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Abstract—Autonomous vehicles require the ability to build maps
of an unknown environment while concurrently using these maps
for navigation. Current algorithms for this concurrent mapping and
localization (CML) problem have been implemented for single ve-
hicles, but do not account for extra positional information available
when multiple vehicles operate simultaneously. Multiple vehicles
have the potential to map an environment more quickly and robustly
than a single vehicle. This paper presents a cooperative CML algo-
rithm that merges sensor and navigation information from multiple
autonomous vehicles. The algorithm presented is based on stochas-
tic estimation and uses a feature-based approach to extract landmarks
from the environment. The theoretical framework for the collabora-
tive CML algorithm is presented, and a convergence theorem central
to the cooperative CML problem is proved for the £1st time. This
theorem quantifes the performance gains of collaboration, allowing
for determination of the number of cooperating.vehicles required to
accomplish a task. A simulated implementation of the collaborative
CML algorithm demonstrates substantial performance improvement
over non-cooperative CML.

I. INTRODUCTION

Successful operation of an autonomous vehicle re-
quires the ability to navigate. Navigation information
consists of positional estimates and an understanding
of the surrounding environment. Without this infor-
mation, even the simplest of autonomous tasks are im-
possible. An important sub£eld within mobile robotics
that requires accurate navigation is the performance of
collaborative tasks by multiple vehicles. Multiple vehi-
cles can frequently perform tasks more quickly and ro-
bustly than a single vehicle [1], [2]. However, accom-
plishing collaborative tasks demands that each vehicle
be aware of relative locations of collaborators in ad-
dition to the baseline environmental knowledge. This
paper considers the problem of performing concurrent
mapping and localization (CML) with a team of coop-
erating autonomous vehicles.

There is a large literature in the use of multiple ve-
hicle robotic systems [3]. Since CML is the union of
navigation and mapping, much relevant existing work
is found in the separate sub£elds of collaborative lo-
calization and collaborative mapping.

Collaborative navigation is performed when multi-
ple vehicles share navigation and sensor information
in order to improve their own position estimate be-
yond what is possible with a single vehicle. Ant-
inspired trail-laying behaviors have been used by a
team of mobile robots tasked to navigate towards a

common goal [4]. Simple collective navigation has
been demonstrated in simulation using multiple ‘car-
tographer’ robots that randomly explore the environ-
ment [5]. Sty [6] performs simple relative localiza-
tion between collaborators using directional beacons.
Vision-based cooperative localization has been per-
formed by a team of vehicles tasked with cooperatively
trapping and moving objects [7]. Tracking via vision
is also used for relative localization of collaborators in
an autonomous mobile cleaning system [8]. In work
by Roumeliotis et al. [9], [10], collaborative localiza-
tion is performed using a distributed stochastic estima-
tion algorithm. Cooperative navigation of autonomous
underwater vehicles has been performed in work by
Singh et al. [11]. Also, two AUVs have demonstrated
collaborative operation using the same acoustic beacon
array [12]. An unmanned helicopter has used a vision
sensor to detect collaborating ground vehicles at glob-
ally known positions, and thus was able to localize it-
self [13].

Collaborative mapping combines sensor informa-
tion from multiple vehicles to construct a larger, more
accurate map. Cooperative mapping and exploration
with multiple robots is reported by Mataric [14] using
behavior-based control [15]. Map matching is used to
combine topological maps constructed by multiple ve-
hicles in work performed by Dedeoglu and Sukhatme
[16]. Heterogeneous collaborative mapping has also
been investigated, as such systems can capitalize on
specialization [17]. »

In the area of navigation and mapping by multiple
vehicles, the work of Thrun and colleagues stands out
at the forefront of the current state-of-the-art [18], [19].
Sequential Monte Carlo methods [20] (also known as
particle £lters) for both multi-robot global localiza-
tion [19] and real-time CML using SICK laser scan-
ner data. Our work uses a feature-based representa-
tion [21], [22], [23]. Another possibility is to use a
topological representation [24], [25].

This paper reports the execution of the logical next
step in the development of CML: a CML algorithm
for use by multiple collaborating autonomous vehicles.
Sharing and combining observations of environmental
features as well as of the collaborating vehicles can
greatly enhance the performance of CML. This pa-
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per demonstrates the feasibility and benefts of col-
laborative CML. Multiple vehicles performing CML
together can achieve faster and more thorough map-
ping, and produce improved relative (and global) posi-
tion estimates. This paper quantifes the improvement
in CML performance achieved by collaboration, and
compares collaborative versus single-vehicle CML re-
sults in simulation to demonstrate how collaborative
CML greatly increases the navigation capabilities of
autonomous vehicles.

