6 for this exampled) The ratio 2A /(\/L) for the examples
given in(a) and(b). For the perfectly reflecting waveguideA2s/(\/L) is 12.6. The sonar equation provides a good approximation to the scattered field in
the waveguide when2¢/(N/L)<1.

waveguide, Ay is bounded by the critical grazing angle of , ‘ , ; -

. . 50 Sonar Equation
the bottom . beyond a few waveguide depths in range — Waveguide Mods]
where the leaky modes no longer contribute significantly. A Z —60 )
bottom with a large sound speed contrast relative to the wate =
column has a correspondingly large, M. and Ay. So g —70r
for fixed source frequency and object size, the sonar equatio@
approximation is expected to improve as this sound spee(g
contrast decreases. We show this by examining Pekeri:é 90+
waveguides with silt, sand, and perfectly reflecting bottoms s

; o : : =-100
that, respectively, exhibit an increase in sound speed con-
trast. 110+

The backscattered field from a homogeneous convex ob
ject, an upright 10 m radius rigid circular disk at 300 Hz, is
plotted in Figs. 28)—(c) for the three bottom types. For this  _ 5, ‘ : ; ; ‘
example, the produdta= L/\ is 12.6, wherea is the ra- 0 5 10 RangIeS(km) 20 25 30
dius of the disk, andka is the ratio of the object circumfer-
ence to the Wavelength- .BY applymg Qreep’s theorem, the g, 3. similar to Fig. Pb), except the scattered field in the back azimuth is
scatter function for the rigid circular disk is found to be averaged over depth throughout the water column from 0 to 100 m.

Scattere

—120¢
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FIG. 4. The magnitude of the plane wave scatter function 2[Blag 8,«;=90°,8;,=0°)| for an upright rigid circular disk oka=12.6 is plotted as a
function of horizontal grazing90°—a) and azimuthg angles of scattered plane waves for an incident plane wave traveling in the direction ¢90°
=0°,8;,=0°. The scatter function is antisymmetric about the plane of the disk, as can be seen fr@4)Eq.

2 k
S(a,B,a;,B)=— %(7) sin a cos B circl TL\/(sin a; Sin B;—sin a sin B)?+(cosa;—cosa)?|, (24)

where L=2a is the diameter of the disk and cisg( the average value over the receiver depth throughout the wa-

=2J,(x)/x. An alternative but equivalent derivation and ter column. For ranges beyond roughly 5 km in the silt wave-

form for the scatter function can be found in Ref. 14. guide, the ratio is less than unity and the condition for the
As expected, the sonar equation matches the waveguid®mnar equation to be valid holds. Figur@Ralso shows that

scattering model well in the Pekeris silt waveguide of Fig.the condition is generally not satisfied in the sand waveguide

2(a) beyond roughly 5 km range. In the Pekeris sand wavefor the ranges shown. The condition is never satisfied in the

guide, Fig. 2Zb), the difference between the sonar equation

and the waveguide scattering model is as much as 10 dB

within a few kilometers range. The match, however, im- 90 ' '

;00

proves as the range increases. In the perfectly reflecting g 30° 1
waveguide, Fig. &), the sonar equation overestimates the L o
scattered field level by as much as 20 dB. This error is more %70 / o 600 ]
than half the object’s maximum target strength of 36rdB& E P ;’/ \ % |
m, which occurs monostatically at broadside. The scatterec &, \

field shows greater fluctuation with range for the sonar equa- S50

tion approximation than for the waveguide scattering model. § 2y, silt

This is true in all three waveguides. 540¢ s 5 / ]
In practice, measurements are often averaged ove @30, 2y, sand |

space, time, or frequency to reduce the fluctuations that aris: % S F

from waveguide interference. Less fluctuation with range is 320 / 2y, perfectly reflecting |

observed in both of the depth-averaged scattered fields o G \

Fig. 3 than in Fig. &) for the sand bottom. The discrepancy P .

between the sonar equation and waveguide scattering mode¢ " "””/Q 40 50 h
Scattered Grazing Angle (degree)

remains, however, with differences as large as 10 dB still 60 80
occurring within a few kilometers range.

The reason that the sonar equation is found to be a gooBlG. 5. The magnitude of the plane wave scatter funct®fw,8,«;, 5;
approximation for the silt beyond roughly 5 km but not the =fot;‘)| fr?f an U{Jfllght rigid C'rcullgo dlsk)okfa= 12&6 Isdplcitted as afun_ctl?r?

