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Efficient resolution of natural light and sound
intensity is essential for organisms, systems and
machines that rely on visual and auditory sensory
perception to survive or function effectively in
their environment. This resolution obeys Weber’s
Law when the smallest resolvable change, a just-
noticeable-difference, grows in direct proportion to
the stimulus. Here, Weber’s Law is found to be a
consequence of attaining the theoretical minimum
mean-square error possible, the Cramer–Rao lower
bound, in resolving the intensity of naturally
scintillating light and sound. The finding is based
on statistics from thousands of measurements of
naturally scintillating environmental light and sound
signals. Remarkably, just-noticeable-differences in
light and sound intensity measured over decades of
psychophysical experiments with artificial sources are
also found to approximately attain the respective
Cramer–Rao lower bounds. Human intensity
resolution is in this way optimally adapted to
the natural scintillation of light and sound. Pattern
recognition by simple matched-filter correlation
between measured and hypothetical images cancels
natural scintillation. For intensity perception obeying
Weber’s Law, this is found to be advantageous and
statistically optimal because perceived scintillation is
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independent of the underlying signal pattern. A small visual patch change or acoustic
signature truncation is shown to be lost in natural signal-dependent fluctuations if perception
with constant intensity resolution is attempted.

1. Introduction
Efficient resolution of naturally scintillating light and sound intensity is essential for organisms,
systems and machines that rely on visual and auditory sensory perception to survive or function
effectively in their environment. The reliable recognition of patterns imbedded in the scintillating
intensities of natural light and sound is also indispensable for survival or proper function in many
contexts. Optimizing the performance and efficiency of these crucial tasks in perception should
provide advantages in a potentially competitive or hostile environment. Over many decades of
psychophysical experiments, it has been shown that human resolution of artificially generated
light and sound intensity approximately follows a relationship known as Weber’s Law [1–12]. In
Weber’s Law, the smallest resolvable change in intensity, known as a just-noticeable-difference, is
not constant but grows in direct proportion to the mean intensity stimulating a sensing system. In
other words, intensity resolution seems to be intriguingly worse for larger intensities of light
and sound and better for smaller ones. Various hypothetical internal mechanisms of a visual
or auditory sensing system have been proposed to potentially account for the observation of
Weber’s Law or its empirical approximations in historic psychophysical measurements. These
range from the neurological and physiological [13,14] to hypothetical internal system noise [15].
Recent reviews across diverse areas, however, note a lack of evidence for how Weber’s Law may
provide functional advantages in a variety of contexts [16,17].

Here, we explain how Weber’s Law is extremely advantageous as an adaptation for sensing
with naturally scintillating light and sound. We begin by determining the intensity scintillation
[18] statistics of natural light and sound signals from thousands of environmental measurements.
Over repeated samples of a natural scene measured with daylight or an acoustic signature
generated with natural objects, intensity fluctuations are found at every pixel of the respective
spatial image or temporal series. The fluctuations arise primarily from propagation and multiple
scattering through and from the random atmosphere and terrestrial surfaces for images formed
with daylight [18–21], and from randomness in the source mechanism for time series formed with
sound [22]. This natural intensity scintillation is found to have a standard deviation, or resolution
footprint, that grows in direct proportion to the mean, so following Weber’s Law.

Interestingly, log-transformed intensity is found to have a standard deviation independent of
mean intensity. Resolution is then constant in log-transformed intensity. By various approaches,
log-transformation is found to be a variance-stabilizing transformation [23] given our scintillating
light and sound data. That is, it transforms a random variable from having a variance
that depends on the mean to one that has a variance independent of the mean [24]. This
property helps log-transformed intensity converge from diverse physical mechanisms to a
normal probability density via the central limit theorem [25]. Many of these mechanisms
involve independent multiplicative factors arising from stochastic propagation, scattering or
wave generation that become additive after log-transformation [18,20,26]. A normal probability
density is advantageous because it only requires knowledge of the first two moments of the
data, the mean and covariance which typically can be readily estimated, for a complete statistical
description.

Fechner developed an approach for transforming physically measurable stimuli to a
quantifiable variable that he argued is perceived by a human observer [1]. Fechner’s
transformation is based on his assumption that an external stimulus is perceived in a manner so
that it has a constant resolution metric from the observer’s perspective. The concept has intuitive
appeal for those inclined to measure quantities with fixed rather than varying metrics, but may be
counterintuitive if the metric arrived upon does not have simple physical units, such as intensity
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which is power per unit area. Fechner’s transformation employs a process known as Fechnerian-
integration [1,6,27–29] of psychophysically measured just-noticeable-differences. The relevant
just-noticeable-differences to this analysis were measured with artificial light and sound intensity
stimuli [1–12]. From these, Fechner’s transformation is remarkably found both theoretically and
experimentally to be a variance-stabilizing transformation of the naturally scintillating light and
sound intensity we measure. Fechner derived his transformation at an early date without use of
statistical arguments, without connection to variance stabilization, and without consideration of
the specific statistical fluctuations of the stimuli [1]. All of these, however, are necessary to explain
how Weber’s Law relates to optimal intensity resolution of natural scintillating light and sound
and the benefits of this optimality.

Given the need for fundamental statistical resolution metrics, we turn to the Cramer–Rao
lower bound [30]. The minimum mean-square error possible in the unbiased estimation of
a parameter from random data cannot be smaller than this bound. The proof via Cauchy–
Schwartz inequality was supplied by Rao [31] and Cramer [32] to support Fisher’s earlier
asymptotic analysis [33,34] that what is referred to as the Fisher information [30,34] is the
inverse of this same bound. The bound is here used to assess the optimality of sensing the
intensity of naturally scintillating light and sound with resolution obeying Weber’s Law. We in
fact find that sensing resolution should be constant in log, variance-stabilizing or Fechnerian
transformed intensity, rather than in intensity itself to attain the Cramer–Rao lower bound
in intensity estimation. Weber’s Law is found to be a consequence of attaining this optimal
intensity resolution given the natural scintillation of environmental light and sound we measure.
Remarkably, just-noticeable-differences in intensity stimulus, from decades of psychophysical
measurements with artificial sources [2–12], are also found to approximately attain the respective
Cramer–Rao lower bounds. As change-detection thresholds rather than root-mean-square errors,
the just-noticeable-differences are found to be in the optimal range of primarily rejecting natural
fluctuations rather than true changes in mean intensity of environmental light and sound data.
These findings show human intensity resolution to be approximately optimally adapted to the
natural scintillation of light and sound.

Intensity perception obeying Weber’s Law is found to have a number of other advantages
given the natural fluctuations of environmental light and sound intensity. It enables information
reception to be easily maximized and pattern recognition easily optimized according to criteria
from information, estimation and detection theories [30,35–37]. For example, when intensity
perception obeys Weber’s Law, simple linear correlations between measured and hypothetical
images, also known as matched filters [36], are found to be sufficient statistics [30,34,36]
containing all necessary information in the data to determine which hypothetical pattern best
matches the measured one. From a practical perspective, the correlation reinforces the mean
signal perceived while cancelling perceived fluctuations. This is optimal when the perceived
fluctuations do not contain signal information as is the case when intensity perception obeys
Weber’s Law. If intensity perception does not obey Weber’s Law, but instead employs constant
resolution for all intensities, cancelling fluctuations destroys signal information contained in the
fluctuations and leads to suboptimal pattern recognition. This is demonstrated with a variety of
examples using natural objects imaged in daylight and sounds made from natural sources where
important environmental patterns are lost in natural scintillation when intensity perception does
not follow Weber’s Law.

Following general concepts from Darwinian evolution, a significant body of literature presents
evidence or theories that biological sensory systems have been adapted to properties of signal
information [38–45] encountered in the natural environment, including efficient coding of signal
information [46–48]. That is done, however, without considering the natural intensity scintillation
of the light and sound waves carrying the signal information. The analysis and conclusions
presented here are distinct from that literature because we show the intensity scintillation of
natural light and sound waves, irrespective of the signal information the waves carry, leads
to correspondingly distinct adaptations for optimal sensing. Weber’s Law, in this regard, is
here found to be a consequence of sensing intensity with the smallest possible error where
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the error is entirely due to the intensity scintillation of natural light and sound waves. Such
scintillation, a form of signal-dependent noise, is pervasive in optical images of environmental
scenes illuminated with natural daylight due to atmospheric fluctuations along the light’s path
of propagation and scattering. These fluctuations, for example, lead to the familiar twinkling
starlight that motivates astronomers at great cost to place telescopes in orbit outside the earth’s
atmosphere to obtain scintillation-free signals. Such scintillation is also pervasive in natural
sounds due to the stochastic source mechanisms by which they are generated.

