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Abstract—We present methods for estimating forces which drive motion observed in density image sequences. Using these forces,

we also present methods for predicting velocity and density evolution. To do this, we formulate and apply a Minimum Energy Flow

(MEF) method which is capable of estimating both incompressible and compressible flows from time-varying density images. Both the

MEF and force-estimation techniques are applied to experimentally obtained density images, spanning spatial scales from

micrometers to several kilometers. Using density image sequences describing cell splitting, for example, we show that cell division is

driven by gradients in apparent pressure within a cell. Using density image sequences of fish shoals, we also quantify 1) intershoal

dynamics such as coalescence of fish groups over tens of kilometers, 2) fish mass flow between different parts of a large shoal, and

3) the stresses acting on large fish shoals.

Index Terms—Force estimation, density prediction, compressible flow estimation, minimum energy flow.

Ç

1 INTRODUCTION

ESTIMATING velocity and force fields from image se-
quences is an essential and often first step of analysis

in a wide variety of applications such as object detection
and tracking, robot navigation, visual odometry, medical
imaging, remote sensing, and satellite imagery. Image
sequences used in these applications describe both com-
pressible and incompressible flows. A variety of methods
exist for estimating velocity fields, such as Optical Flow [23]
and pressure gradients [38], [54] from time-varying images
describing incompressible motion.

In this paper, we develop and apply methods for
estimating the forces driving motion observed in density
image sequences, where pixel values can be modeled as
proportional to the density of a compressible fluid. Using these
forces, we also present methods for predicting future
velocity and density values. To do this, we formulate and
apply a Minimum Energy Flow (MEF) method to estimate
velocity fields from image sequences, describing both
compressible and incompressible flows.

The MEF and force-estimation techniques can be gener-
ally applied to any density image sequence, where pixel
values can be modeled as proportional to the density of a
compressible fluid. Here, for example, we demonstrate these

techniques at the microscale by quantifying the dynamics of
cell division, and at the macroscale by quantifying fish shoal
dynamics over tens of kilometers. Using density images of a
cell undergoing mitosis [19], we quantify the velocity, net
force, and apparent pressure fields inside the cell. We find
that the cell division is driven by the formation of two regions
of low apparent pressure at opposite sides of the cell and a
region of high apparent pressure at the center. Using fish
population density images obtained with an Ocean Acoustic
Waveguide Remote Sensing (OAWRS) [32], [27] system, we
quantify 1) intershoal dynamics such as coalescence of fish
groups over tens of kilometers, 2) fish mass flow between
different parts of a large shoal, and 3) the stresses acting on
large fish shoals. To study collective behavior, large animal
groups, including fish shoals, are often modeled as com-
pressible fluids [51], [52]. Such theoretical group behavior
models predict average velocities and forces inside animal
groups, which can be verified using our MEF and force
estimation techniques.

2 BACKGROUND

Classical motion estimation from image sequences describ-
ing incompressible motion is based on Horn and Schunk’s
[23] work on determining Optical Flow. Barron et al. [4]
review and compare the different optical flow techniques,
including [23], [31], [53], [37], [2], [47], [22], [55], and [18],
where the 2D velocity field (u) is computed from spatial
and temporal variations in the image intensity (E) patterns
by minimizing a global cost function of the formZZ

�

f
@E

@t
þrE � u

� �
þ �g ruj jð Þ dx dy;

where fð�Þ and gð�Þ are monotonically increasing functions
(usually the magnitude squared of the argument), � is an
empirically determined weight, and � is the image plane.

The above choice of cost function is especially suited for
incompressible motion estimation since 1) the argument of

1132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 6, JUNE 2011

. S. Jagannathan and N.C. Makris are with the Department of Mechanical
Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139. E-mail: {jsrini, makris}@mit.edu.

. B.K.P. Horn is with the Computer Science and Artificial Intelligence
Laboratory, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Room 32-D434, 32 Vasar Street,
Cambridge, MA 02139. E-mail: bkph@csail.mit.edu.

. P. Ratilal is with the Department of Electrical and Computer Engineering,
Northeastern University, Room 311, 302 Stearns Center, 360 Huntington
Avenue, Boston, MA 02115. E-mail: purnima@ece.neu.edu.

Manuscript received 8 Apr. 2010; revised 26 July 2010; accepted 28 July 2010;
published online 30 Sept. 2010.
Recommended for acceptance by S. Belongie.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-04-0251.
Digital Object Identifier no. 10.1109/TPAMI.2010.185.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society



fð�Þ should be zero in an incompressible fluid [5] when E is
proportional to the density � of the fluid, and 2) minimizing
gð�Þ, also known as the “unsmoothness of flow” criterion,
suppresses large gradients in velocity which are usually
associated with compressible flows.

In compressible flow estimation, a modification of the
Optical Flow technique is to replace the first term in the cost
function with the corresponding term from the compres-
sible equation of continuity [5] for fluids. Methods based on
this modification [1], [7], [56], however, retain the “un-
smoothness of flow” criterion, which may not be suitable
for estimating flows with large spatial gradients in the
velocity field, as we show in comparisons with the MEF
approach (Appendix A). In the case of compressible flows,
it is the spatial gradients in velocity which contain
information about the compressible nature of the motion,
and using the “unsmoothness of flow” criterion may distort
the velocity field [13]. Higher order penalty functions such
as “second order div-curl” minimization [49] have been
suggested for fluid flow estimation. These methods pena-
lize sharp changes in vorticity and divergence of flow,
which may not be appropriate in estimating general
turbulent flow either.

Penalty functions other than the “unsmoothness of flow”
of Optical Flow have also been proposed for nonrigid
deformation estimation. Devalminck and Dubus [13], and
others [35], [41], [50] propose formulations based on
minimizing the strain energy of deformation, which is
applicable only for objects that undergo elastic deforma-
tions with a known stress-strain relationship but not for
fluids undergoing compressible motion.