. . : ... of the horizontal grazing anglé90°—a) of scattered plane waves in the
sand or perfectly reflectmg wavggwdes |s_that th_e COndItlor!)ackscatter azimutB=180° for several incident plane waves with horizon-
2A¢y<A/L 0n|.Y_h0|d$ for the silt wavegglde. This can be tal grazing angles (90° ;) =0°, 30°, 60°, and 90°. The solid curve in this
seen by examining Fig.(8), where the ratio 2 ¢//(\/L) is figure for broadside incidend€90°— «;)=0°] is a slice through Fig. 4 at
plotted. HereAy is computed from Eqs22) and (23) at a the backscatter azimut,ﬁ_:180°_of the scattered plang waves. '!'he wicith
given receiver depth by determining the minimum value for)‘/L of the scatter funt_:tlon main lobe fo_r broadside incidence |s_14.3 or

. . 0.25 rad. Also shown is the critical grazing anghe of the seabed in the
M max @t which the.mQQaI sum of Eq1) d|ffe_r5 |eS§ than 1 Pekeris slit waveguide of 9.3°, Pekeris sand waveguide of 28°, and the
dB from that of an infinite sum. Th&¢ used in the figures is perfectly reflecting waveguide of 90°.

1804 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002 Ratilal et al.: Sonar equation and Babinet's principle in a stratified medium



perfectly reflecting waveguide because the ratioy2 (\/L) directions: those of the source and receiver relative to the
is always 12.6. As expected, the performance of the sonasbject. The two relevant directions for the upright disk are
equation improves with range in realistic ocean waveguidegs/2— ;)=0 andB;=0 for the incident and £/2— «)=0

becauseM o andA ¢ decrease due to modal stripping, as isand g= r for the scattered field. These correspond to global
evident in Figs. 2a), (b), and(d). Note thatAy can be de-  axima in both the scatter function and target strength, as

Leerr;iergandf:gor;n;iggé 841){jlsrigcse)\|{| I;r:e Ochés ;ggtgrlfﬁi?iois r?wzrg‘]ni:an be seen in Fig. 5, which is inappropriately assigned to all
. : S . ncoming and outgoing directions by the sonar equation.
tude is plotted for the upright disk, where the main lobe has s utgoing directi y quatt

a minimum width of\/L for a plane wave incident at broad- B. Effect of object size and frequency on the validity
side, where ¢/2— a;)=0. of the sonar equation

To visualize why the sonar equation is not valid when
the condition 2A y<<(\/L) does not hold, it is instructive to
plot the width of the bottom.cntlcall angle for gach bo.ttom_ circular disk in various waveguides. At the high of 62.8
type across the scatter function main lobe, as is done in Fig. o o
5. When the condition does not hold, the object scatters th hown in Figs. &), (c), and(e), the objec'.[ IS Ia_rge_ _compared
dominant incident modes with widely varying amplitudes to t.he wavelength and the- sonar equat|.on.5|gn|f|cantly over-
and the scatter function cannot be approximated as a constettimates the scattered field level. This is to be expected
over=Ay. In this case, both the magnitude and phase variaffom Fig. 6g), where the condition 2<\/L is not satis-
tions of the scatter function are important in describing thefied in any of the waveguides. At the lowka of 1.3, Figs.
scattering process. The sonar equatioverestimateshe  6(b), (d), and (f), the sonar equation provides a good ap-
level of the scattered field because it depends only on twproximation in all except the perfectly reflecting waveguide,

In this section, we investigate sonar equation perfor-
mance as a function of object size and frequency for a rigid
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FIG. 6. Similar to Figs. @&a)—(c), but for an upright rigid circular disk dfa) high and(b) low ka in the Pekeris silt waveguidé;) high and(d) low kain the
Pekeris sand waveguide, afel high and(f) low kain the perfectly reflecting waveguide. The hilghcase corresponds to a disk of 10 m radius at 1500 Hz
with ka=62.8 while the lowka case corresponds to a disk of 1 m radius at 300 Hz Witk 1.3.(g) and(h) are similar to Fig. &) but for ka of 62.8 and
1.3, respectively for the cases shown (®—(d) in the Pekeris silt and sand waveguides. The ratidy2(\/L)=62.8 for (e) with ka of 62.8 and