Previous studies of intensity signals in noise in the context of biological sensing systems
[15] have similarly not considered the natural intensity scintillation of the physical light and
sound waves, but have suggested that hypothetical internal sensory system noise mechanisms
of unknown origin may lead to Weber’s Law. Our analysis and results show such internal
system noise mechanisms are not necessary because Weber’s Law can be entirely explained as
a consequence of sensing the intensity of naturally scintillating sound and light waves with the
minimum possible error.

2. Naturally scintillating sound intensity
To investigate the naturally occurring scintillation of environmental sounds, we conducted a
series of experiments. Natural sounds important to survival for many animals that rely upon
acoustic sensing for survival were measured. Sounds that would typically alert animals to nearby
prey, potential predators or rivals, such as: disturbances to local plant cover; disturbances to
water sources and animal vocalizations were selected to study scintillation statistics. For these
respective categories, the sounds of: leaves rustling on brushing tree branches, a footstep on
grass, a leafless branch rubbing against tree bark; a stick plunged into a stream and a mammalian
vocalization were chosen for measurement and analysis since they generally occur in terrestrial
ecosystems.

In these experiments, the acoustic event from a particular natural sound source with a
characteristic signature is generated and recorded to form an intensity time series of the event.
To unify the analysis of sound and light intensity data, consider the time series to essentially
be a one-dimensional image with time samples referred to as pixels indexed in time. The event
is repeatedly generated and recorded to obtain many independent samples of the entire event
time series changed only by natural mechanisms in the event’s random generation and reception.
Statistical fluctuations of natural sound at each pixel in the intensity image are determined from
these samples. The temporal, spatial and frequency samplings are selected to be consistent with
those found for the human auditory system. The same process is used to characterize the signals
and fluctuations of all sound sources considered.

The acoustic pressure time series of natural sounds in figure 1 was recorded with a NTI XL2
microphone at 48 kHz sampling rate with a flat frequency response in the audible range from
20 Hz to 20 kHz. The pressure time series of the acoustic event, namely leaves rustling by a short
brushing of adjacent tree branches in a forest setting, is shown in figure 1a, with corresponding
spectrogram in figure 1b and power spectral density in figure 1c. The rustling leaves event is
generated and recorded repeatedly, N = 154 times. Each of the N pressure time series of the event
is band pass filtered to the auditory system critical band of 1 kHz ± 64 Hz [53]. From these, N
intensity time series of different random samples of the rustling leaves event are formed by
squaring pressure, dividing it by the acoustic impedance of air, and sequential averaging over
time to 10 ms increments or pixel sizes. These independent intensity time series of the event Wj(t)
for time pixel t across random event sample j = 1, 2, 3, . . . , N then have temporal and spectral
resolution similar to that of the human auditory system in the 1 kHz critical band [54].

Signal-dependent noise is seen when the time series of the sample mean intensity W̄(t) is
plotted with the corresponding intensity standard deviation σW(t) taken across the N independent
random samples of the acoustic event (figure 1d). That is, the standard deviation is seen to grow
in direct proportion to the mean, which is taken to bear the signal. The standard deviation is large
when the mean is large, and commensurably smaller for smaller mean.
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Figure 1. The sound of a rustling leaves event over time is measured repeatedly to determine the statistical properties of its
intensity scintillation at every temporal pixel. (a) Rawacoustic pressure time series of a singlemeasurement of the eventwith (b)
corresponding spectrogram and (c) power spectral density. (d–i) Analysis over human auditory critical band of 128 Hz centred
at 1000 Hz and pixel increment 10 ms: (d) mean acoustic intensity time series (black) over N = 154 event samples characterizes
the event signal signature, with standard deviation (red) that varies in direct proportion to the local mean intensity. (e) Same
as (d) but for log-transformed intensity which shows constant standard deviation (red) about mean (black), Iref = P2ref/ρaca,
Pref = 20µPa,ρa = 1 kg m−3 and ca = 340 m s−1. (f ) Intensity standard deviation as a function of mean intensity, as sorted
across temporal pixels, shows direct proportionality. (g) Standard deviations of both log-transformed and variance-stabilizing
transformed intensity are constant across their respective means. (h) Various intensity transformations as a function of log-
transformed intensity. The variance-stabilizing transform is obtained from our measured acoustic data. Fechnerian transform
andmagnitude estimation transforms are derived from decades of independent psychophysical investigations filling the 128 Hz
critical band centredat 1000 Hzwith artificial sound sources [2–6,49–52]. (i) Deviationof various transformations fromvariance-
stabilizing transformation dependence onmean intensity. Intensity transformation curves in (h) are used to calculate the cross-
correlation coefficient [30]ρ , and thepercentage error 100(1 − ρ). Similar results are found for other natural sounds (electronic
supplementary material, figure S1).
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Interestingly, the situation changes after log-transformation (figure 1e). The standard deviation
is a constant function of the mean, so signal-dependent noise is not seen in the time series of
the corresponding plot of the sample mean T L(W(t)) (figure 1e) and standard deviation σTL(W(t))
obtained from the N independent samples of the log-transformed intensity time series TL(Wj(t)) =
10 log(Wj(t)/Iref) dB re Iref. Here, the reference intensity is chosen to be Iref = P2

ref/(ρaca), where
Pref = 20 µPa is the standard reference pressure for air, which has density ρa and sound speed
ca. This leads to log-transformed intensity TL(Wj(t)) = 10 log |Pj(t)/Pref|2 dB re 20 µPa being
expressible in standard sound pressure level (SPL) units for air. We will use the base ten logarithm,
log, consistently in log-transformations rather than the natural logarithm, ln, so that theory is
more immediately connected to the decibels units typically used in practice.

To more quantitatively delineate the functional dependence of the signal-dependent intensity
fluctuations, the mean W̄(t) and standard deviation σW(t) across temporal pixels t are sorted to
obtain standard deviation σW(W̄) as a function of mean intensity W̄ in figure 1f. The standard
deviation is approximately linear in mean intensity with a slope equal to what we define as the
scintillation factor, which is the square root of the scintillation index [18,20]. After similar sorting
of the corresponding log-transformed intensity statistics (figure 1g), the standard deviation in this
case σTL(W) is more clearly seen to be a constant function of the mean T L(W(t)). The noise is signal-
independent after log-transformation of the intensity data. Log-transformation then behaves as a
variance-stabilizing transformation.

A general variance-stabilizing transform can be expressed as [23,24]

TV(I) = α0

∫ I

I0

1
σI(Ī)

dĪ + β0, (2.1)

for random variable I with mean Ī and standard deviation σI that depends on this mean. The
variance-stabilizing transformed random variable TV(I) has a standard deviation σTV that is
independent of either mean T V(I) or I, where I0 is the minimum value of I, and α0 and β0 are
arbitrary constants.

To quantitatively compare the effect of log versus variance-stabilizing transformation, the
variance-stabilizing transformation of equation (2.1) with I = W is applied to each random sample
of the entire rustling leaves intensity time series leading to TV(Wj(t)) for j = 1, 2, 3, . . . , N, where
σI(Ī) = σW(W̄) is obtained from the acoustic time series data of figure 1f. The constants α0
and β0 are chosen such that TV(W)|TL(W)=0 dB re 20 µPa = 0 and TV(W)|TL(W)=60 dB re 20µPa = 60 for
convenient visual comparison with the log-transformation. The standard deviations σTV(W) of the
N independent random samples of TV(Wj(t)) are practically identical to those of log-transformed
intensity, as seen in figure 1g. The nearly identical dependence of log-transformation and
variance-stabilizing transformation on mean intensity for the natural sound intensity fluctuations
measured is shown in figure 1h. The results of figure 1a–h are consistently found for the other
natural acoustic events investigated (electronic supplementary material, figure S1).

