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Autonomous Underwater Vehicle-Based Concurrent
Detection and Classification of Buried Targets

Using Higher Order Spectral Analysis
Monica Montanari, Joseph R. Edwards, and Henrik Schmidt

Abstract—This paper presents a processing concept for au-
tonomous underwater vehicle (AUV)-based concurrent detection
and classification (CDAC) of mine-like objects. In the detection
phase, the AUV seeks objects of interest using a simple energy
detector combined with a peak tracking mechanism. Upon detec-
tion, the processing mechanism changes to a higher order spectral
(HOS) classification process. The system is demonstrated through
theory, simulation and at-sea experiments to have promise in
reducing the false alarm rate of mine detections. The HOS clas-
sification mechanism is also shown to have some benefit over
classical spectral estimation in all cases. Components of the system
concept were also demonstrated live onboard the AUV during the
Generic Oceanographic Array Technology Sonar (GOATS 2002)
experiment off the coast of Italy, while others are demonstrated
using a comprehensive AUV sonar simulation framework.

Index Terms—Autonomous underwater vehicle, concurrent
target detection and classification, higher order spectral analysis,
spectral analysis.

I. INTRODUCTION

RECENT rapid developments in autonomous underwater
vehicle (AUV) technology have provided the opportu-

nity to explore new approaches for detecting and classifying
mine-like objects. Since its inception in 1998, the Office of
Naval Research (ONR)/NATO SACLANT Undersea Research
Center/Massachusetts Institute of Technology (MIT) Generic
Oceanographic Array Technology Sonar (GOATS) joint re-
search project has been simultaneously focused on developing
the AUV technology and these new mine classification ap-
proaches. Of particular interest in this project has been the use
of different vehicle processing or behavioral modalities within
the course of a single mission in order to achieve concurrent
detection and classification (CDAC) of mine-like objects,
which represents a step in the direction of truly autonomous
AUVs from the current state of the art of preprogrammed
surveying and postprocessing of the received data and im-
ages [1], [2]. Varying the behavioral modality would include
utilizing the mobility of the vehicles to facilitate deformable
sonar geometries that can be adaptively controlled based on the
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local acoustic scattering statistics. Preferred target scattering
directions for both specular and, more importantly, elastic scat-
tering returns can be interrogated by the adaptively controlled
receiver platforms [3]. The topic of behavioral adaptation is
briefly covered in Section IV-C, but is not the focus of this
paper. More directly addressed in this paper is the variance of
processing modalities, in which the onboard signal processing
of the vehicle changes from detection phase to classification
phase. With this method, the CDAC process is concurrent in
the sense that the detection and the classification occur without
user intervention during the course of a single mission, but is
still divided into two steps: detection, then classification. The
detection step is discussed in Section II, and the classification
step in Section III. The balance of the paper is dedicated
to illustrative examples of the application of these adaptive
algorithms, ranging from full acoustic simulations to real-time
at-sea AUV implementations.

II. ADAPTIVE TARGET DETECTION

In the first stage of a mine hunting mission, the AUV flies
on a preplanned path while using its active sonar. The received
echoes are continuously analyzed by the processing system on-
board the AUV and useful information is extracted and stored,
such as the statistics of the local reverberation and useful envi-
ronmental parameters. In general, the extracted information as
well as the signal data may be transmitted to the base station. A
more advanced and challenging configuration would be to em-
ploy multiple AUVs, with a single source and multiple receivers
[1]. In this case each vehicle communicates with the others, as
well as with the offshore base station. However, to be consis-
tent with the actual at-sea experiments, only a single monostatic
AUV is considered here.

During the searching stage the bulk of the processing is de-
voted to target detection. The adaptive target detector developed
in this paper is supported by a tracking algorithm in order to
detect and discriminate targets of interest against strong rever-
beration echoes from clutter and interfering noise sources. A
detection is declared when the preprocessed received signal is
higher than the threshold, which is adaptively computed and de-
pends on the local environment. Consider the vehicle outfitted
with a linear sonar receiver array configuration consisting of
elements, and carrying a source that transmits pings on the
insonified region. For a specific element or (for beam-time pre-
processed data) angle, each ping is sampled at the sampling fre-
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Fig. 1. Block diagram of the target detection algorithm.

quency and the number of samples per ping is . Denote
with

(1)

the -dimensional vector relative to a generic sensor and
comprising the received signal samples for ping , with