2 Ayl (N/L)= 1.3 for (f) with ka of 1.3 in the perfectly reflecting waveguide.
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which is consistent with the results of Fig(h, where the lowering the frequency of operation. The scatter functions
condition is satisfied for the sand and silt waveguides for alfor the high and lowka cases are plotted in Figs(&f and
ranges shown. This shows that the sonar equation can l4b), respectively. For the lowa case in the perfectly reflect-
made valid for a given object and measurement geometry bing waveguide, the width of the scatter function lobe is only

2000+ (a) = 00
30°
& === 60°
9 90°
L<] L
.§1500 |
=
2
=
=3
.S1000F 1
o "
= LY
= 'y
|9 I' '
5 Y
5 5000 L 1
O IR AN m/\lﬂmm .

g -80 -60 -40 -20 0 20 40 60 80
Scattered Grazing Angle (degree)

0.9— T T T T . . =
| () —0

o
N N
w
<

Scatter Function Magnitudeg|
S © o o o ¢
N w -D- n

o
—_

80 —60 —40 20 0 20 40 60 80
Scattered Grazing Angle (degree)

FIG. 7. Similar to Fig. 5, but for an upright rigid circular disk @) ka=62.8 and(b) ka=1.3. The width\/L of the scatter function main lobe for broadside
incidence (90°— a;)=0°] is 2.9° or 0.05 rad foka=62.8 and 143° or 2.5 rad fdcta=1.3.
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FIG. 8. Similar to Figs. @)—(c) but for a 10 m radius pressure-release sphere at 300 Hz i@thack andb) forward azimuths in Pekeris silt waveguide,
the (c) back and(d) forward azimuths in Pekeris sand waveguide, andéhéack and(f) forward azimuths in the perfectly reflecting waveguikleis 12.6
for this example.

slightly smaller than the full grazing angle span of the wave-tion approximation is always valid since the scattered field is
guide modes so the sonar equation provides only an ordeeffectively omnidirectional. For rigid objects that are com-
of-magnitude approximation in backscatter. pact, the sonar equation is still a good approximation, even

In general, for pressure-release objects that are compadhough their scattered field always maintains some direction-
small compared to the wavelengtka<<1), the sonar equa- ality aska decreases.
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FIG. 10. (a) and (c) are similar to Fig. 5, but for a pressure-release spherkasf12.6 plotted in the backB=180° and forward(B=0°) azimuths,
respectively, of the scattered plane waves. The solid curvies and(c) for (90°— «;) =0° are slices through Fig. 9 in the back and forward scatter azimuths,
respectively. The width\/L of the scatter function main lobe is 14.3° or 0.25 raddh The phase of the scatter function for the solid cuverizontal
incidence, @;—90°)=0°] in (a) and(c) is shown in(b) and (d), respectively, which are in the back and forward scatter azimuths.
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FIG. 11. Similar to Fig. 8, but for a pressure-release prolate spheroid of aspect ratio 2 with a major axis of 40 m and a minor axis of 20 m at 300 Hz. The
spheroid is aligned such that the incoming plane waves are incident at the bow aspeckamhé6.

C. Effect of orientation and shape of homogeneous clockwise by 18° and 34°, respectively, about yhexis. This
convex targets on the validity of the sonar places the zero of the scatter function at the horizontal, as
equation can be seen by the inspection of Fig. 5, so that the scatter

In this section, we investigate the effect of orientationfunction experiences a phase change about the horizontal.
and shape on the validity of the sonar equation for homogeThe difference between the scattered field and sonar equation
neous convex objects. The effect of orientation is investifor the two rotated cases is almost identical to the unrotated
gated by rotating the upright dislkk&=12.56) of Sec. IVA case shown in Figs.(@—(c). The variation across the cases
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is less than roughly 1 dB for ranges beyond 1 km, showing —
that the condition A <<\/L, as shown in Fig. @), holds, -80
regardless of object orientation. This makes sense becausE
the condition states that the sonar equation will be a gooc >
approximation if the scatter function undergoes no more &~

Waveguide Model
Sonar Equation

1oo,| kbt b |

than one oscillation within=A. This minimizes the 2 | I[III

destructive interference possible in multimodal propagationg-120f \ ‘HI w “h

and scattering. - LA | ' |
= \ |

There are two limiting object shapes for homogeneouss 10l 11 I ' !
convex objects, flat and rounded ones. Flat objects, such a%_
the disk examined in the previous section, are highly direc-
tional scatterers wheka is large. In free space, they scatter
the strongest in specular and forward scatter directions. The
sonar equation is only valid for flat objects when the condi- 80— . iy N
tion 2A<\/L holds, as demonstrated in the previous sec- 0 5 Rangle5(km) 20 25 30
tion for an upright disk and in this section for the rotated
disk. We note that the scattered field level in the forwardric. 14. Similar to Fig. 1¢e), but for a pressure-release prolate spheroid of
azimuth is identical to that given in the back azimuth in Figs.aspect ratio 5 with a major axis of 20 m and a minor afig o at 300 Hz.