II. REVIEW OF SINGLE VEHICLE CML

This section reviews stochastic mapping (SM), £rst
introduced by Smith, Self and Cheeseman [26}, which
provides a theoretical foundation of feature-based
CML. The stochastic mapping approach assumes that
distinctive stationary features in the environment can
be reliably extracted from sensor data, and capital-
izes on reobservation of these features to concurrently
localize the vehicle and improve feature estimates.
SM considers CML as a variable-dimension state es-
timation problem, where the state size increases or
decreases as features are added to or removed from
the map. Assuming rn static features in the environ-
ment, the world state at time % is denoted by a single
state vector x[k] = [x,[k]T x;[k]T]T, where x, k]
represents the location of the vehicle, and x¢[k] =
[xp.[k])T ... x;,[k]T]T represent the locations of the
environmental features.

Associated with the state estimate x[] is an esti-
mated covariance matrix P[], which has the expanded
form

va[k] Pvl[k] Pv2[k] Pvn [IC]
Piv[k] Piilk] Pizlk] Piyn[k]

Plk] = PZ\'/[’C] sz[k] Pn?[k] Pg,.‘[k] LW
Pavlk] Pilkl Poalk] Poalk]

This equation contains the vehicle (Pyv[k]) and fea-
ture (Pj;[k]) covariances located on the main diago-
nal. Also contained are the vehicle-feature (Py;[k])
and feature-feature (Pj;[k]) cross correlations, located
on the off-diagonals.

Given sensor data, the state estimate and associ-
ated covariance matrix are updated using an Extended
Kalman Filter (EKF). For a complete listing of the
equations for the single vehicle SM prediction and up-
date steps, see [27], [28].

III. SINGLE VEHICLE CML PERFORMANCE
CHARACTERISTICS

This section briedy reviews theorems from work by
Newman and Dissanayake [29][30] that characterize
the performance of the single vehicle CML algorithm,

and will be extended to the multiple vehicle case in
Section V.

Theorem II1.1: The determinant of any submatrix of
the map covariance matrix P decreases monotonically
as successive observations are made.

The determinant of a state covariance submatrix is an
important measure of the overall uncertainty of the
state estimate, as it is directly proportional to the vol-
ume of the error ellipse for the vehicle or feature. The-
orem II.1 states that the error for any vehicle or feature
estimate will never increase during the update step of
SM. This makes sense in the context of the structure
of SM, as error is'added during the prediction step and
subtracted via sensor observations during the update
step. ‘

Theorem I11.2; In the limit as the number of obser-
vations increases, the errors in estimated vehicle and
feature locations become fully correlated.

Not only do individual vehicle and feature errors de-
crease as more observations are made, they become
fully correlated and features with the same structure
(i.e. point features) acquire identical errors. Intuitively,
this means that the relative positions of the vehicle and
features can be known exactly. The practical conse-
quence of this behavior is that when the exact absolute
location of any one feature is provided to the fully cor-
related map, the exact absolute location of the vehicle
or any other feature is deduced.

While single vehicle CML produces full correlations
between the vehicle and the features (and thus zero rel-
ative error), the absolute error for the vehicle and each

feature does not reduce to zero [29]{30].

Theorem 111.3: In the limit as the number of obser-

vations increases, the lower bound on the covariance
matrix of the vehicle or any single feature is deter-
mined only by the initial vehicle covariance at the time
of the observation of the £rst feature.
This theorem states that in the single vehicle CML
case, the absolute error for the vehicle or single fea-
ture can never be lower than the absolute vehicle error
present at the time the £rst feature is initialized into the
SM £lter.