The MEF technique uses a physically motivated penalty
function that does not directly depend on the spatial
gradients of velocity. The total kinetic energy is used instead
of the “unsmoothness of flow” criterion. The choice of kinetic
energy is motivated by the Least Action Principle [34],
according to which the evolution of a physical system from
one state to another corresponds to the minimum of the
action [29]. Since we are interested in estimating compres-
sible fluid flow, this principle reduces to minimizing the
kinetic energy of fluid particles corresponding to the density
at an image pixel.

Our force-estimation technique uses the flow fields
computed by MEF as inputs and is applicable to both
steady and unsteady flows. That is, the forces are estimated
by taking into account temporal fluctuations in the velocity
field. The nonlinear Navier-Stokes equation [5] is used and
both conservative and nonconservative forcing terms are
assumed to be present. The force-estimation technique itself
is a separate “module” that can, in general, have inputs
from any motion estimation model. We have developed and
applied a MEF technique for motion esimation because our
method performs better than existing techniques of com-
pressible flow estimation (Appendix A).

3 FORMULATION

3.1 Velocity Field

Let �ðx; y; tÞ be the density corresponding to a point ðx; yÞ in
the image plane � at time t. If we assume that � is the
density of a compressible fluid, then in the absence of any
sources and sinks, the velocities are constrained by the
equation of continuity [5]

@�

@t
þ @

@x
ð�uÞ þ @

@y
ð�vÞ ¼ 0; ð1Þ

where u and v are the components of the flow velocity in the

x and y directions, respectively.
This is a single equation relating the measured spatial

and temporal variations of density and the two unknown
velocity components u and v. To determine a particular
velocity field, we set up an optimization problem where we
take the square of the error in the constraint (the left side of
(1)) and add a multiple of the kinetic energy of the system

T ¼ �ðu2 þ v2Þ ð2Þ

as a penalty term or objective function, and minimize the

following integral over �:

Z Z
�

@�

@t
þ @ð�uÞ

@x
þ @ð�vÞ

@y

� �2

þ��ðu2 þ v2Þ
" #

dx dy: ð3Þ

The velocity field we determine through this minimiza-
tion is the one that results in the least kinetic energy while
making the deviation from satisfying the continuity equa-
tion as small as possible.

The term � is a constant that defines the “penalty for”
high kinetic energy in the solution. We expect that large
values of � will tend to suppress high kinetic energy
excursions in the solution (at the cost of not matching the
constraint equation as well), while small values of � will
tend to make the solution match the constraint equation
more closely (at the cost of being more sensitive to
measurement noise).

For convenience, we now define

�u ¼ �u and �v ¼ �v ð4Þ

representing the mass flow rates in the x and y directions,

respectively. We can rewrite (3) in terms of these flow rates asZ Z
�

ð�t þ �ux þ �vyÞ2 þ
�

�
ð�u2 þ �v2Þ dx dy

¼
Z Z

�

F
�
�u; �ux; �uy; �v; �vx; �vyÞ dx dy;

ð5Þ

where the subscripts indicate the variable with respect to
which partial derivatives are to be taken. Minimization of
(5) can be treated as a problem of the calculus of variations,
where we solve the following set of Euler-Lagrange
equations:

F�u �
@

@x
F�ux �

@

@y
F�uy ¼ 0; ð6Þ

F�v �
@

@x
F�vx �

@

@y
F�vy ¼ 0: ð7Þ

Substituting the expression for F into (6) and (7) leads to

�u ¼ �

�
ð�tx þ �uxx þ �vxyÞ; ð8Þ

�v ¼ �

�
ð�ty þ �uxy þ �vyyÞ: ð9Þ
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In Appendix B, we present a numerical technique to
solve (8) and (9).

Earlier work by Fitzpatrick [17] involves a strict enforce-
ment of the continuity constraint, which may not hold in the
presence of measurement noise. A Lagrangian multiplier,
denoted by �ðx; yÞ, is used as a spatially varying unknown,
and closed form analytic solutions are pursued. In the
formulation here, departures from satisfying the continuity
condition are allowed, but penalized. Additionally, we have
used a fixed multiplier � to weigh the energy term. We have
assumed that the changes in pixel intensity in the image
sequences are purely due to the motion of objects imaged
and not due to the motion of the observer. It is possible to
correct for observer motion prior to applying MEF. The
computational techniques presented in the paper work well
for imaging applications with high frame rates. For low
frame-rate applications, a coarse-to-fine approach as de-
scribed in [6], [15] may be employed.

3.2 Force Field

A velocity field can be the result of an underlying force field
driving the motion. We can determine these forces using the
Navier-Stokes equation [5] for compressible flow in two
dimensions:

�
@U

@t
þ ðU � rÞU

� �
¼ �rpþ F; ð10Þ

where U ¼ ðu; vÞ is the vector velocity field, p is the
pressure field, and F ¼ ðf1; f2Þ is any external “force
density” (body force per unit volume) acting on the fluid.
The right-hand side of (10) is the sum of a conservative
force per unit volume (rp) and a nonconservative force per
unit volume (F). The x and y components, respectively, of
this vector equation are

�ðut þ uux þ vuyÞ ¼ �px þ f1; ð11Þ

�ðvt þ uvx þ vvyÞ ¼ �py þ f2; ð12Þ

where subscripts again indicate the variable with respect to
which partial derivatives are to be taken. For special cases
of fluid flow when either the conservative force or the
nonconservative force is zero, the system of (11) and (12)
directly provide us the solution for either ðf1; f2Þ or p. In the
more general case that we consider here, we assume that
neither rp nor ðf1; f2Þ terms can be neglected and are
comparable to each other.

Determining the unknowns p, f1, and f2 from (11) and
(12) is an ill-posed problem, which we will reframe as two
decoupled variational problems in order to determine
approximate least-squares solutions.