In addition to log and variance-stabilizing transformations, transformations developed
specifically for psychophysics, such as Fechner’s, are also shown in figure 1h as a function of mean
sound intensity. Fechnerian transformation of an external stimulus Ī [29,54,55] can be expressed
analytically in terms of measured just-noticeable-differences �Ii(Ī) of that stimulus, via [6,27,28]

TF(I) =
∫ I

I0

1

�I(Ī)
dĪ, (2.2)

where I0 is the minimum value of the stimulus. The Fechnerian transformation of figure 1h
is obtained by applying equation (2.2) to the just-noticeable-difference data of figure 2a,b.
Specifically, the dependencies �W(W̄) from eight independent psychophysical experiments
[2–6,49] transmitting random broadband sound are used to yield corresponding Fechnerian
transformed intensity curves via equation (2.2), with acoustic intensity W substituted for the
generic stimulus I, the mean of which is shown in figure 1h. This mean curve is linearly scaled and
offset for comparison with other transforms in figure 1h. Only historic measurements of �W(W̄)
are used that: (i) employ broadband transmission stimuli filling the entire roughly 128 Hz critical
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Figure 2. Just-noticeable-differences in acoustic intensity approximately follow Weber’s Law. (a) Just-noticeable-differences
as a function of acoustic intensity stimulus from artificial sound sources obtained from decades of psychophysical experiments
measuring human response to soundwith broad spectra filling the entire 128 Hz critical band centred at 1000 Hz [2–6,49]. Just-
noticeable-differences from each independent experiment display excellent fit to a straight line and consequentlyWeber’s Law.
The independent experiments employed acoustic signal stimuli of differing duration and different human subjects which lead
to best-fit lines with differing slopes across experiments. Best-fit slopes are normalized to the same value to visually compare
linearity of just-noticeable-differences versus stimulating intensity across experiments (electronic supplementary material,
table S1). Data shown roughly 10 dBaboveabsolute lowest detectable soundpressure level to avoid contamination fromauditory
system self-noise or ambient noise contamination. Inset image zooms in on lower intensities. (b) Same values as plotted in (a)
but in decibels as a function of stimulating sound pressure level.

band [54] at 1 kHz of our acoustic measurements and (ii) cover the range of our acoustic intensity
data from 15 to 75 dB re 20 µPa. This is done for comparison with our experimental data of natural
sound scintillation. We chose the 1 kHz critical band for our measurements because 1 kHz is the
frequency at which the minimum audible SPL is defined for humans and it also falls at the lower
end of the most sensitive frequency range in human hearing [56].

Fechnerian, log and variance-stabilizing transformations have nearly identical dependencies
(figure 1h). These observations are quantitatively confirmed in figure 1i by comparing normalized
correlation coefficients [30] for functional dependencies shown in figure 1h.

Interestingly, in decades of previous human psychophysical experiments with controlled
artificial sound sources, just-noticeable-differences were found to grow approximately in
proportion to stimulating sound intensity. These just-noticeable-differences approximately follow
Weber’s Law, as seen in figure 2. They do so over the same ranges as our scintillating intensity
data from natural sound sources, which have an intensity standard deviation that also follows
Weber’s Law, as seen in figure 1f.

Similar results are obtained for other critical frequency bands (electronic supplementary
material, figure S2) and higher intensities (electronic supplementary material, figure S3).

Psychophysical magnitude estimation experiments [54,57,58] lead to a dependence on mean
intensity stimulus quite different from log and variance-stabilizing transformation that is
somewhere in between those and the direct dependence mean intensity has on itself as shown
in figure 1h–i. In magnitude estimation, a subject detects a change in intensity stimulus and
then makes a judgement to assign a numerical value for the appraised magnitude of the
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change. This involves a further intellectual process beyond detecting a change or just-noticeable-
difference [55] which may account for its significant departure from the highly correlated log,
variance-stabilizing and Fechnerian transformation dependencies (figure 1h,i). The empirical
magnitude estimation transforms used in figure 1h,i are the average of five independent historic
psychophysical experiments measuring human response to sound, including the entire 128 Hz
critical band centred at 1000 Hz [2,50–52]. This average curve is linearly scaled in figure 1i for
comparison with other transformations of intensity. Only historic measurements that roughly
cover the range of our acoustic intensity data from 15 to 75 dB are used.

3. Naturally scintillating daylight luminance
We conducted a series of experiments to investigate the natural scintillation of typical objects
found in forest or meadow settings illuminated by daylight. Static scenes of natural objects
including leaves, feathers, branches, earth, tree bark and stones were imaged every second over
daylight hours (figure 3a). This was done to form different observations of the same scene changed
at each pixel only by variations in natural lighting, which scintillated under varying atmospheric
and cloud conditions. Statistical fluctuations of natural light at each pixel in respective intensity
images were obtained in this way. The temporal, spatial and frequency samplings were selected
to be consistent with those found for the human visual systems.

The static luminance scene of various natural objects in figure 3a was imaged with naturally
scintillating daylight using a Phantom UHS12 camera. It provided 12 bit depth leading to 4096
discrete luminance values at each pixel in a 1280 by 800 pixel image. The angular resolution of
each pixel was approximately 1 arc-min, similar to that of the human eye [61]. The entire scene was
measured every second over two and a half hours at midday in Massachusetts under partly sunny
sky conditions with 51–69% varying cloud cover leading to N = 9000 sample images of the entire
scene. Measured luminance Lj(x, y) at pixel (x, y) for the jth entire-scene sample is proportional to
intensity (electronic supplementary material), and has corresponding log-transformed luminance
TL(Lj(x, y)) = 10 log(Lj(x, y)/Lref) dB re Lref = 1 µcandela m−2. Variance-stabilizing transformed
luminance is TV(Lj(x, y)) from equation (2.1) using our measured luminance data. Fechnerian
transformed luminance is TF(Lj(x, y)) from equation (2.2), and magnitude estimation transformed
luminance is TME(Lj(x, y)) using psychophysical data to be described.

The sample mean L̄(x, y) and standard deviation σL(x, y) at any pixel across all j = 1, 2, 3, . . . , N
samples of the entire scene are computed. These are then sorted across pixels (x, y) to obtain the
standard deviation as a function of mean luminance σL(L̄) in figure 3b. The standard deviation
is found to have an approximately linear dependence on the mean, indicating signal-dependent
noise, with slope of approximately 0.21 equal to the scintillation factor.

The Fechnerian transformations of figure 3d–e are obtained by inserting into equation (2.2) just-
noticeable-difference measurement sets �L from four independent psychophysical experiments
[7–9,12], which cover the luminance range of our environmental measurements (figure 4). A linear
scaling and offset of the Fechnerian transform dependence is applied to enable visual comparison
with other transforms in figure 3d. Below the range of our environmental data but above the
operational range of low-light-level rod cells [60], i.e. roughly luminance L> 1 candela m−2,
Fechnerian transformation maintains a high average correlation, 0.98 normalized correlation
coefficient, with log-transformed luminance. To obtain the magnitude estimation transform of
figure 3d–e, only historic psychophysical experiments over the range of our optical luminance
data [57,59] are used.

The standard deviations versus mean of log-transformed and variance-stabilizing transformed
luminance are shown in figure 3c. They have nearly identical constant dependencies on their
respective means, indicating that signal-dependent noise in luminance is converted to signal-
independent noise by both the log and variance-stabilizing transformations. The functional
dependence of log, variance-stabilizing and Fechnerian transformations are seen to be nearly
identical, while those for magnitude estimation and untransformed luminance differ significantly
from these and each other (figure 3d). This is quantitatively confirmed by the correlations between
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Figure 3. A scene with natural objects illuminated in terrestrial daylight is repeatedly measured to determine the statistical
properties natural luminance scintillation at every spatial pixel. Luminance is spectrally filtered, normalized intensity (electronic
supplementary material). (a) Single measurement sample of scene with static natural objects at 1 arc-min resolution per pixel
approximately that of human eye. (b–e) Analysis of scene scintillationmeasured in 51–69% varying cloud cover at 1 s sampling:
(b) Standard deviation linear in mean for luminance. (c) Standard deviation constant function of mean for variance-stabilizing
and log-transformed luminance. (d-e) Same as figure 1h–i except for luminance data of figure 2a scene, variance-stabilizing
transform is obtained from the measured luminance data, Fechnerian and magnitude estimation transform derived from
decades of independent psychophysical investigations [7–9,12,57,59], for data in the daylight range, above the low-light level
rod cell range [60]. Similar results are found under different cloud conditions (electronic supplementarymaterial, figures S5 and
S7) and for individual objects in the scene (electronic supplementary material, figure S4).