IV. EXTENDING CML TO MULTIPLE VEHICLES

In the collaborative CML algorithm, all of the col-
laborating vehicle state estimates are combined into a
single state vector x [k) = [x2[k)TxB[k)T ... xN[k])7,
where xl[k] is the vehicle state estimate for vehi-
cle 7 at time k. As in single vehicle stochastic map-
ping, the feature state estimate of the j®* point land-
mark in the environment at time step k is represented
by the position estimate xg[k], generating a com-
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bined feature estimate for this environment of x¢[k] =
[x¢, k] Txg, [K] T ... xg, [K]T]T. A single combined
state estimate is then defned that incorporates all of
the vehicle and feature estimates, de£ned as

[ % (k]
x3 (k]

xe’:[k]
Xfy [k]
Xf, [k]

REIREC] A

xf... [K] J

The associated covariance matrix P[k + 1|k] is main-
tained which represents the £rst order uncertainty and
correlations present in the x[k + 1|k] state estimate.
We use super-scripted letters to reference vehicles and
numbers for super-scripted features. The general col-
laborative CML covariance matrix P can be written as

- pAA  pAB PAN  pAl  pAz pAn -
pBA pBB pEN pBL pB2 pB=n
pNA  pNB pNN  pN1  pNz pNa
piA piB piN  pl1  pi3 pin
p3A p3B p2N  p21  p22 p2»

\. P;-A prB P;:N pnl P;" P;m

‘ 3
where for example PB? is the cross correlation in es-
timates of the location of vehicle B and feature 2.

Once collaborating vehicles are added into the state

and covariance vectors, the multi-vehicle SM predic- |

tion and update equations take on the same general
form as the single vehicle SM algorithm. For a com-
plete statement of the multi-vehicle SM prediction and
update equations, see [28].

V. COLLABORATIVE CML PERFORMANCE
ANALYSIS

This section presents the collaborative CML exten-
sion of single vehicle SM error convergence proper-
ties, and quantifes the best-case performance of col-
laborative CML. These performance characteristics are
validated via simulation in Section VI. The theorems
derived and brieay reviewed in Section III serve the
theoretical basis for analyzing the performance of the
collaborative CML algorithm.

The full correlation property of single vehicle CML
asserted in Theorem ITI.2 scales to the collaborative
CML case, as the second vehicle is, in essence, a mov-
ing feature in the SM structure.

Theorem V.1: In the limit as the number of obser-
vations increases, if there are features observed by all

vehicles, or each vehicle directly observes its collabo-
rators, all of the vehicle and feature estimates become
completely correlated with each other.

However, the single vehicle CML lower performance
bound does not apply to the collaborative CML case.
Multiple vehicles performing CML together can attain
a lower absolute error than the single vehicle initial co-
variance which bounds the single vehicle CML case.
The collaborative lower bound is quantifed in the fol-
lowing theorem:

Theorem V.2: In the collaborative CML case, in the
limit as the number of observations increases, the
lower bound on the covariance matrix of any vehicle
or any single feature equal to the inverse of the sum
the initial collaborating vehicle covariance inverses at
the time of the observation of the £rst feature or obser-
vation of a collaborating vehicle.

Analysis of the limiting behavior of the state covari-
ance matrix in the collaborative case is performed by
applying the information form of the Kalman £lter
[31]. The full proof is introduced in detail by [28],
the intermediary result of which is

limg—,co PAA[K[K] = limg—, oo PBB[k|K]
= PAA[Q]PBB[g][ PAA[0] 4+ PBB[0] |71 . (4)

This result is the lower performance bound for collab-
orative CML with two vehicles. Note that the vehicle
covariances for both vehicles become fully correlated
and thus identical, supporting Theorem III.2. A sim-
pler, more intuitive conceptual result is found by taking
the inverse of Equation 4, producing a result of

limg— 00 PAA7" [k|k] = limg—.eo PBB ™ [k|K]

= PAAT 0] + PBBTYg] . (5)

Equation 5 makes sense in the context of conser-
vation of information. In the general case, P~ rep-
resents the amount of information present in the sys-
tem [31]. The total amount of information in the sys-
tem can never decrease, but can stay constant when no
noise is added to the system. The sum of information
present initially in the system is equal to the inverse of
the sum of initial uncorrelated vehicle position errors,
while the amount of information present after infnite
observations are made is encapsulated in a single vehi-
cle position covariance.

It is also important to note that the lower perfor-
mance bound for collaborative CML is not dependent
on direct observation of one vehicle by another. While
direct observation improves the rate of covariance con- .
vergence, simple observation by both vehicles of a
common feature is all that is required for convergence.

Equation 5 scales easily for collaboration with more
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than two vehicles. Assume that at time ¢ &~ oo a third
vehicle C, with a nonzero initial covariance uncorre-
lated with vehicle A and vehicle B, becomes a collab-
orator. Thus the lower performance bound becomes

PAAT [¢] = PBBT ] = PAAT 0] + PBBT} [016.)