Subtraction of the y derivative of (11) and the
x derivative of (12) eliminates p and yields

@

@y
½�ðut þ uux þ vuyÞ� �

@

@x
½�ðvt þ uvx þ vvyÞ

¼ @f1

@y
� @f2

@x
:

ð13Þ

We then find ðf1; f2Þ that minimizesZ Z
�

@

@y
½�ðut þ uux þ vuyÞ� �

@

@x
½�ðvt þ uvx þ vvyÞ�

����
� @f1

@y
� @f2

@x

� �����
2

dx dy:

The solutions f1; f2 are then given by the following Euler-

Lagrange equations:

@2f1

@y2
¼ @2

@y2
½�ðut þ uux þ vuyÞ�

� @2

@x@y
½�ðvt þ uvx þ vvyÞ� þ

@2f2

@x@y

ð14Þ

@2f2

@x2
¼ @2

@x@y
½�ðut þ uux þ vuyÞ�

� @2

@x2
½�ðvt þ uvx þ vvyÞ� �

@2f1

@x@y
:

ð15Þ

The coupled equations (14) and (15) are solved using a
fixed-point iteration technique, which is described in
Appendix C.

After determining ðf1; f2Þ, we again use (11) and (12) to

solve for p

px ¼ ��ðut þ uux þ vuyÞ þ f1; ð16Þ

py ¼ ��ðvt þ uvx þ vvyÞ þ f2: ð17Þ

This is a Dirichlet Boundary Value Problem and, in general,
is overconstrained. For example, in the computation
domain ðx 2 ½0; L�; y 2 ½0; L�Þ, the explicit integration of
(16) yields

pðx; yÞ ¼
Z x

0

½��ðut þ uux þ vuyÞ þ f1�dxþ pð0; yÞ; ð18Þ

which may not satisfy the boundary condition at x ¼ L.
In order to obtain a best fit solution for the system of (16)

and (17), we reframe it as a variational problem. One way to
do this is to find the solutionp that minimizes the square of the
euclidean norm of the residues of (16) and (17), much like the
procedure adopted to find ðf1; f2Þ. We thus minimizeZ Z

�

½px þ �ðut þ uux þ vuyÞ � f1�2

þ ½py þ �ðvt þ uvx þ vvyÞ � f2�2 dx dy:

The Euler-Lagrange equation for this variational problem is

r2p ¼ @

@x
½��ðut þ uux þ vuyÞ� þ

@f1

@x

þ @

@y
½��ðvt þ uvx þ vvyÞ� þ

@f2

@y
;

ð19Þ

where r2 is the Laplacian. We solve this inhomogeneous
Laplace equation using a fixed-point iteration, in Appendix C.

3.3 Predicting Densities Using Forces

The ability to quantify forces also provides us with a
method to predict future density distributions once we have
an initial estimate of the velocity field and the force field.
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In order to do this, we assume that the initial force

computed stays constant for some time before there is a

substantial change in its magnitude and spatial distribution.

This means that over some time scale, the accelerations (or

the driving forces) remain constant. Under these assump-

tions, we suggest the following prediction scheme:

. Step 1
Obtain density data �ðnÞ; �ðnþ1Þ; �ðnþ2Þ

(superscripts indicate time steps).
. Step 2

Compute ðuðnÞ; vðnÞÞ and ðuðnþ1Þ; vðnþ1ÞÞ using �ðnÞ,

�ðnþ1Þ, �ðnþ2Þ, and (8) and (9).
. Step 3

Calculate rpðnÞ and FðnÞ using (14), (15), and (19).
. Step 4

Set

rpðnþ1Þ  rpðnÞ;
Fðnþ1Þ  FðnÞ:

. Step 5
Use ðuðnþ1Þ; vðnþ1ÞÞ, �ðnþ1Þ in (11) and (12) and

compute ðuðnþ2Þ; vðnþ2ÞÞ.
. Step 6

Use ðuðnþ2Þ; vðnþ2ÞÞ and �ðnþ1Þ in (1) to predict �ðnþ3Þ.
. Step 7

Repeat steps 1-6 by setting

�ðnÞ  �ðnþ1Þ;

�ðnþ1Þ  �ðnþ2Þ;

�ðnþ2Þ  �ðnþ3Þ:

4 APPLICATIONS

4.1 Synthetic Image Sequences

To evaluate the performance of the MEF method, we use
synthetic image sequences describing 1) contraction of a
density feature, 2) coalescence of two density groups, and
3) splitting of one density group into two. In all of these
examples, the MEF-estimated flows and pressure fields
match well with the “ground-truth” values, as can be seen
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Fig. 1. (a) Initial, (b) intermediate, and (c) final density distributions of a contracting density feature. (d) The ground-truth pressure distribution that
results in contraction. (e) Comparison between ground-truth and MEF-computed horizontal mass flow rates at t ¼ 0 s along the y ¼ 0 cut in (a).
(f) Comparison between ground-truth and MEF-computed pressures at t ¼ 0 s along the y ¼ 0 cut in (a). The maximum error in flow estimates is less
than 5 percent, while the maximum error in the pressure estimate is �10 percent.



from Figs. 1, 2, and 3. The places where the MEF-estimated
mass flow vectors differ the most from the “ground-truth”
flows are areas of low density and low-density gradient.
This is because MEF, similarly to the traditional Optical
Flow method [23], relies on spatial gradients and temporal
changes of density to provide information about the
underlying motion. In a special case, if the observed images
describe a constant flow along iso-density lines, the velocity
fields are indeterminate.

In this paper, we use two-dimensional density images
and two-dimensional flow fields to illustrate the utility of
the force-estimation and MEF techniques. The same
techniques can be applied to three-dimensional density
images in biomedical imaging systems such as Magnetic
Resonance Imaging (MRI) [43] and CT.