. In the following, represents the null hypothesis,
which corresponds to only reverberation in the received signal
and represents the alternative hypothesis, which corresponds
to a target in the insonified field. The detection problem is stated
as a binary hypothesis test

(2)

where and are respectively the reverberation and the target
signal vectors relative to the th ping. The overall target detec-
tion algorithm is depicted schematically in Fig. 1, where the pre-
processor and the actual detector are highlighted. The prepro-
cessing block computes the envelope of the range-compensated
signal , where denotes the Hilbert
transform operator. The envelope is written here in terms of
the Hilbert transform because the broadband signal is analytic
[4] and sufficiently wideband that demodulation is not useful
and therefore not done. This expression of the envelope is also
consistent with the onboard processing implementation used at
sea. The block following the preprocessor in Fig. 1 performs
the actual detection task, comparing the envelope of the re-
ceived signal to a threshold and declaring a candidate target
presence each time a peak in the envelope is higher than the
threshold. The threshold is computed adaptively from the
data as

(3)

where denotes the statistical expectation operator and
is a positive real coefficient which determines the admissible
deviation from the mean value and fixes the false alarm rate
for single-ping operations. The choice of the threshold setting
as defined in (3) is suitable in applications like this, where the
target return is a peak over a background of reverberation and
is particularly appealing due to the simplicity of the calculation
and to the fact that it does not require any a priori knowledge of
the target and reverberation signal models.

In practice, there is no direct access to the ensemble quanti-
ties, so the sample expectation is employed

(4)
After the threshold level has been set, each peak in the

backscattered signal is compared to the threshold level, per-
forming the binary hypothesis test

(5)

where denotes the vector index corresponding to the th peak
in . The case corresponds to multiple candidate targets
in the insonified patch. If the received signal is higher than the
threshold, but there is no real target in the isonified patch, a false
alarm occurs.

A peak tracking strategy that processes multiple adjacent
pings is necessary to improve the rejection of false targets,
such as clutter and interfering sources. To this purpose, the
single-ping detection algorithm of (5) is run over each ping and
the detections at each ping are tracked over several pings using
basic physical principles in order to establish which of the
single-ping detections qualifies as a target of interest. The peak
tracking is performed inside a fixed-length window centered
on the previous ping arrival time. The arrival time shifting
is due to the AUV-target distance, which varies as the AUV
moves. The length of the window is set to be a fraction of the
maximum time shift measured between two successive pings.
This maximum shift occurs when the target is aligned with the
AUV path and is calculated as

(6)

where denotes the target arrival time for ping is the
distance traveled during the ping rate is the AUV speed,
and is the sound speed. Once a target detection has been de-
clared at time , the next target arrival time is expected
to lie inside the window centered on . A target tracking is
performed as long as the arrival time lies inside the window
whose center position is updated at each ping. If we set the
window length to be a tenth of the maximum time shift ,
the window length measured in samples can be written as

(7)

The overall trajectory of the detections is further restricted to
follow an incoming-outgoing path consistent with a compact
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target, expressed simply as a hyperbolic variation in range. The
motivation for this restriction is so the AUV will reject direct
bounces from the seafloor, which is clearly a noncompact target.
The hyperbolic model arises from the fact that an AUV flying
along a straight line past a compact target creates a trajectory
in the ping number-sample number plane that is a branch of a
hyperbola. An application of the proposed detection algorithm
to experimental data is discussed in Section IV-B