2, 3, and 6 because the scatter function for the upright disk i he spheroid is aligned_such that the incoming plane waves are incident at
antisymmetric about the plane of the disk, as can be seen in- bow aspect wherkea=2.5.

Eq. (24) and Fig. 4. The phase of the scatter function is o ) ]
constant over the main lobe, as can be seen in#j. This backscatter direction for the sphere in the Pekeris sand and

constancy over the main lobe is characteristic of flat objects?'lt waveguides. . . .
In the perfectly reflecting waveguiddy is #/2 rad or

where the narrowest lobe is always the main lobe for broad- . .
°. In this case, some higher-order modes at very steep

side incidence. Rectangular plate examples are investigated . ) R
in Ref. 15. incident grazing angles near 90°, for example, scatter much

When the condition 2 < )/L does not hold, the sonar stronger in the backscatter aZ|mth than the other m_ode; of
: ) . lower order that scatter more uniformly, as shown in Fig.
equation can still be extremely accurate in nonforward scat;

ter azimuths for spheres and certain other rounded O%O(a). The phase of the scatter function also varies by more

smoothly varying convex objects. For these objects, the scanhan 1807 overy: As a result, scattering is not completely
y varying . ) Ny . ) T ecoupled from propagation and so the sonar equation pro-
ter function is approximately uniform in nonforward direc-

vides only a crude approximation in the backscatter azimuth,
tions but has a main lobe in the forward direction of width y PP

as shown in Fig. &).
N/L. This uniformity makes it possible to approximate the 9- &

o ) In the forward azimuth, the sphere scatters approxi-
scatter function in nqnforward a2|muths_as a ff_;lctorable COMately as a flat object with the same projected area, by Babi-
stant over+ A ¢, making the sonar equation valid. The sonar

net’s principle, and so behaves like the disk of Fig. 2. Similar

equation, however, will still only be valid in the forward conciusions can be drawn for the prolate spheroid from Figs.
scatter azimuth for spheres and rounded objects whir 2

<A/L holds because they behave like flat objects in forward
scatter by Babinet’s principle. These issues will be illustrated
for two smoothly varying convex objects, the sphere and the
prolate spheroid, in the same three waveguides examined il__ | *
previous sections. Babinet's principle will be discussed fur- %12,
ther in Sec. V. E
As expected, the sonar equation predicts the backscat gol()‘
tered field much more accurately than the forward scatterec=
field for both the sphere and the prolate spheroid, as showr.§ 8r
in Figs. 8 and 11, respectively, for the various waveguides. §
This can be explained by examining the scatter function of a"-
sphere, given in Ref. 14 and plotted in Figs. 9 and 10. Figure% 4
10(a) shows that the magnitude of the scatter function in the & _ )
backscatter azimuth for the sphere is approximately constan  2p, % -
over +Ayin the Pekeris silt and sand waveguides, whege W R et T g
can be determined from Fig.(_da. Fig_ure 1@b) shows that 0 20 —60 —40 20 0 20 40 60 80
the phase of the scatter function varies by less th@nover Scattered Grazing Angle (degree)
+Ay and so can be considered effectively constant. This

means that the scatter function can be factored from th&'C: 15. Similar to Fig. 5 but for a pressure-release prolate spheroid of
aspect ratio 5 with a major axis of 20 m and a minor axis of 4 m at 300 Hz

modal sum in Eq(1) so that propagation is deCOUple_d f_rom in the backscatter azimuth=180°. The forward scatter direction is along
scattering. The sonar equation then becomes valid in th@e major axis. At the bow aspect of the spherdid=2.5.

.l' "li wl i bl l-l'l .Ilr I];_d

Scatter

-160

6..
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FIG. 16. Similar to Fig. 2a) but for a “single object” comprised of two point scatterers with a separatida)df =2 m and(b) L =10 m, respectively, at 1500
Hz. (c) The ratio 2A ¢s/(\/2L) for the examples given ifa) and(b). The sonar equation provides a good approximation to the scattered field in the waveguide
when 2A /(N /2L)<1.