4.1.1 Illustrative Example 1: Contraction of a Density

Feature

Here we consider a circular density feature with a radius, r,
of 20 m at t ¼ 0 s (Fig. 1a), which contracts uniformly so that
its radius at t ¼ 1 s is 19 m (Fig. 1b) and at t ¼ 2 s is 18 m

(Fig. 1c). The “ground truth” flow fields that result in the

changes in density distribution observed in Figs. 1a, 1b, and

1c can be readily computed using pairs of density images,

the continuity constraint (1), and the geometrical constraints

for this problem

u ¼ �kx;
v ¼ �ky;

where k ¼ 1=r. The ground-truth flow at each time step is

then computed as the product of the known constant

velocity field and the known density distribution. Using

the ground truth flows at t ¼ 0 s and t ¼ 1 s, we then

compute the driving pressure field at t ¼ 0 s (Fig. 1d) using

(11) and (12).
We now apply the MEF and force estimation techniques

developed in Sections 3.1 and 3.2, to the density image

sequence in Figs. 1a, 1b, and 1c. Our MEF-computed flows

and pressures are compared to the “ground truth” values in

Figs. 1e and 1f, respectively. The maximum error in flow
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Fig. 2. Example of two density groups coalescing into one. The density distributions during the (a) initial, (b) intermediate, and (c) final stages of
coalescence, respectively. (d), (e), (f) Comparison between ground-truth and MEF-computed mass flow rates along a 45 degree cut in (a), (b), and
(c), respectively. The maximum error in the MEF-estimated flow is �10 percent.



estimates is less than 5 percent, while the maximum error in
the pressure estimate is � 10 percent.

The type of compressible motion we have chosen in
Fig. 1 is commonly encountered in medical imaging, where,
for example, CT image sequences describe contraction and
expansion of the heart [48] and lungs [21], both of which are
elastic deformable objects.

4.1.2 Illustrative Example 2: Coalescence of Two

Density Groups

Here we consider a sequence of density images that
describes a coalescence episode, where two density groups
(Fig. 2a) translate toward each other at a constant speed
until they merge. The total density at each step and pixel is
the algebraic sum of the densities of the two density groups.
As seen from Fig. 2a, the two groups are initially (t ¼ 0 s)
separated such that their centers of mass are, respectively,
at (15 m, 15 m) and (�15 m;�15 m). At t ¼ 6 s, their centers
have moved to (7.5 m, 7.5 m) and ð�7:5 m;�7:5 mÞ (Fig. 2b),

and finally, at t ¼ 13 s, they have merged (Fig. 2c). The
entire sequence consists of 15 frames, each separated by
� t ¼ 1 s. Since the two density groups translate toward
each other at a constant speed, there is no external force or
pressure that acts on the groups.

The ground truth flow at each time step is computed as the
product of the known constant velocity field and the known
density distribution. The MEF flow field is computed by
using (8) and (9), and corresponding pairs of density
distributions ð�ðt ¼ 0Þ; �ðt ¼ 1ÞÞ, ð�ðt ¼ 6Þ; �ðt ¼ 7ÞÞ, and
ð�ðt ¼ 13Þ; �ðt ¼ 14ÞÞ. In Fig. 2, we compare MEF and
ground-truth flows during the initial (Figs. 2a and 2d),
intermediate (Figs. 2b and 2e), and final (Figs. 2c and 2f)
stages of the coalescence episode. The maximum error in the
MEF-estimated flow is � 10 percent.

The example in Fig. 2 illustrates the application of MEF to
estimate both incompressible translation (Figs. 2a and 2d) and
compressible coalescence (Figs. 2c and 2f). These motion
types are commonly encountered in quantifying cloud field
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Fig. 3. The density distributions during the (a) initial, (b) intermediate, and (c) final stages of splitting, respectively. (d), (e), (f) Comparison between
ground-truth and MEF-computed mass flow rates along a horizontal cut, y ¼ 0, in (a), (b), and (c), respectively. (g), (h), (i) Comparison between
ground truth and MEF-computed pressure along a horizontal cut, y ¼ 0, in (a), (b), and (c), respectively. The MEF-estimated pressure lies almost
exactly on top of the ground-truth pressures. The maximum error in the MEF-estimated flow is less than 5 percent, while the maximum error in our
estimated pressure is less than 1 percent.



kinematics using satellite images [8] and, as we shall see in
Section 4.3, in imaging large fish shoals [32] using OAWRS.

4.1.3 Illustrative Example 3: Splitting of Density Groups

The final example we consider for evaluating the MEF and
force-estimation techniques is a density image sequence
describing the splitting of one density group into two. In
this example, a single dense group (Fig. 3a) splits into two
(Figs. 3b and 3c) over a time frame of 6 s. The “ground-
truth” flows and pressures (black solid lines in Figs. 3d, 3e,
3f, 3g, 3h, and 3i) are computed at each time step using the
procedure described in Appendix D. We also apply the
MEF and force-estimation techniques to the density image
sequence and estimate the flows and pressures (gray lines
in Figs. 3d, 3e, 3f, 3g, 3h, and 3i).

The maximum error in the MEF-estimated flow is less
than 5 percent (Figs. 3d, 3e, and 3f), while the maximum
error in our estimated pressure is less than 1 percent.

Image sequences describing splitting of density groups,
such as the example we have chosen in Fig. 3, are encountered
in imaging systems that capture cell division, such as
Flourescent Speckle Microscopy [11]. We will show an
application of the MEF and force-estimation techniques in
Section 4.2, where we quantify the mass flows and pressure
distribution inside a cell undergoing mitotic cell division.

4.2 Quantifying Velocity and Force Fields Driving
Cell Division

Here, we quantify the dynamics of cell division using the
MEF and force-estimation techniques developed in Sec-
tions 3.1 and 3.2. Currently, it is hypothesized [25], [26] that
intracellular forces driving cell division are generated by
long, fiber-like structures called microtubules. It is also
postulated that the microtubules pull apart newly formed
chromosome pairs by generating a combination of repulsive
forces at the center and attractive forces at the poles of the
cell [26], [30]. While several molecular mechanisms have
been proposed for force generation [30], it has been difficult
to quantify these forces and their distribution within the
cell, prompting the need for “a combination of bio-physical
force measuring methods and molecular biological muta-
genesis methods” [30].