the functional dependencies of the various luminance transforms shown in figure 3e. The nearly
continuous mean luminance levels L̄ and mean transformed luminance levels from the data
are uniformly sampled at discrete points for presentation purposes only in figure 3b,c. Again
these results (figure 3a–c) are for partly cloudy conditions, with similar results obtained for
sunny (electronic supplementary material, figure S5) and overcast (electronic supplementary
material, figure S7) cloud conditions. The variance-stabilizing transform curve TV(L) in figure 3d
is obtained by concatenating or averaging curves obtained from these three days of distinct cloud
conditions.
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Figure4. (a) Just-noticeable-differences as a functionof luminance stimulus fromartificial light sources obtainedbydecades of
psychophysical experiments [7–12,62] over the daylight range. Just-noticeable-differences from each independent experiment
display excellent fit to a straight line and consequently Weber’s Law. The independent experiments employed differing
stimulating luminance-patch angular widths, and different human subjects, which lead to differing best-fit slopes across
experiments. Best-fit slopes are normalized to the same value to visually compare linearity of just-noticeable-differences
versus stimulating luminance across experiments (electronic supplementary material, table S2). Inset image zooms in on lower
intensities. (b) Same values as plotted in (a) but in decibels as a function of log-transformed luminance in decibels.

Empirical just-noticeable-differences in luminance from decades of psychophysical experiments
(figure 4a,b) show an approximately linear dependence on mean stimulating luminance from a
controlled artificial light source. They approximately follow Weber’s Law as seen in figure 4a,b.
Natural objects illuminated by scintillating daylight in our data have a luminance standard
deviation that also follows Weber’s Law as seen in figure 3b. This leads to the observed
high correlation between log-transformed, variance-stabilizing transformed and Fechnerian
transformed luminance in figure 3c–e.

4. Theoretical proof of when Fechner’s transformation is a variance-stabilizing
transformation

It is now straightforward to mathematically prove that when Weber’s Law holds for
psychophysical just-noticeable-differences, and stimulating intensity and luminance have
standard deviations that grow in direct proportion to their respective means, the Fechnerian
transformation is identical to a variance-stabilizing transformation. The fact that both are identical
to a log-transform in this case will be seen to follow immediately.

More generally, by the definitions of the Fechnerian transformation TF(I) of equation (2.2) and
the variance-stabilizing transformation TV(I) of equation (2.1) it follows that

TV(I) = TF(I), (4.1)

when

σI(Ī) = α0�I(Ī), (4.2)
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where the arbitrary offset βo of the variance stabilization equation (2.1) is set to zero, and linear
dependence of σI(Ī) and α0�I(Ī) on Ī, as in Weber’s Law, is just one of many mathematically
possible ways for the equalities to hold.

The equality of equation (4.1) has been experimentally demonstrated here in figure 1h–i for
acoustic intensity data and figure 1d–e for optical luminance data. The equality of equation (4.2)
is also experimentally verified here by comparison of figures 1f and 2a,b for the acoustic intensity
data and figures 3b and 4a,b for the optical luminance data.

For constant scintillation factor

s = σI(Ī)

Ī
, (4.3)

as seen for measured intensity and luminance in figures 1f and 3b, equations (4.1)–(4.3) lead to
the variance-stabilized solution for Fechnerian transformed intensity

TF(I) = α0

s
10 log(I)
10 ln(e)

+ γ0, (4.4)

which is a logarithmic transform of received intensity stimulus, consistent with the corresponding
measured dependencies in figures 1h and 2d, where, like α0 and s, γ0 is also a constant. This also
explains the high correlation found between log, variance-stabilizing and Fechnerian transformed
intensity and luminance in figures 1g–i and 3c–e, respectively. Arriving at equation (4.4) from the
Fechnerian transformation of equation (2.2) with just-noticeable-differences obeying Weber’s Law
is a well-known result in psychophysics, namely derivation of the Weber–Fechner Law [1,6,27–
29]. Arriving at equation (4.4) from variance-stabilizing transformation of scintillating sound and
light intensity data (equation (2.1)), however, puts the Weber–Fechner Law in a new context.
It shows that perception in log-transformed intensity or luminance is tantamount to having
perception in a variable that has a constant standard deviation, i.e. a constant statistical resolution
scale, with respect to the external stimuli. The external stimuli in this case are the log-transformed
intensity and luminance of naturally scintillating sound and light, respectively.

5. Approximate normality of variance-stabilizing-transformed intensity or
luminance

The Kolmogorov–Smirnov (K–S) test for Gaussianity [63,64] is applied to each temporal pixel
in the acoustic rustling leaves event of figure 1 and each spatial pixel in the natural scene
illuminated by daylight of figure 3 across independent samples of each. The percentage of pixels
that pass the K–S test at 5% significance level is shown in figure 5a,b for acoustic and daylight
cases, respectively. Results for the various transforms of intensity and luminance, as well as
untransformed intensity and luminance are also shown in figure 5 for comparison.

Variance-stabilizing, Fechnerian and log-transforms of intensity and luminance lead to
effectively normal probability densities for the vast majority of pixels as quantified by K–S testing
(figure 5a,b). The fit to normality is consistently cruder for magnitude estimation and consistently
worst for no intensity or luminance transformation (figure 5a,b). This hierarchy is identical to
that found in correlation with the variance-stabilizing transform (figures 1i and 3e). Variance-
stabilizing transformations have been correlated with transformations to normality [24,25]. This
is apparently due to more rapid convergence by the central limit theorem for random variates
that are more similarly distributed.

Transformation to a normal random variable has practical benefits, because it entails complete
characterization of the random variable’s probability density by its first two moments. The
fact that log-transformation of the natural intensities and luminances measured here leads
to effectively normally distributed data is fortuitous for this reason and another. In the
random generation, propagation and scattering of waves, lognormal intensity and luminance
distributions are converged upon from a number of diverse mechanisms via the central limit
theorem. This makes them predictable, which makes adaptation to them more effective and
reliable.
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Figure 5. Percentage of normally distributed image pixels by Kolmogorov–Smirnoff (K–S) test for (a) the N = 154 samples
of the entire acoustic intensity time series of the rustling leaves event of figure 1, (b) and the N = 9000 samples of the
daylight luminance scene of figure 3. The K–S test is also performed for various transformations of intensity in (a) and various
transformations of luminance in (b). Similar results are obtained for other examples in the electronic supplementary material.

As Rayleigh explained [22], natural sounds are often a superposition of many additive pressure
waves from independent random source components that converge to a zero mean Gaussian field
by the Central Limit theorem. The intensity of such a random field has a standard deviation
proportional to mean intensity which is in turn proportional to the wave field variance [65].
Following the homomorphic properties of log-transformation, log-transformed intensity at any
pixel then has a standard deviation independent of the signal-bearing mean, and tends towards
normality [65,66]. This is consistent with measurements shown in figures 1 and 5a. The standard
deviation of log-transformed intensity in decibels (figure 1g) is slightly lower than that of an
instantaneous Gaussian random field data, which is 5.6 dB [65]. It is consistent with roughly two
statistically independent coherence cells averaged per pixel for the given temporal and spectral
windowing rather than a single one for the instantaneous case [65]. Convergence to a lognormal
intensity probability density could also be hastened by multiple random and independent factors
affecting the acoustic signal received, such as source power and range, which become additive
after log-transformation.

Lognormal intensity scintillation is also routinely observed in light after propagation through
the atmosphere. This has been well documented in starlight twinkling [19,20] and sunlight
scintillation due to random atmospheric effects [21,67,68]. The natural scintillation of terrestrial
daylight we observe at any pixel in our luminance images (figure 3b,c) arises from sunlight
scattering through and from multiple random and independent atmospheric layers [19–21,67,68],
including clouds, and subsequent directional scattering by the object into a directional sensor
such as the eye. Log-transformation of this light intensity or luminance homomorphically
converts random independent multiplicative factors to additive ones [18,20]. This leads to a
log-intensity standard deviation that is independent of the signal-bearing mean (figure 3c) as
well as convergence to a lognormal intensity probability density by the central limit theorem
[18,20,26]. A small fraction of pixel locations are not classified as having normal densities in the
better performing transformations of figure 5b due to variations in shadows cast by some objects
and wind-induced motion. These effects typically can be deterministically modelled by practical
means, which is often not the case for scintillation from random atmospheric fluctuation.