Since vehicles A and B are fully correlated at ?,

PAA™*[t] captures all of the information present in ve-

hicle PBB™*(¢]. Thus

lim PAAT [k|k] = lim PBB ™ [k|k]
k—oo k—o0

lim POC7" [k|k]
) k—oo
=PAAT ] + PCCTt]

=PAATY 0] + PBB 0]+ PCCT )], (D)

In the n vehicle case, the lower performance bound
becomes

lim PAA™ (k|k] = lim PBB™'[k|k]
k—o0 k—o0
== lim PNV k]
—00
= PAAT (] + PBB T[]

4+ PNNTT, ®)

where 4, represents the initial time at which the nt*
vehicle started collaborating, assuming that each vehi-
cle covariance is initially uncorrelated with its collab-
orators. In the case of homogeneous collaborating ve-
hicles, each with identical, initially uncorrelated error
estimates, such that

PAAD] = PEB[0] =-.- = P[],  (9)

a relationship can be found between the £nal map
covariance and the number of vehicles required to
achieve this performance bound, de£ned by,

lim PAne™ [k|k]
k—oo
=PA27 (0] + PPR (0] + .. + PN 0],
= nPYN7'0]. (10)

Taking the determinant of both sides and solving for n
produces a result of

B det(P desired ! )

n—m7 (11)

where Pdesired js the desired £nal map error. This re-
sult is very useful for mission planning as it allows de-
termination of how many vehicles are required to con-
struct a map to a desired accuracy.

(o] Featwe3 (
- Feature 4
—~ Vedicle Waypolnts — o
17/ \
| § |
Vehicle B
/
Y D ™
,li X -
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Feature 1 -Vehicle A
O Fm Featwe2 O

Fig. 1. Feature and initial vehicle positions

VI. COOPERATIVE CML IMPLEMENTATION

This section presents 2-D CML simulation results
that demonstrate the quantitative CML performance
gains from collaboration. The simulation uses two col-
laborating vehicles traveling in concentric squares, ob-
serving each other as well as four static point features
in the environment. In the £rst of two simulation sce-
narios, the vehicles are given initial uncertainty and
zero process noise, demonstrating convergence to the
theoretical lower performance bound stated by Theo-
rem V.2. The second scenario compares single vehicle
and collaborative CML performance given both pro-
cess noise and initial vehicle uncertainty. Table I sum-
marizes the global parameters consistent for both sce-
narios. Initial vehicle locations, feature locations, and
vehicle path waypoints are also kept consistent.

TABLEI
COLLABORATIVE CML SIMULATION GLOBAL PARAMETERS

number of vehicles 2
number of features 4
sampling period 0.2 sec.
simulation length 300 sec.
range measurement std. dev. 02m
bearing measurement std. dev. | 10 deg
vehicle cruise speed 0.5 m/s

A. Cooperative CML Scenario #1

In this scenario, there is no process noise added as
each vehicle moves. However, each vehicle has an
initial position uncertainty. Because of the zero addi-
tive process noise, dead reckoning error stays constant
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Fig. 2. CCML scenario #1 : position estimate comparison

since no information is lost due to movement. The ex-
tra information provided by the initially uncorrelated
position of the collaborating vehicle produces a reduc-
tion in position uncertainty as the collaborating vehicle
is directly observed. Tables I and II summarize the pa-
rameters used for this scenario.

The initial starting location of both vehicles is shown
by Figure 1. A direct comparison between vehicle and
feature position errors at the end of the simulation is
made in Figure 2, using 3¢ error bound ellipses. Fig-
ure 3 shows plots of the position and heading errors of
vehicle A versus time, along with 3¢ bounds.

Vehicle A position error is presented in determinant
form in Figure 4. Because of the zero additive pro-
cess noise, position error never increases. However,
the single vehicle CML error remains constant, sup-
porting Theorem II1.3, which states that position un-
certainty for single vehicle CML can never be lower
than the initial uncertainty. This plot also clearly shows
the decrease in collaborative CML error uncertainty to
the theoretical lower bound predicted by Equation 8.
The extra information provided by the initially uncor-
related position of the collaborating vehicle provides
a reduction in position uncertainty as information is
shared. Note that the collaborative CML error de-
terminant generated by this simulation is slightly less
than that predicted. This slight overconfdence can be
attributed to the linearization process inherent in the
EKF-based stochastic mapping algorithm. The perfor-
mance of vehicle B is similar to vehicle A and thus

. vehicle B £gures are excluded for brevity.