By applying the MEF and force-estimation techniques to
an image sequence describing mitosis (the process by which
a cell replicates itself by splitting in two), we quantify
intracellular forces driving cell division. We use an image
sequence describing mitosis in a Xenopus laevis [40] cell
(Fig. 4a). The cell has been injected with a fixed amount of a
flourescent marker called GFP alpha-tubulin [11]. The
colorscale in Fig. 4a is proportional to the areal number
density of GFP alpha-tubulin [11]. Before the cell splits, the
velocity field inside the cell is random and has a small
magnitude (on the order of 0:1�m=s) compared to the
velocity field during mitosis (Fig. 5).

Figs. 5a, 5b, and 5c describe “Anaphase” [19], one of the
four stages in mitosis, where newly formed chromosome
pairs [19] within the cell are pulled apart, resulting in cell
division. Using the density image sequence (Figs. 5a, 5b, and
5c), we compute the velocity field that describes the effective
dynamics of the fluorescent tubulin within the cell (Fig. 5d).
The velocity vectors indicate a tubulin flux toward opposite
ends of the cell at rates of 2�m=s, which is consistent with
previous velocity estimates [30]. Using the velocity field, we
then compute the net force density (i.e., the right-hand side
of (11) and (12)) driving cell division (Fig. 5e). The
maximum areal density of tubulin in our density images is
1:5� 10�14kg=�m2, and is computed using an intertubulin
spacing of 4 nm [30] within a microtubule, a molecular mass
of 55 kDa (55� 1:66� 10�24 kg) for tubulin and a typical cell
thickness of 10 �m [39]. We find that the magnitudes of our
net force density vectors are comparable with experimentally
measured values of force exerted by microtubules on glass
microbeads (0:2 pico N) [14].

In order to compute our intracellular forces, we have made
a continuum assumption that is suitable for fluid motion. In
the case of cell division, such a fluid assumption may still be
applicable, given the semiflexible nature [28] of microtubules
that are suspended and moving in a cytoplasmic fluid. It
should also be noted that the net force density may include
components arising from the elasticity of microtubules,
which can be estimated only by including additional
constraints in our force model. We find the difference in total
tubulin density between Figs. 5a and 5c to be less than
10 percent, suggesting that the approximation we made in
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Fig. 4. (a) Xenopus laevis cell before undergoing mitosis. The colorscale corresponds to the relative areal density of a flourescent marker, GFP
alpha-tubulin, which attaches itself to structures called microtubules. The density is normalized so that the maximum number of tubulin per square
�m is 1 in Fig. 5c. The red contour represents the cell boundary (cytoplasm). (b) Pressure distribution inside a Xenopus laevis cell prior to mitosis.
The pressures are one order of magnitude smaller compared to those in Fig. 5f.



neglecting source and sink terms in our fomulation is a good
one for this problem. Such source or sink terms may arise due
to polymerization or depolymerization of tubulin molecules,
and can be easily included in (1).

Under our assumptions of fluid flow in a cell, the net
force is the result of the effective pressure field shown in
Fig. 5f. We find that cell division is driven by the formation
of two regions of low apparent pressure at opposite sides of
the cell, and a region of high apparent pressure at the
center. This is in contrast to the random pressure field
inside the cell before mitosis (Fig. 4b), which has a much
smaller magnitude. These effective pressures are different
from the hydrodynamic pressures related to the flow of the
cytoplasmic fluid. The visualization of pressure shown in
Fig. 5f quantifies the repulsive force field at the center as
well as the attractive force fields at opposite poles of the
cell. Such force fields have been previously postulated to
drive cell division [26], [30].

4.3 Application to Fish Population Density Images

We now apply the MEF and force-estimation techniques
developed in Sections 3.1 and 3.2 on fish population density
images obtained using an Ocean Acoustic Waveguide
Remote Sensing system, to quantify flow rates and pressure
fields driving the dynamics of large fish shoals. Using the
MEF-computed flow fields, we quantify the behavior of
large fish shoals including 1) translation and coalescence of
fish groups, and 2) mass exchange between different parts
of a large shoal via hourglass patterns.

The OAWRS system has been recently developed [32] to
detect, image, and continuously monitor large fish shoals
over continental shelf-scale areas. It consists of a source that
transmits low-frequency sound in the audible frequency
range, which is trapped between the ocean-air and ocean-
seabed boundaries as it propagates over long distances and
scatters off fish shoals and other submerged targets. These
scattered returns are collected by a towed receiver and
charted in range and bearing, resulting in an instantaneous
snapshot of the ocean over hundreds of square kilometers.
The intensity of the scattered returns from fish shoals is
proportional to the fish population density [3], [27], so that,
by repeating transmissions at regular intervals, a popula-
tion density image sequence is generated. A detailed
technical description of the OAWRS system can be found
in [20], [27], [32], [33].

An example of the type of population density image
obtained using OAWRS is shown in Fig. 6, which shows a
large shoal of fish centered roughly 12 km south and 5 km east
of the source. This image was obtained on 14 May 2003, off the
coast of New Jersey during the OAWRS 2003 experiment [32].
The shoal was observed for an entire day using OAWRS,
which provided snapshots of population density every 50 s.
We will apply MEF to the sequence of fish population density
images in an area defined by the box in Fig. 6.

To compute force fields using (11) and (12), we assume
that individual fish behave like fluid particles so that the
entire fish shoal (Fig. 6) behaves like an anisotropic,
compressible fluid. This assumption is consistent with
OAWRS observations of spatial and temporal variation of
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Fig. 5. (a), (b), (c) Sequence of frames showing mitosis in a Xenopus laevis cell. Same colorscale as that in Fig. 4a. Cell boundary is marked by red
contours. The black box in (c) is the area zoomed in (d), (e). Note long fiber-like structures called microtubules. (d) Velocity field derived from density
image pairs (a), (b). The vectors are shown every 10 pixels. (e) Net force density computed using velocity and density fields in (11) and (12).
(f) Pressure field that gives rise to the force field in (e). Same colorscale as in Fig. 4b. Formation of two low apparent pressure regions at the opposite
ends of the cell and a high apparent pressure region at the center of the cell is shown. Two regions of high microtubule density and the cell boundary
are shown as black contours.



population density, which showed that fish could converge
or diverge, making their motion highly compressible.
Similar observations of fish schools behaving like an
“animate fluid” [10] have been reported for small schools
of a few meters in extent.