Adjustment to the average image level across pixels in any instantaneous image has precedent
in observed visual system threshold shifting [69] and is accomplished for luminance images and
their transforms via

τψ (Lj(x, y)) = Tψ (Lj(x, y)) − 1
NxNy

Nx∑
x=1

Ny∑
y=1

Tψ (Lj(x, y)), (5.1)
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for any transform Tψ and instantaneous luminance image sample Lj(x, y). To account for
threshold shifting in the visual system and typical of machine systems, equation (5.1) is applied
when specified to each transform of luminance data, including the untransformed luminance
used in the tests of normality in figure 5b. This linear shift does not affect the image pattern at any
sample j of the entire image. For all transforms effective at variance stabilization, application
of equation (5.1) leads to (i) greater stability across variations in cloud cover in the standard
deviation of transformed luminance as well as (ii) statistical decorrelation between spatially
separated pixels. Across all samples of the luminance image of figure 3a and all spatial pixels, the
standard deviation στL(L) is 0.378 dB, while without the adjustments of equation (5.1) the standard
deviation σTL(L) is roughly 0.90 dB as shown in figure 3c.

The K–S test as applied in figure 5a,b requires the number of independent observations Nind of
the random image used to form the empirical distribution. In the acoustic case, each sample of the
entire image is statistically independent and the number of samples of the entire image is Nind =
N = 154. For the optical case, the approximate number of independent samples of each pixel,
roughly Nind = 163 which is less than the total number of temporally consecutive samples N =
9000, is determined from the autocorrelation of τψ (Lj(x, y)) across temporally consecutive samples
j in two ways that yield the same results to within roughly 5%. In one approach the number of
independent samples is set equal to the total uninterrupted time over which consecutive samples
are measured, roughly 2.5 h, divided by the e-folding time of the autocorrelation [30,70] of the
pixel value’s temporal dependence, which is found to be roughly 55 s. In the other, the fact that
fluctuations of the autocorrelation function at lags far from the zero-lag peak form a normal
distribution with zero mean and variance given by the reciprocal of the number of independent
observations is used [70]. By finding the root-mean-square level, δ, of the autocorrelation function
many time lags away from zero to within a 95% confidence interval, i.e. values within 1.96 times
the standard deviation about the mean, the number of independent observations can be computed
as (1.96/δ)2 [70].

6. Weber’s Law is a consequence of attaining the Cramer–Rao lower bound in
intensity or luminance resolution

Simple analytic equations can now be derived for the Cramer–Rao lower bound [30] on the mean-
square error in the estimation of parameters from naturally scintillating sound intensity and light
luminance data. No unbiased estimates can have a mean-square error smaller than the Cramer–
Rao lower bound [30]. An unbiased estimate is one that has an expectation value that equals the
true value of the parameter to be estimated.

For a normal random variable TL(I) = 10 log(I) with mean T L(I) that depends on the
parameter to be estimated θ and variance σ 2

TL(I) that is independent of θ , the Cramer–Rao lower
bound for mean-square estimation error of θ is

CRLB(θ ) = σ 2
TL(I)

(
dT L(I)

dθ

)−2

, (6.1)

where

T L(I) = 10 log

(
Ī√

1 + s2

)
, (6.2)

and
σTL(I) = 10 log(e)

√
ln(1 + s2), (6.3)

for lognormal I and constant scintillation factor s from equation (4.3). In other words, for any
unbiased estimate θ̂ of θ from random data TL(I), the mean-square estimation error 〈(θ̂ − θ )2〉
cannot be less than CRLB(θ ) [30]. The measured standard deviations for log-transformed acoustic
intensity (figure 1g) and log-transformed luminance (figure 3c) are indeed found to be equal
to those predicted by equation (6.3) upon insertion of the measured scintillation factors s from
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figures 1f and 3b, respectively. This also demonstrates effective lognormality of the observed
acoustic intensity and optical luminance data at each pixel.

If the parameter to be estimated is the mean of the lognormal variable, θ = Ī, the Cramer–
Rao lower bound from equations (6.1) and (6.3) leads to the minimum possible root-mean-square
error, √

CRLB(Ī) = σTL(I)

10 log(e)
Ī =

√
ln(1 + s2)Ī, (6.4)

which is directly proportional to Ī as in Weber’s Law. When I represents the random
acoustic intensity W/Iref data at any pixel for the rustling leaf example, which is shown to
be approximately lognormally distributed in figure 5a, inserting either the scintillation factor
shown in figure 1f or the constant log-transformed standard deviation of figure 1g into equation
(6.4) leads to the Cramer–Rao lower bound on mean-square error in estimation of acoustic

intensity,
√
CRLB(W̄)/W̄ = 0.82, shown in figure 6a. We find adjustment to the mean image

level across pixels has a negligible effect on normality of the various transforms of the acoustic
intensity data, so it is not performed here. Such adjustments, as described in equation (5.1), do
make variance-stabilizing transformed luminance more normal at each pixel, and are both well
documented in human vision and routinely used in machine vision [69,71]. Along these lines,
when I represents daylight luminance L/Lref, which is shown to be approximately lognormally

distributed in figure 5b, the Cramer–Rao lower bound
√
CRLB(L̄)/L̄= 0.087 shown in figure 6c

is then obtained by use of σTL(I) = στL(L) = 0.378 dB in equation (6.4) which includes application
of the equation (5.1) instantaneous image shift. Similar results are found for other acoustic event
signatures (electronic supplementary material, figure S1) and scenes illuminated under different
cloud conditions (electronic supplementary material, figures S5 and S7).

Since varying transmission time durations of the broadband acoustic signals were used to
measure just-noticeable-differences in the assorted independent psychophysical experiments [2–
6,49], the different psychophysical datasets are normalized to a consistent intensity stimulus time
duration in figure 6a,b. This is taken to be the nominal 10 ms duration of a single auditory system
pixel [54]. For this normalization, unnormalized just-noticeable-differences are divided by the
square root of the ratio of the applied signal duration to the nominal 10 ms temporal resolution
scale to be consistent with empirical observations of the dependence of just-noticeable-differences
on signal duration [5]. This dependence is congruous with intensity averaging in a random
process [65]. Similarly, to compare just-noticeable-differences across psychophysical experiments
that use stimulating luminance patches of varying angular widths φ as subtended from the
subject’s eye, the just-noticeable-differences in figure 6c,d are normalized to the nominal angular
resolution of the eye following empirically derived patch-size dependencies [10,72]. Specifically,
normalized just-noticeable-differences are obtained as �L= (φ/φeye)0.5�Lunnorm for φ ≤ φfov,
and �L= (φfov/φeye)0.5�Lunnorm for φ > φfov, where φfov is the roughly 120 arc-min angular
span of foveal vision for centre gaze [73], φeye is the roughly 1 arc-min angular resolution of the
eye at centre gaze, and �Lunnorm are unnormalized just-noticeable-differences. Only data from
psychophysical experiments where acoustic signal durations and visual patch angular widths are
provided are used in figure 6.