11-13. Its scatter function is given in Ref. 14. consider an aggregate of disjoint scatterers as a “single ob-
The sonar equation can sometimes underestimate thect” with a single scatter function. In the limiting case of
scattered field depending on the object type, size, waveguidéyo point scatterers separated by lengthormal to the in-
and frequency. In Fig. 14, the sonar equation underestimatesdent wave, the main lobe of this “single object’'s” scatter
the backscattered field from a spheroid in a perfectly reflectfunction has the narrowest width possidl&2L). The con-
ing waveguide by a small amount, roughly 3 dB. The sonagition for the sonar equation to become valid in a waveguide
equation assumes that the scatter function is constant anflen is the most stringent 2¢<\/2L.
equal to that at the incidentn{2—a;)=0 and scattered The scatter function for a “single object” comprised of
(m/2—a)=0 grazing angles in Fig. 15. This, however, cor-two point scatterers separated in depth by lengths
responds to the backscatter minimum in the scatter functiop cos(rL[cosa;—cosa]/\) if the scatter function of each
plot and is not representative of all values withir . point is unity. The field scattered from this “single object” is
given in Figs. 16a) and(b) for point separations df=2 m
andL =10 m, respectively, at 1500 Hz using both the sonar
. . ] equation and waveguide scattering model. Eefr2 m the
D. Nonconvex objects and fluctuating objects sonar equation is valid and matches the waveguide model
The scatter function lobes for homogeneous convex obbecause the condition 2¢4<\/2L is satisfied, as can be
jects have minimum widths limited ta/L by diffraction. ~ seen in Fig. 1€). This condition is not satisfied for thie
For more general, potentially inhomogeneous, and noncor=10 m case, where the sonar equation is not valid, as can be
vex objects, the scatter function lobes are limited by bothseen in Figs. 1@®) and(c).
diffraction and interference from different parts of the object. For an object whose orientation is unknown or con-
For example, a situation may arise where it is convenient tgtantly varying, like a fluctuating target, a conservative cri-
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terion for the sonar equation’s validity in a waveguide is
2 AY<\I2L o Wherel .« IS the largest spatial extent of the
object, which may be composed of an aggregate of disjoint
scatterers.

E. Forward scatter function and projected area for
homogeneous convex objects

According to the extinction or forward scatter theorem
in free spacé®'38the scatter function of an object in the
forward direction at a given frequency is proportional to the
object’s projected area normal to the direction of propagation
of the incident wave for higka. The projected area of the 10
m radius rigid circular disk is largest for plane waves inci-
dent on the disk at horizontal grazing=/2— «;)=0], as
shown in Figs. 5 and(@). At other incident grazing angles,
the projected area of the disk is smaller and the peak value of
the scatter function corresponding to forward scatter de-

pressure-release sphere and a pressure-release prolate spheroid of asﬁé@(ases- In. addi.tio.n,.the width of the forward Slcatter lobe
ratio 2 with a major axis of 40 m and a minor axis of 20 m are plotted as abroadens since it is inversely related to the projected area.

function of horizontal grazing angler; —90°| of the incident plane waves.
The orientation of the disk and spheroid are similar to Figs. 2 and 11.

\ Scattlered Flield Level (dB re 1 uPa)
B = 5 b b 4L & 4
S o & & & o &5 ©

I ' I Sphere
®) — Disc
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15
Range (km)
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For a compact pressure-release objdca<€1) the scatter
function becomes omnidirectional.
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FIG. 18. The forward scattered field at 300 Hz calculated using the waveguide scattering modé), Egm a 10 m radius pressure release sphere is
compared to that from a rigid circular disk of radius 10 m(a@h Pekeris silt,(b) Pekeris sand, angt) perfectly reflecting waveguideka is 12.6 for these
examples. The geometry of the setup is similar to Figs. 2 and 8, except that the receiver is in the forward azimuth.
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FIG. 19. Similar to Figs. 1&)—(c) but for a pressure-release prolate spheroid of aspect ratio 2 with a major axis of 40 m and a minor axis of 20 m and a rigid
circular disk of radius 10 nmkais 12.6 for the disk and for the spheroid in the bow aspect in these examples. The geometry of the setup is similar to Figs.
2 and 11, except that the receiver is in the forward azimuth.