Under our continuum assumptions, the net force can be
thought of as the result of a pressure field, with regions of low
pressure acting as centers of attraction and regions of high
pressure acting as centers of repulsion. These pressures are
different from the hydrodynamic pressures related to the
flow of water in the ocean. They are effective biological
stresses that drive fish shoaling behavior.

4.4 Translation and Coalescence of Fish Groups

Here, we use the MEF and force-estimation techniques to
quantify the rates at which fish groups within a large shoal
translate and coalesce. We find that the rate of translation is
consistent with the swimming speeds of individual fish. We
also find that coalescence of fish groups can occur due to
formation of “attraction zones” or regions of low pressure.
These phenomena are quantified by tracking the motion of
two high population density regions, A and B, shown in Fig. 7.
The MEF-estimated velocity vectors, shown in Fig. 8, describe
the translation and coalescence of A and B, occurring at rates
of roughly 0.5-1 m/s. The merger of A and B can also be
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Fig. 6. Large shoal of fish imaged off the New Jersey coast on 14 May
2003 using OAWRS. The colorscale represents the areal density of the
fish. The image resolution is 30 m/pixel. The bathymetric contours are
shown using white dashed lines. The black dashed box is the area over
which MEF and force-estimation techniques are applied to study the
dynamics of the large shoal and is the area shown in Figs. 7 and 10.

Fig. 7. Fish population density image showing schools A and B before
merger. Same colorscale as in Fig. 6. The original OAWRS density
image has been smoothed such that the areal density at any point in the
image shown above, is the unweighted mean of the areal densities over
a 120 m� 120 m square area centered at that point. The dashed box
represents the zoom area over which velocity vectors are shown in
Fig. 8. Black lines are 1:5 fish=m2 population density contours.

Fig. 8. (a) Flow vectors describing the merger of groups A (marked in
red) and B (marked in blue). Blue and red lines represent the 1:5 fish=m2

population density contours. The gray line represents the 0:2 fish=m2

population density contour. (b) Flow field after the merger of A and B.
The red line represents the 1:5 fish=m2 population density contour. The
groups merge within a span of 3 minutes. The mass flow vectors are
shown every 10 pixels or 300 m.



thought of as the result of a low pressure, “attraction zone”
formed between the schools, as shown in Fig. 9.

The mean velocity of groups A and B can also be estimated
by tracking their centers of mass (COM) defined by

�XA ¼
P

i2A �ixiP
i2A �i

; �YA ¼
P

i2A �iyiP
i2A �i

; ð20Þ

�XB ¼
P

i2B �ixiP
i2B �i

; �YB ¼
P

i2B �iyiP
i2B �i

; ð21Þ

where i represents the pixel number. We find that group A
moves toward group B at roughly 1 m/s, which is

consistent with the velocities obtained using MEF (Fig. 8).
These values are also consistent with the typical speeds at
which individual fish swim [16], [24], [36].

4.5 Mass Exchange between Different Parts of a
Shoal

We now quantify fish flow rates between different parts of
the large shoal shown in Fig. 6. In particular, we quantify
the rate of mass transfer between two wings of an hourglass
pattern formed by the fish shoal, as shown in Fig. 10. We
find that there is a steady depopulation of the southern
wing and the fish “flow” into the northern wing, as can be
seen from the sequence of images in Fig. 11. There is a
steady flow of �300-450 fish/s across the neck of the
hourglass connecting the two wings of the shoal. The
depopulation episode can also be explained by the forma-
tion of a high-pressure region near the neck of the hourglass
(Fig. 12).

Hourglass patterns have been observed in smaller fish
groups spanning spatial scales on the order of a square km
[42]. Mass transfers of the kind described above have been
known to occur and have been shown in these small
groupings. Flow from one part of the shoal to the other via
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Fig. 9. Pressure (N=m2 per unit fish mass) distribution within large fish
shoal showing formation of a low-pressure region that attracts schools A
and B. Black lines represent the 1:5 fish=m2 population density contours.
The gray line represents the 0:2 fish=m2 population density contour.
Same zoom area as Fig. 8.

Fig. 10. Fish density distribution showing hourglass type formation.
Same colorscale as in Fig. 6. The southern shoal gets depopulated and
there is mass flow across the neck of the hourglass shown. The black
box is the area zoomed in Figs. 11 and 12. The areal density has been
smoothed using the same algorithm as that employed in Fig. 7.

Fig. 11. Mass flow distribution frames showing depopulation of the
southern wing over a span of 3 minutes. The area shown is zoomed
around the neck of the hourglass shown in Fig. 10. The flow rate of
fish normal (red arrow) to the neck (red solid line) is found to be
� 300-450 fish/s. The flow vectors are shown every 5 pixels. The gray
lines are 0:2 fish=m2 density contours.



the “neck” usually signifies predatory pressure on one of
the wings [42]. The depopulation described by the MEF
calculation could very well be in response to such a
pressure acting on the southern wing of the large shoal
described by the OAWRS density images.

5 PREDICTION USING FORCES: APPLICATION TO

SYNTHETIC IMAGES

Here we apply the prediction procedure shown in Section 3.3
to density images in Fig. 1, where a circular feature undergoes
uniform contraction.

In Fig. 1, we considered density images for t = 0, 1, and
2 s, and computed the flow field and pressure field driving
contraction. We now continue this contraction, and predict
the density distribution at times t = 3-7 s (Fig. 13).
Comparison of our predicted densities with actual values
(Fig. 13) shows a good match (errors < 10 percent) until
t = 7 s, after which the cumulative effect of errors becomes
large and causes significant (errors > 10 percent) difference
between predicted and actual densities.