Weber’s Law is then a consequence of intensity or luminance resolution having the functional
dependence dictated by the theoretical Cramer–Rao lower bound. This is seen from equation
(6.4) where the theoretical root-mean-square error bound is linearly dependent on mean
intensity, Ī = W̄/Iref, or luminance, Ī = L̄/Lref, so leading to Weber’s Law. If interpreted
directly as root-mean-square errors, just-noticeable-differences in artificially generated sound
intensity �W(W̄) and artificial light luminance �L(L̄) measured during many independent
psychophysical experiments are found to approximately attain the respective Cramer–Rao lower
bounds of equation (6.4) (figure 6a,c). This is remarkable because the bounds are determined
independently from measurements of naturally scintillating environmental sound intensity and
daylight luminance. The just-noticeable-differences follow the same linear dependence as the
root-mean-square error bound on mean sound intensity and light luminance. The average of
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Figure 6. Psychophysical measurements of just-noticeable-differences in sound intensity and light luminance from artificial
sources approximately attain the Cramer–Rao bound for natural sound and light scintillation. True positive detection rates
for intensity or luminance change using psychophysical just-noticeable-differences as change-detection thresholds are also
shown to be in the optimal range for natural scintillating sound and light. Natural sound and light scintillation statistics
from figures 1 and 3 datasets are used. (a) Ratio of just-noticeable-differences to sound intensity stimulus, known as a Weber
fraction, as a function of sound intensity stimulus obtained from decades of psychophysical experiments measuring human
response to artificial broadband sound. Artificial sound fills the entire 128 Hz critical band centred at 1000 Hz [2–6,49]. For
quantitative comparison, just-noticeable-difference data across independent experiments normalized to a consistent signal
transmission duration equal to the nominal 10 ms single pixel temporal resolution of the auditory system. Cramer–Rao lower
bound divided by mean intensity stimulus (dashed line) based on measured probability densities of naturally scintillating
sound via equation (6.4). (b) Average true positive detection rate from natural sound intensity probability density across all
false-positive rates for intensity change-detection threshold equal to psychophysically measured just-noticeable-differences
for each dataset shown. (c–d) Same as (a–b) except just-noticeable-differences obtained from decades of psychophysical
experiments measuring human response to light luminance stimulus [7–12,62], and probability densities and Cramer–Rao
lower bound of equation (6.4) determined frommeasured scintillation of natural light after the instantaneousmean image shift
of equation (5.1). For quantitative comparison, just-noticeable-difference data across independent experiments are normalized
to a consistent stimulating signal patch-size spanning the nominal 1 arc-min single pixel angular resolution of the visual system.
Similar results are found for other cloud conditions (electronic supplementary material, figures S5 and S7) and sound sources
(electronic supplementary material, figure S1).
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just-noticeable-differences across many different experimental studies approximately equals the
root-mean-square error bound for acoustic intensity. For light luminance, some just-noticeable-
difference datasets attain the bound, but the average across datasets is higher than the bound by
roughly a factor of two. This is advantageous when the just-noticeable-differences are interpreted
as thresholds for change detection rather than directly as root-mean-square errors.

From this perspective, let us consider the just-noticeable-differences as intensity or luminance
change-detection thresholds. Let us also consider the performance of integer factors of the
respective Cramer–Rao lower bounds on root-mean-square error as change-detection thresholds.
Binary hypothesis testing is employed. The probability densities for log-transformed sound
intensity and light luminance are then determined for each hypothesis using measured data,
summarized in figures 1 and 3, where only the log-transformed variable’s mean is different in
each hypothesis. This mean includes an intensity or luminance threshold shift in one hypothesis,
while in the other no threshold shift is used. Neyman–Pearson hypothesis testing is employed. It
yields the highest probability of true positive detection for a given probability of false alarm [37].
As thresholds for detectable change, the just-noticeable-differences measured psychophysically
with artificial light and sound sources shown in figure 6a,c yield average true positive change-
detection rates over all false-positive rates of 79 ± 8.5% for natural sound intensity (figure 6b) and
87 ± 11% for daylight luminance (figure 6d) over all false-positive values. They do so relatively
consistently for all mean intensities and luminance values. This is a consequence of Weber’s
Law in both the psychophysical just-noticeable-difference data and the standard deviations
of the environmental sound intensity and light luminance data. When the root-mean-square
bound is instead used as a threshold for change, the average true positive detection rates are
75% for both acoustic intensity and light luminance. So as a change-detection threshold, the
Cramer–Rao lower bound on root-mean-square sound error is on average within 4% for mean
sound intensity and 12% for mean daylight luminance of the performance of the respective
psychophysical just-noticeable-differences (figure 6). As thresholds for change detection, the
psychophysical just-noticeable-differences are then extremely efficient. They are remarkably in
the optimal range of being large enough to reject most of the false alarms from natural sound and
light scintillation, but not be so large as to also reject changes that are very likely true positive. If,
for argument’s sake, instantaneous adjustment to the mean luminance across pixels as in equation
(5.1) is not performed, despite evidence to the contrary in human perception [69], the root-mean-
square luminance Cramer–Rao lower bound becomes approximately 0.21, by use of s = 0.21 from
figure 3b in equation (6.4). As a detection threshold this is within 2% of the average true positive
detection performance of just-noticeable-differences in luminance, and so is also in the optimal
range.

The Cramer–Rao lower bound in resolving the mean is exactly equal to the variance for log-
transformed intensity or luminance. The same is true for variance-stabilizing transformed and
Fechnerian transformed intensity or luminance. This is because all of these transformed intensities
or luminances can be described by a normal random variable TL(I) with standard deviation σTL(I)
independent of the mean T L(I), where Weber’s Law holds for I as in equations (6.3) through (6.4)
by constancy of s. This leads to √

CRLB(T L(I)) = σTL(I), (6.5)

where it is explicitly seen that the root-mean-square error bound on estimation of the transformed
variable’s mean is exactly equal to its standard deviation, which is constant and independent of
Ī and T L(I). Statistically optimal resolution of log-transformed intensity or luminance is then
constant. Perception with log-transformed intensity or luminance then conveniently requires
optimal resolution of the perceived variate to be invariant to changes in the mean of this variate
from equation (6.5). It also leads to Weber’s Law for optimal intensity or luminance resolution
by equation (6.4). The same is true for variance-stabilizing and Fechnerian transformations of
intensity or luminance.
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7. Maximizing information reception and optimizing pattern recognition
Intensity perception obeying Weber’s Law is found to have a number of other advantages
given the natural fluctuations of environmental light and sound intensity. It enables information
reception to be easily maximized and pattern recognition easily optimized according to criteria
from information, estimation and detection theories [30,35–37]. To see this, let Gj be an n-
dimensional vector of transformed or untransformed scintillating acoustic intensity or daylight
luminance data over the n pixels and jth sample of this image. Let the mean of Gj over all samples
j be Ḡ and the covariance be C. For two-dimensional transformed or untransformed luminance
image data, Gj is a vectorized form including the values at all spatial pixels, with instantaneous
offset adjustment via equation (5.1). Variance-stabilizing, log and Fechner transformed sound
intensity and light luminance images Gj are found to undergo effectively normal fluctuations
at each pixel (figure 5). They are also found to have a covariance matrix that is well approximated
by C = σ 2I, where I is the identity matrix and σ 2 is a variance independent of the mean Ḡ. In this
case, the standard multivariate Gaussian log-likelihood function [30] is appropriate, and can be
expressed as

l(Ḡ, σ 2) =
N∑

j=1

{
−1

2

(Gj − Ḡ)T(Gj − Ḡ)

σ 2

}
+ d, (7.1)

where d = −N(n/2)(log(σ 2) + log(2π )) is a constant, and the signal-independent variance σ 2 is
obtained via maximum-likelihood estimation from image data Gj for j = 1, 2, . . . , N. For example,
σ = σTL(W) = 3.87 dB for log-transformed intensity of the rustling leaves data (figure 1), and σ =
στL(L) = 0.378 dB for log-transformed luminance data of the scene in figure 3 after application of
equation (5.1).

The sum of equation (7.1) is a sufficient statistic [30,35,36,74] in that it contains all information
in the multivariate data about the mean image Ḡ despite being a scalar variate. For estimation of
parameters of the mean image, including recognition of patterns in the image, it is customary to
expand the summation into three terms. What we will call the first term is a known scalar constant
of the measurement that does not vary with parameters of the mean to be estimated

N∑
j=1

{
− 1

2
GT

j Gj

}
. (7.2)

It is proportional to the average squared value at any pixel across all samples of the image. What
we will call the second term {

− N
2

Ḡ
T

Ḡ
}

, (7.3)

is a scalar parameter either known or to be estimated. The third term

Q=
N∑

j=1

{
Ḡ

T
Gj

}
, (7.4)

is the matched-filter correlation between the mean image and a measurement of it

Mj = GT
j Ḡ, (7.5)

summed over all samples of the entire image. If the second term is known, the third term is a
sufficient statistic. Typically, the measured and known first term is a very good approximation
to the second term, in which case the second term is approximately known. Then the third
term is to very good approximation a scalar sufficient statistic containing all information in the
multivariate image data about the environmental patterns to be recognized and parameters to
be estimated. The environmental signal patterns or parameters that maximize this matched-filter
correlation term (equation (7.4)) then also maximize the likelihood function (equation (7.1)) and
are maximum-likelihood estimates. The maximum-likelihood estimate has a useful optimality
property. If some estimate can attain the lowest possible mean-square estimation error given by
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the Cramer–Rao lower bound for sufficiently large N, it must be the maximum likelihood estimate
[30,35,74].