For the 10 m radius pressure-release sphere in Figobject by the largest 2-D cross section of the object normal
10(c), the forward scatter function’s peak is constant becauseo the incident wave. This is Babinet’s principle. For ex-
the projected area of the sphere is independent of the angtemple, in free space, a sphere, and a circular disk of the same
of incidence. This is not true for the pressure-release prolatgadius, with the disk aligned normal to the incident wave

spheroid in Fig. 1&), where the projected area increasesyector, have the same projected area, and hence identical
with the incident grazing angle. This causes the scatter funGgpward scattered fields whee> 1.

tiqn to have a forward scgtter lobe with increasing peak am-  \ne find that Babinet's principle is approximately valid
plitude and decreasing width. in forward azimuthin a waveguide if the projected area of
the object does not vary significantly for incident plane
V. BABINET’'S PRINCIPLE AND EFORWARD waves overtAy. We stress that this holds in the forward
SCATTERED FIELD IN A WAVEGUIDE azimuthbecause there is generally no unique forward direc-

Babinet's principle maintains that the forward scatteredtion in a waveguide. This result is illustrated in Figs. 17-20.

fields from impenetrable objects in free space with identicaIThe projected areas for an upright disk, sphere, and prolate

projected areas are equal for larga'®!® This also holds spheroid are shown as a function of horizontal grazing angle
true for some penetrable objeéfsThe forward scattered in Fig. 17, where the spheroid is priented as in Sec. I\( C.All
field from a large object in free space interferes destructivelyree objects have the same projected area for a horizontally
with the incident field to form a shadow directly behind the Propagating plane wave. The spheroid deviates the most
object. In the farfield, the intensity of the forward scatteredffom its flat counterpart, the disk, as the grazing angle
field is the same pattern as that diffracted through a hole o¢hanges. The corresponding valuesiaf over range can be
the same projected area as the object in a rigid wall. Theletermined from Fig. @) for the sand and silt waveguides,
forward scattered field then only depends on the projectednd are typically less than 30°, where the variation in pro-
area of the object. It is therefore possible to replace the 3-[ected area is small for all three objects. For the perfectly
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FIG. 20. Similar to Fig. 18 but at 1500 Hka is 62.8 for these examples.

reflecting waveguide, the variation in projected area is veryver the equivalent horizontal grazing angleg\¢ spanned
large for all three objects, sina®y is 90°. Babinet’s prin- by the dominant waveguide modé&shis is approximately
ciple is then expected to be valid for these objects in the siltrue (1) for all objects when A #<\/2L and(2) for spheres

and sand waveguides at hida, but not in the perfectly and certain other rounded objects in nonforward scatter azi-
reflecting waveguide. This is found to be the case in Figsmuths, even whefil) does not hold. For homogeneous con-
18-20, where in Figs. 18—1Ra is not large enough for vex objects conditiorfl) is the less stringent & y<\/L.
Babinet's principle to provide a better than crude approxima-  The sonar operator has the ability to lower the frequency
tion, even in freespaceThe spheroid's scatter function is of transmission until the target's scatter function becomes
computed using spheroidal wave functions that are known t‘épproximately constant over A . The sonar equation then

be numeri_cally unstable for large arguméntand so thg becomes valid wherfi<c/(4L Ay). Operating in this fre-
_scattered field at the high&a value of 62.8 for the spheroid quency regime is desirable because when the sonar equation
is not shown. is valid, only a single-parameter, target strength, is necessary

Wheq Bab?lr;et'sl ptr)incipllli hOIgS ifn a wzveguide, the Scr)1'to characterize the scattering properties of the target. This
r;a’:;]equatéqtp W'monz)jz\lia.' th f? (;)rwar Zlcatter faz;)mutt greatly simplifies target classification in a shallow water
'l the condition v IS salistied, regardiess ot objec waveguide by making the traditional appro&éhvalid.
shape. This means that rounded objects such as spheres have . S . _

We find that Babinet’s principle is approximately valid

no advantage over flat objects in attaining the sonar equation . . . .
. 9 ) 00 . 9 q in the forwardazimuthin a waveguide if the projected area
in the forward azimuth in a waveguide.

of the object does not vary significantly for incident plane
waves over*A. When Babinet's principle holds in a
waveguide, the sonar equation will only be valid in the for-
ward scatter azimuth if the conditiom\2)<<\/2L is satisfied

As a general conclusion, we find ththe sonar equation regardless of object shape. This means that rounded objects
is valid when the target's scatter function is roughly constantsuch as spheres have no advantage over flat objects in attain-

VI. CONCLUSION
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