In general, we expect our prediction scheme to work well
within some time interval for cases where the pressures and
forces driving the flow remain more or less constant for the
time interval. This is indeed the case in many natural flows
which follow environmental pressure gradients, such as the
movement of clouds in the atmosphere driven by the
formation of low and high-pressure regions.

6 CONCLUSIONS

We have presented methods for 1) estimating forces that
drive motion observed in density image sequences and
2) predicting flow and density evolution. To do this, we
developed a Minimum Energy Flow method for estimating
velocity fields in both compressible and incompressible
flows. The MEF and force-estimation techniques have been
demonstrated with synthetic and experimentally obtained
images. Using a density image sequence describing cell
mitosis, we showed that cell division is driven by gradients
in apparent pressure in the cell. Using density image

sequences of fish shoals, we also quantified 1) coalescence
of fish groups over tens of kilometers, 2) fish mass flow
between different parts of a large shoal, and 3) the stresses
acting on large fish shoals.

The MEF and force estimation techniques can be
generally applied to any density image sequence where
pixel values can be modeled as proportional to the density
of a compressible fluid. In addition to the examples
presented here, such density image sequences are fre-
quently encountered in biomedical imaging and satellite
imaging for meteorology and oceanography. MRI, for
example, provides tomography image sequences of blood
flow in arteries, which could be monitored using our MEF
and force-estimation techniques. Satellite images of density
distribution of water vapor (clouds), for example, can be
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Fig. 13. Comparison of actual and predicted densities for different times.
The same example as that in Fig. 1 is used. The curves are cuts through
y ¼ 0 in the actual and predicted density images. The prediction scheme
works well within some time interval when the forces remain more or
less constant. After some time, the cumulative effect of errors becomes
large and causes a significant (errors > 10 percent) difference between
predicted and actual densities.

Fig. 12. Pressure (N=m2 per unit fish mass) distribution within a large
fish shoal showing formation of a high-pressure region near the “neck” of
an hourglass pattern, forcing fish mass flow from one wing to the other.
The black lines are 0:2 fish=m2 density contours.



used to compute flow and force fields in the atmosphere

that drive meteorological processes. Other applications are

in studies of collective behavior, where the MEF and force-

estimation tools can be used to verify theoretical models

that predict average velocities and forces acting in large

animal groups.

APPENDIX A

COMPARISON OF MEF WITH THE METHOD PROPOSED

BY WILDES ET AL.

Here, we compare the performance of MEF and the method

proposed by Wildes et al. [56], in recovering motion

involving large changes in velocity over space. As mentioned

in Section 2, we expect the latter to “smooth out” large

variations and the former to preserve these variations. For

flows that involve small variations in velocity over space,

both of these methods are expected to perform equally well.
In this section, we quantify the ability of both methods to

recover an idealization of a Kármán vortex street [5], which

is a good example of a flow with large spatial gradients in

velocity, as illustrated in Fig. 14. Such a repeating pattern of

swirling vortices is caused by the unsteady separation of

flow of a fluid over bluff bodies [5]. Accurately quantifying

vortices is important in many fields such as medical

imaging of blood flow using MRI, where the presence of

vortices, for example, indicates blockages of arteries [44].

Here, we have idealized each vortex in Fig. 14 as a “Lamb-

Oseen vortex” [45], which models a line vortex that decays

due to viscosity. The tangential velocity of the vortex is

given as a function of radius r

V�ðrÞ ¼ V�;max

� �
1þ 0:5

�

� �
rc
r

1� exp ��r
2

r2
c

� �� �
; ðA-22Þ

where V�;max is the peak tangential velocity, � is a viscosity-

dependent constant, and rc is the core radius of the vortex.

In this example, we have chosen V�;max ¼ 1, � ¼ 1:26 [12],

and rc ¼ 10 for each vortex shown in Fig. 14.
In the example we have chosen, the MEF technique

recovers the motion to within 10 percent accuracy except in

regions of very low velocity, as can be seen from Fig. 14.

This contrasts with the method proposed by Wildes et al.,

where errors are high (30-40 percent) even in regions of

high velocity (Fig. 14) and shows that the “unsmoothness of

flow” criterion chosen in [56] distorts the flow field in order

to make it vary more smoothly than in the actual flow.
Corpetti et al. have employed a more complicated “div-

curl minimization” technique [9] to preserve vortices in the

flow field, rather than the Principle of Least Action used

here. They report errors on the order of 10 percent [9] when

recovering vortices in fluid flow, as we find here for the

simpler MEF approach.

APPENDIX B

DISCRETIZATION AND NUMERICAL IMPLEMENTATION

OF MEF

In order to solve (8) and (9) numerically on a discrete grid,

we employ a finite difference method to approximate the

partial derivatives.
For this purpose, we use the following “computational

stencils”:

ð�uxxÞi;j ¼
�ui;jþ1 � 2�ui;j þ �ui;j�1

�2
; ðB-23Þ

ð�uxyÞi;j ¼
�uiþ1;jþ1 � �ui�1;jþ1 � �uiþ1;j�1 þ �ui�1;j�1

4�2
; ðB-24Þ

ð�vyyÞi;j ¼
�viþ1;j � 2�vi;j þ �vi�1;j

�2
; ðB-25Þ

ð�vxyÞi;j ¼
�viþ1;jþ1 � �vi�1;jþ1 � �viþ1;j�1 þ �vi�1;j�1

4�2
; ðB-26Þ

where the subscripts i and j are row and column indices,

respectively, and � is the grid interval.
Replacing the spatial partial derivatives in (8) and (9)

with finite differences and grouping the terms in �ui;j and

�vi;j, we obtain

�

�i;j
þ 2

�2

� �
�ui;j ¼ ð�txÞi;j þ

�ui;j�1 þ �ui;jþ1

�2
þ ð�vxyÞi;j; ðB-27Þ

�

�i;j
þ 2

�2

� �
�vi;j ¼ ð�tyÞi;j þ

�vi�1;j þ �viþ1;j

�2
þ ð�uxyÞi;j: ðB-28Þ

Based on (B-27) and (B-28), we suggest an iterative

algorithm:
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Fig. 14. Comparison of MEF and the method proposed in [56]. (Top)
Ground-truth flow field—an idealization of a von-Kármán vortex street.
(Bottom left) Comparison between MEF-estimated (blue) and ground-
truth mass flows in the zoom region shown in (Top). The vectors lie
almost on top of each other and the maximum error is � 10 percent.
(Bottom right) Comparison between flow vectors estimated using the
method proposed by Wildes et al. (blue arrows) and the ground-truth
vectors (red arrows). There is significant error (� 30-40 percent) in the
estimated vectors.