Optimal pattern recognition in the sense of maximizing the likelihood function then requires
only a very intuitive process. Find the template image mean Ḡ that has the best correlation with
the measured image on average over measurements of the image. The process could be as simple
as trial and error across hypothetical templates in memory. Knowledge of statistical moments
higher than the first, corresponding to the mean signal pattern, is not necessary. The key point
is that this simple intuitive correlation process is only optimal after the naturally scintillating
measurements of sound intensity or light luminance undergo log, variance-stabilizing or
Fechnerian transformation. This is because the simple matched filter (equations (7.4) and (7.5))
cancels fluctuations at each pixel. If the fluctuations are signal-independent, as is the case after
transformations that stabilize the variance, signal information is not lost by the cancellation. If the
fluctuations are signal-dependent, as they are for sound intensity and light luminance before such
transformation, the cancellation destroys signal information. Destruction of signal information is
not optimal for parameter estimation and does not lead to a sufficient statistic.

Detection of a pattern in image data can also be posed in terms of an optimal way of choosing
between two competing hypotheses for the mean image pattern Ḡ0 and Ḡ1. To maximize the true
positive detection probability for a given false positive detection rate is quite straightforward for
the Gaussian likelihood function of equation (7.1). The approach, following Neyman & Pearson
[30,36,37,74], is to choose Ḡ1, which is the correct mean pattern, over Ḡ0, when

GT
j Ḡ1 − GT

j Ḡ0 = M1j − M0j >β, (7.6)

for a given measurement Gj of the image, where β is determined from the given false-positive rate
[30,36,74]. This optimal decision rule (relation (7.6)) is based on a simple and intuitive sufficient
statistic, namely the difference between two matched-filter correlations. Again, knowledge of
statistical moments higher than the first is not necessary given the normal likelihood model of
equation (7.1).

A measure of the relative consistency of the various transforms of sound intensity and light
luminance data with the normal likelihood model of equation (7.1) can be obtained by comparing
the maximum likelihoods of each assuming this model. This comparison is shown in figure 7a
across different acoustic sound types and in figure 8a across different objects imaged with
daylight. The maximum likelihoods are nearly identical and highest for the highly correlated
variance-stabilizing, log and Fechnerian transforms. They are significantly lower for magnitude
estimation transformation, and the lowest by far for no transformation of sound intensity or light
luminance. This is expected because the transforms with high maximum likelihoods are most
effective at variance stabilization and transformation to normality. To make this comparison,
the mean of the image Ḡ and variance parameter σ 2 are estimated by maximum likelihood
over all data samples. This is done for each transform, as well as untransformed intensity or
luminance. Since the random image for each transform is in different units, transformation to
a common physical image unit is necessary before comparison. This is achieved by standard
Jacobian transformation of multivariate probability densities [30].

So, for sound intensity and light luminance images that undergo variance-stabilizing, log
or Fechnerian transforms, no higher statistical moments beyond the first need be estimated
for statistically optimal pattern recognition. In a hostile or competitive environment this is
advantageous because it leads to rapid and efficient pattern recognition. Perception with these
transformations is then consistent with advantageous adaptation to the natural scintillation of
environmental sound and light.

8. Advantages of sensing withWeber’s Law quantified with experimental data
There are a number of ways to elucidate practical advantages of the current findings. One is to
consider the consequences if they are not put to use. Suppose, for example, the resolution of
a sensing system, which can be taken to correspond to a just-noticeable-difference in human
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Figure 7. Information reception and pattern recognition performance compared across transformations of natural scintillating
acoustic intensity signals for a Gaussian likelihood model with constant variance and no correlation across pixels (equation
(7.1)). Perception with log, variance-stabilizing and Fechnerian transformed intensity fits this model well and leads to optimal
pattern recognition. Columns span distinct acoustic event signatures in auditory critical band at 1 kHz (1 ± 0.064kHz) and
10 ms pixel increment. (a) Maximum of the likelihood function across transforms with respect to those of variance-stabilizing
transformed intensity. (b–d) Hypothesis testing between changed image Hypothesis 1 and unchanged image Hypothesis 0 as
a function of the number of changed pixels. Changed pixels are replaced with ambient noise at the minimal signal level. (b)
Average true positive rate across all false-positive rates for variance-stabilizing transformed intensity. Competing hypotheses
go from indistinguishable to completely distinguishable as number of pixels changed increases from zero. (c) Comparison of
detection performance across transforms in per cent deficit from variance-stabilizing performance shown in (b). (d) Example
of sample means from 10 independent samples unchanged data in black, changed data in red for 50% of raw time acoustic
pressure series dropped to ambient noise level. All changes progress from time series end except for stick plunging into water
where changes progress from beginning.

perception, is constant in acoustic intensity rather than constant in log-transformed intensity.
Suppose the repeated measurements of a natural sound event, such as rustling leaves in
figure 1, has a scintillation factor of nearly one for any pixel. This leads to a standard deviation
approximately equal to mean intensity. Setting system resolution at the highest value of the
measured standard deviations, which is found for the greatest mean intensity, would make it
impossible to resolve most of the rest of the time series which has much smaller mean levels. In

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 M

ay
 2

02
3 



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220626

..........................................................

pebble feather branch
patch of exposed

ground tree bark

20

0

40

60

80

100

20

0

40

60

80

100

20

0

40

60

80

100

20

0

40

60

80

100

20

0

40

60

80

100

50

60

70

80

90

100

40

50

25

50

25

50

25

(31,38) (43,56) (64,33)
25 500

25 50025 50 750

25 50 75 1000

30

20

10

0

(a)

(b)

(c)

(d)

variance-stabilizing log fechnerian-int. mag. estimation
untransformed
luminance

0 5 10 2015 25 30 0 5 10 2015 25 30 0 5 10 2015 25 30 0 5 10 2015 25 30 0 5 10 2015 25 30

0 50 100 200150
25

50

75

100

25

50

75

100

125 (32,61)(13,64)

m
ax

. l
ik

el
ih

oo
d 

no
rm

al
iz

ed
w

.r
.t 

va
r.

 s
ta

b.
 tr

an
s.

 (
%

)
av

g.
 tr

ue
 p

os
. r

at
e 

fo
r

va
r.

 s
ta

b.
 tr

an
s.

 (
%

)
de

fi
ci

t w
.r

.t 
va

r.
 s

ta
b.

tr
an

s.
 tr

ue
 p

os
. r

at
e 

(%
)

log Fechnerian-int.

no. of pixels replaced in the image

mag. estimation untransformed luminance

Figure 8. Same as figure 7 except for objects imaged with naturally scintillating daylight from figure 3. Perception with log,
variance-stabilizing and Fechnerian transformed luminance leads to optimal pattern recognition. (a) Maximum of likelihood
function across transforms and objects. (b–d) Changed pixels are replaced with low luminance earth or mud pixels. They grow
horizontally up to 10 pixels in each row, with new rows forming directly below. Patches of each size then moved exhaustively
over each image and image sample. (d) Example of changed image for each object with five pixels replaced, where coordinates
indicate locationof left-most changedpixel. Similar results are foundunderdifferent cloud conditions (electronic supplementary
material, figures S6 and S8).

the opposite extreme, picking the lowest measured standard deviation, found for the lowest mean
intensity measured, would lead to over-sampling or over-resolving noise fluctuations at higher
mean intensities by roughly an order of magnitude. Either limiting choice of constant resolution in
acoustic intensity is then extremely inefficient. For the optical case of figure 3, a similar situation
occurs when system resolution is set to a constant luminance. Signal blurring occurs when the
constant is too large and over-resolving noise occurs when it is too small. Both are inefficient, as
is any constant resolution setting for all mean luminance values. The smaller scintillation factors
obtained for light luminance enable subtler environmental patterns to be discerned.

Practical advantages of the current findings can also be illustrated by quantifying the ability
to detect changes in natural sounds and in natural objects illuminated by daylight. The approach
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is to apply Neyman–Pearson hypothesis testing assuming the Gaussian model of equation (7.1)
for each of the various transformations of sound intensity or light luminance including no
transformation. The model assumes perception with constant resolution across the perceived
data via constant variance and no correlation across pixels. As demonstrated in previous
sections, this model is accurate for variance-stabilizing, log and Fechnerian transformations.
For untransformed sound intensity and light luminance, in contrast, the equation (7.1) model
inaccurately assumes perception with fixed sensing resolution, and the fit to a Gaussian
probability density is not as good. So it is useful to explore the consequences with actual sound
intensity and daylight luminance image data.