Figure 5 plots the error estimate for Feature 1 in
determinant form. This plot demonstrates the conver-
gence of the feature estimate to the same uncertainty as
the collaborating vehicles, supporting Theorem II1.2.
This plot is representative of the error performance of
all four features.

TABLE I
SIMULATION SCENARIO #1 PARAMETERS

X position process noise std. dev. 0.0 m/s
y position process noise std, dev. 0.0 m/s
heading process noise std. dev. 0.0 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. | 0.2 m
initial vehicle y position uncertainty std. dev. | 0.2 m.
initial heading position uncertainty std. dev. | 0.0 deg

14

8

b-E-0-5-6-5-0-5-0-50-808056050

&

o

50 100 150 200
Time (s}

250 300

14

p5-0-5-0-86805080808050

Heading error (deg) (30) North pos error {m) (30) East pos ervor (m) (30}
&8

0.
o 50 100 150 200 250 300
Time (s)
1
]
—0.5]
-1
[ 50 100 150 200 250 300
Time (3)

=3 Emor bound (single CML}

~©- Error bound (coll CML)

-E- Acma.l ermor {single CML)|
tual error (coll CML)

Fig. 3. CCML scenario #1 : vehicle A error comparison
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B. Cooperative CML Scenario #2

This scenario best simulates an actual vehicle im-
plementation, as both initial position uncertainty and
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process noise are present. Tables I and III summa-
rize the parameters used for this scenario. As in the
£rst scenario, Figures 9 and 8 show the error bound
improvements made through collaboration. Figure 6
demonstrates that vehicle position uncertainty stabi-
lizes above the theoretical lower performance bound
in the presence of process noise.

C. Practical Implementation

The collaborative CML algorithm has been imple-
mented using the system described in [32]. In the re-
sults described here and illustrated in £gure 10 two mo-

TABLE III
SIMULATION SCENARIO #2 PARAMETERS

X position process noise std. dev. 0.2 m/s
y position process noise std. dev. 0.25 m/s
heading process noise std. dev. 0.2 deg/s
velocity process noise std. dev. 0.0 m/s
initial vehicle x position uncertainty std. dev. | 0.075 m
initial vehicle y position uncertainty std. dev. | 0.075 m
initial heading position uncertainty std. dev. 0.0 deg

Final Est. Vehicle/Feature Locations

N Vehicle A
VehicleB ~

X Static Feature
True Location

— CollCML
~- Single CML: Veh A
Single CML: Veh B

y distance (m)

[ 1 2 3
x distance (m)

Fig. 9. CCML scenario #2 : position estimate comparison

bile B21R robots (B21la and B21b) equipped with a
SICK laser scanner were tele-operated to move around
an entrance hall of a building. B21aq started perform-
ing CML as it moved around the workspace. A minute
or so later B21b began operating, augmenting the map
building processes. The initial uncertainty in B21la’s
position was set to zero. That of B21b however was
set to tens of meters. The joint compatibility branch
and bound (JCBB) data association algorithm [33] was
used by both vehicles and facilitated the initialization
of B21b into the map being built by B21a. The initial
large uncertainty of B21b meant that the data associ-
ation step implicitly localized the vehicle within the
map already being built by the B21a. The JCBB algo-
rithm places great weight on the mutual consistency of
correspondences between sets of features and obser-
vations. Despite the presence of gross vehicle uncer-
tainty the branch and bound search is able to discount
mutually inconsistent observation/feature associations.
The most probable correspondences deduced, the large
initial uncertainty in B21b admits a large change in its
state estimate during the ensuing Kalman update stage.
This represents the localization of B21b into the map
ref£ning a crude initial guess. An alternative and more
general approach would involve using JCBB to test not
just hypothesized correspondences between observa-
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Fig. 10. A snapshot of the output of a realtime CCML implementation using two mobile B21R robots

tions and mapped features but also feature to feature
correspondences using separate maps built by separate
vehicles. This work is in progress.

VII. CONCLUSION

Current algorithms for this concurrent mapping and
localization (CML) problem have been implemented
for single vehicles, but do not account for extra po-
sitional information available when multiple vehicles
operate simultaneously. This paper introduced an in-
novative technique for combining sensor readings for
multiple autonomous vehicles, enabling them to per-
form cooperative CML. In addition, a lower algorith-
mic performance bound for collaboration has been de-
termined, enabling calculation of the number of coop-
erating vehicles required to accomplish a given task.
This quantifes intuitive performance benefts that re-
sult from using more than one vehicle for mapping and
navigation, which were validated in simulation,
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