�

�i;j
þ 2

�2

� �
�u
ðnþ1Þ
i;j ¼ ð�txÞi;j þ

�u
ðnÞ
i;j�1 þ �u

ðnÞ
i;jþ1

�2
þ ð�vxyÞðnÞi;j ;

ðB-29Þ

�

�i;j
þ 2

�2

� �
�v
ðnþ1Þ
i;j ¼ ð�tyÞi;j þ

�v
ðnÞ
i�1;j þ �v

ðnÞ
iþ1;j

�2
þ ð�uxyÞðnÞi;j ; ðB-30Þ

where the superscripts ðnþ 1Þ and ðnÞ represent the

iteration numbers.

APPENDIX C

SOLVING FOR PRESSURE AND FORCE FIELD

In order to solve (14) and (15), we rewrite them as

ðf1Þyy ¼ gðx; y; tÞ þ ðf2Þxy; ðC-31Þ
ðf2Þxx ¼ hðx; y; tÞ þ ðf1Þxy: ðC-32Þ

We now write the spatial derivatives of f1 and f2 at each

pixel ði; jÞ using finite differences as

ðf1Þyy
	 


i;j
¼
ðf1Þiþ1;j þ ðf1Þi�1;j � ð2f1Þi;j

�2
; ðC-33Þ

ðf1Þxy
	 


i;j
¼
ðf1Þiþ1;jþ1 þ ðf1Þi�1;j�1 � ðf1Þiþ1;j�1 � ðf1Þi�1;jþ1

4�2
;

ðC-34Þ

ðf2Þxx
� �

i;j
¼
ðf2Þi;jþ1 þ ðf2Þi;j�1 � ð2f2Þi;j

�2
; ðC-35Þ

ðf2Þxy
	 


i;j
¼
ðf2Þiþ1;jþ1 þ ðf2Þi�1;j�1 � ðf2Þiþ1;j�1 � ðf2Þi�1;jþ1

4�2
:

ðC-36Þ

Based on the above finite difference scheme, we suggest

the following iterative procedure:

ðf1Þðnþ1Þ
i;j ¼ y

�f
ðnÞ
1 �

�2
�
gi;j þ ððf2ÞxyÞ

ðnÞ
i;j

�
2

; ðC-37Þ

ðf2Þðnþ1Þ
i;j ¼ x

�f
ðnÞ
2 �

�2
�
hi;j þ ððf1ÞxyÞ

ðnÞ
i;j

�
2

; ðC-38Þ

where

y
�f1 ¼

ðf1Þiþ1;j þ ðf1Þi�1;j

2
; ðC-39Þ

x
�f2 ¼

ðf2Þi;jþ1 þ ðf2Þi;j�1

2
; ðC-40Þ

and n is the iteration number.
Similarly, we rewrite (19) as

r2p ¼ lðx; y; tÞ ðC-41Þ

and

r2pi;j ¼ 4
�pi;j � pi;j

�2
; ðC-42Þ

where

�pi;j ¼
piþ1;j þ pi�1;j þ pi;jþ1 þ pi;j�1

4
: ðC-43Þ

We then suggest the following iterative procedure:

p
ðnþ1Þ
i;j ¼ �p

ðnÞ
i;j �

�2li;j
4

; ðC-44Þ

where n is the iteration number.

APPENDIX D

COMPUTING GROUND TRUTH AND MEF VELOCITIES

AND PRESSURES FOR SYNTHETIC IMAGE SEQUENCES

The following algorithm is followed for computing the

ground truth flow field in Fig. 3:

. Step 1

Use �ð1Þ and �ð2Þ along with (8) and (9) to find

ð�uð1Þ; �vð1ÞÞ. We will assume this to be our ground-truth

flow, ð�uð1Þgt ; �v
ð1Þ
gt Þ. Superscripts indicate time steps.

. Step 2

Use �ð2Þ and �ð3Þ along with (8) and (9) to find

ð�uð2Þgt ; �v
ð2Þ
gt Þ.

. Step 3

Use (1), ð�uð1Þgt ; �v
ð1Þ
gt Þ, and �ð1Þ to compute ��ð2Þ.

Similarly, use ð�uð2Þgt ; �v
ð2Þ
gt Þ and ��ð2Þ to compute ��ð3Þ.

. Step 4

Compute MEF flow rates, ð�uð1ÞMEF; �v
ð1Þ
MEFÞ and

ð�uð2ÞMEF; �v
ð2Þ
MEFÞ, using density pairs ð�ð1Þ; ��ð2ÞÞ and

ð��ð2Þ; ��ð3ÞÞ, respectively, and (8) and (9).
. Step 5

Use ð�uð1Þgt ; �v
ð1Þ
gt Þ and ð�uð2Þgt ; �v

ð2Þ
gt Þ in (11) and (12) to

compute the ground-truth pressure. Assume that

there is no external forcing.
. Step 6

Use ð�uð1ÞMEF; �v
ð1Þ
MEFÞ and ð�uð2ÞMEF; �v

ð2Þ
MEFÞ in (11) and (12)

to compute the MEF pressure. Assume that there is

no external forcing.
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