To investigate change detection, two competing hypotheses are compared. In Hypothesis 1, a
change is made to the image of Hypothesis 0 by introduction of different data at certain pixels.
The test data Gj is consistent with Hypothesis 1. For the acoustic examples, the changed data
is ambient noise measured just after the given acoustic event sample, with the same temporal
sampling and frequency filtering as the unchanged event data. This noise has an intensity
that corresponds roughly to the lowest signal intensity measured. For the objects imaged with
daylight, the changed data is dark mud of low luminance imaged at the same time as the five
objects investigated but spatially distinct from them. The changed pixel section in the acoustic
images grows linearly in time from either the beginning or end of the time series as indicated in
figure 7d. In the luminance images, the changed pixel patch grows linearly in the horizontal until
it reaches a length of 10 pixels, then begins another changed row below that of up 10 pixels, and
so on forming a patch with up to 30 changed pixels in total. The luminance detections include
averaging over results where the changed section is exhaustively moved across the given image.
The Ntest image samples of Gj used to test the hypotheses are collected independently of the Ntrain
samples used to construct the expected images Ḡ1 and Ḡ0 for Hypotheses 1 and 0, respectively.
To be consistent with practical implementations, small sample sizes of Ntrain are used. For
the sound intensity examples, Ntest = N − Ntrain, where Ntrain = 10 and N is the total number
of image recordings for the given acoustic signature (figure 1 and electronic supplementary
material, figure S1). Hypothesis testing is carried out repeatedly for all combinations of the
N samples of each image leading to samples Ntrain independent of Ntest. For the luminance
examples, hypothesis testing is conducted with Ntest = 4500 samples, which is half the total
number of image measurements, with expected image hypotheses constructed from Ntrain = 5
independent samples taken from the remaining half of the total number of image measurements.
This is repeated exhaustively for all non-overlapping consecutive sets of Ntrain samples from
the remaining half of image measurements. The results of all such independent tests for a given
acoustic signature or luminance object are averaged.

The average true positive detection rate over all false-positive rates from the relation (7.6)
decision rule is shown in figure 7b for variance-stabilizing-transformed acoustic intensity and in
figure 8b for variance-stabilizing transformed light luminance. Five examples are shown for each.
The average rate is 50% when no pixels are changed. This is expected because the competing
hypotheses are the same in this case. As the number of changed pixels grows, the rate follows an
increasing trend until saturating at 100%. The trend has some fluctuation and is far more gradual
in the acoustic case as seen in figures 7b and 8b.

The likelihood decision rule of equation (7.6) is similarly applied for all other transformations
of sound intensity and light luminance, as well as untransformed intensity and luminance.
Results are exhibited in figures 7c and 8c in terms of the deficit from the average true positive
detection rate of the variance-stabilizing-transformed case shown in figures 7b and 8b. Log,
variance-stabilizing and Fechnerian transformations have nearly identical performance. As noted
previously, their performance is approximately optimal since they fit the likelihood model of
equation (7.1) well for which the decision rule of relation (7.6) is optimal. Detection using
this same likelihood model and decision rule with untransformed acoustic intensity and light
luminance, in contrast, leads to large deficits in performance relative to that found with log,
variance-stabilizing and Fechnerian transformed intensities and luminances. This exemplifies
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how the use of constant sensing system resolution across all mean intensities or luminances not
only theoretically violates Weber’s Law in intensity and luminance resolution, but leads to poor
pattern recognition in practice. Detection performance with magnitude estimation transformation
is consistently less optimal than log, variance-stabilizing and Fechnerian transformation, but
more optimal than with untransformed sound intensity and light luminance. Similar results for
luminance images with natural light obtained under different cloud conditions appear in the
electronic supplementary material. Examples of Ḡ1 for sound intensity data appear in figure 7d
and in figure 8d for the daylight luminance data. Application of the instantaneous image level
shift of equation (5.1) has a negligible effect on these hypothesis testing results.

These hypothesis tests quantify the relative advantages of the various sound intensity and
light luminance transformations investigated, including no transformation. The tests compare
how reliably increasingly subtle pattern changes can be detected in each case. The changed
visual patch, for example, could contain information about a potential food source or harmful
pest. The sudden acoustic signature truncation to background noise, for example, could contain
information about an animal tactically freezing after being suddenly alerted to the presence of
danger or prey. Both the visual patch change and acoustic signature truncation would be lost
in natural signal-dependent fluctuations, go frequently undetected and so lead to potentially
significant disadvantages to organisms, systems or machines that do not employ variance-
stabilizing, log, Fechnerian transformation of intensity and luminance before pattern matching, or
the equivalent. Again, the optimally performing transformations and corresponding estimators
and detection decision rules are consistent with sensing system resolution that obeys Weber’s
Law in perception of sound intensity and light luminance.

From another perspective, the consequences of not transforming intensity in the manner
found to be optimal here in pattern matching, or not employing some equivalent sensing system
adaptation or tuning to the underlying scintillation statistics of natural terrestrial light and sound,
are severe. Optimal pattern recognition would require expensive sampling and learning of the
higher statistical moments of every signal pattern to be recognized due to the inherent signal-
dependent noise of the intensity scintillation at each pixel in an image. This extensive sampling
and training requirement is impractical in a hostile or highly competitive environment where
rapid and accurate sensing is essential. It is also unnecessary given the advantageous properties
of the simple intensity transformations described here.

9. Conclusion
For organisms, systems and machines that rely on visual and auditory sensory perception to
survive or function effectively in their environment, efficient resolution of natural light and sound
intensity is essential. This resolution obeys Weber’s Law when the smallest resolvable change in
the intensity stimulus, a just-noticeable-difference, is not constant but grows in direct proportion
to the stimulus. Here, Weber’s Law is found to be a consequence of attaining the theoretical
minimum mean-square error possible, the Cramer–Rao lower bound, in resolving the intensity
of naturally scintillating light and sound. The finding is based on statistics from thousands of
measurements of naturally scintillating environmental light and sound signals. Remarkably, just-
noticeable-differences in light and sound intensity measured over decades of psychophysical
experiments with artificial sources are also found to approximately attain these same respective
Cramer–Rao lower bounds. As change-detection thresholds, the just-noticeable-differences are
found to be in the optimal range of primarily rejecting natural fluctuations rather than true
changes in the mean intensity of our environmental light and sound data. Human intensity
resolution is in this way found to be optimally adapted to the natural scintillation of light and
sound.

The reliable recognition of patterns imbedded in the scintillating intensities of natural light
and sound is also indispensable for survival or proper function in many contexts. Pattern
recognition by simple matched-filter correlation between measured and hypothetical images
cancels natural scintillation. For intensity perception obeying Weber’s Law, this is found to
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be advantageous and statistically optimal because perceived scintillation is independent of
the underlying signal pattern. For perception with constant intensity resolution, however, it
is highly suboptimal because perceived scintillation contains signal information that is then
destroyed. This is demonstrated with a variety of examples using natural objects imaged in
daylight and sounds made from natural sources. Important environmental patterns are found
to be lost in natural scintillation when intensity perception does not follow Weber’s Law.
Perception with log-transformed intensity is particularly advantageous for a number of reasons.
It entails Weber’s Law in intensity resolution with the benefit of also having statistically optimal
resolution that is constant in the perceived variable. In sensing with natural light and sound,
these findings provide a statistical foundation for Fechner’s conjecture that just-noticeable-
differences in the variable perceived by a human subject should be constant. Log-transformed
intensity also tends to converge to a normal probability density as a consequence of the
central limit theorem given the natural physical processes causing intensity scintillation. This
convergence facilitates advantageous adaptation to natural environmental intensity scintillation
by a simple transformation. For example, statistically optimal pattern recognition is achieved
by using log-transformed intensity as the perceived variable in matched-filter correlation. For
biological organisms, this advantageous adaptation could evolve with natural selection to
provide improved intensity resolution and improved pattern recognition in sensing with natural
light and sound. Along these lines, it has become standard practice to analyse scintillating light
and sound intensity data after log-transformation by use of decibel units, in many scientific and
engineering disciplines. This has the advantages and optimal statistical properties presented here.
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