III. TARGET CLASSIFICATION

The classification of detected targets into mine-like objects
or rock-like objects has a crucial importance in a mine hunting
mission because of the potential of finding many rocks for each
mine-like target of interest. Reducing this false alarm rate al-
lows the mine-hunting system to operate much more efficiently
and cover more area in less time. For this reason, automated
target classification methods have been studied at length in re-
cent years. In both sonar and radar, the typical approach to target
recognition is to train the processor with modeled or archived
data and extract features. The fundamental differences within
this approach to classification primarily lies within the feature
extractor and the means by which the correlated clutter is re-
duced. An example of recent model-based target classification
uses a correlation technique across multiple aspects, applying
the argument that the clutter decorrelates across angles while
some of the target features do not [5]. Other recent sonar studies
have classified targets in this manner through hidden Markov
models [6] over multiple target aspects, inherently applying the
same clutter reduction premise. Recent work in radar applies a
more direct approach by adaptively filtering the clutter prior to
the template-based recognition correlation [7]. The classifica-
tion procedure proposed in this paper, on the other hand, em-
ploys nonparametric methods to enhance the detection of an
elastic response in the signal backscattered from the object. The
nonparametric approach is used due to an assumed lack of a
priori knowledge regarding both the clutter content and the ob-
ject type, burial condition and aspect during the course of an
extended AUV mission. Further, the classification is made only
on the part of the return immediately following the specular re-
turn, because these postspecular oscillations reveal characteris-
tics of the target while the specular return is less sensitive to
target type. It has also been shown that for buried targets, the
low-pass filtering effect of the seabed has a strong influence on
the specular return [8]. Rocks and boulders do not exhibit co-
herent structural waves, which on the contrary are a character-
istic of man-made objects, such as mines at more regular geom-
etry. The elastic waves are strongly aspect- and object-depen-
dent and are delayed in time with respect to the specular return
due to the fact that the waves must travel around the object in
order to build the target resonance. To capture this delayed re-
turn, a temporal window is set after the specular return of each
detected target for the investigation of the elastic response pres-
ence. The length of the window is related to the characteristic
dimension of the target and must be chosen as a compromise
between two opposite needs: it should be long enough to con-
tain the main elastic component and short enough to avoid in-
terfering signals from nearby targets. This procedure performs

the classification task as a binary hypothesis test for each target:
The weak elastic response must be detected inside the search
window, in the presence of correlated reverberation. To this pur-
pose, higher order spectral (HOS) analysis techniques are em-
ployed in this paper, in particular the second and third-order cu-
mulant spectra are considered, and their definitions are given
hereafter.

For a zero mean stationary process, the second-order cumu-
lant and the third-order cumulant are identical
to the second and third-order moments, respectively and

[9], which are defined as

(8)

(9)

where , and denote the time differences. The second-
order moment spectrum is the power spectral density (PSD)
of the signal, and is calculated as the Fourier transform of the
second-order moment, or covariance sequence. The third-order
spectrum has a particular advantage in rejecting Gaussian noise,
since the third moment of a zero mean Gaussian process is
identically zero. Although the reverberation is not expected to
be Gaussian, the random scattering from the seabed, combined
with the wide insonification angle of the source, creates a sit-
uation in which the local (in time) signal is nearly Gaussian.
An intuitive explanation of this phenomenon is that the wide
source angle causes the reflection from a large number of inde-
pendent scatterers to arrive at nearly the same time, creating a
quasi-Gaussian distribution due to the central limit theorem. A
more detailed formulation has been given by Doisy [10]. This
temporal Gaussianity is shown empirically in Fig. 2. In this plot,
the distribution of the time signals received by an AUV-borne
monostatic sonar during a mission is shown for several given
ranges, and compared to the expected Gaussian distribution. The
more narrow distributions correspond to shorter ranges, and the
distributions flatten out with range, as a result of the increased
number of independent scatterers. As expected, the distributions
agree well with the Gaussian assumption.

The second-order cumulant spectrum can be written as

(10)

where . The third-order cumulant spectrum is named
bispectrum and for a zero mean stationary signal is calculated
as

(11)

where and . Due to the sym-
metry conditions deriving from the properties of the moments,
it is sufficient to know the bispectrum in the triangular region

to completely describe the bis-
pectrum [9]. Moreover, the frequency domain is divided into 12
symmetry regions for real processes, so the calculation of the
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Fig. 2. Histograms of the reverberation data from the GOATS experiment, compared to the Gaussian distribution.

bispectrum can be performed very efficiently by employing fast
Fourier transform (FFT) techniques.

The PSD is estimated by using the Blackman–Tukey
technique [11]

(12)

where is a filtering window, with length ,
and ,

for , is the estimated second-order moment
of the process . The filtering window is an even function,
which decays smoothly to zero and is such that
and for . The choice of a non parametric
method, such as the Blackman–Tukey procedure, is motivated
by the fact that there is no a priori knowledge of the spectrum
model. Moreover, the Blackman–Tukey method is preferred
over the periodogram, because the latter is biased and has a
variance which does not decrease with the number of samples.
On the contrary, the Blackman–Tukey estimator, acting like a
locally weighted average of the periodogram, reduces the high
statistical variations [11].

The bispectrum is estimated as

(13)

where is the second-order moment estimated with
the indirect method described in [9], the region of support of

, and is the filtering window.
After the calculation of the PSD or bispectrum of the total

signal and the corresponding reverberation-only signal, a simple
classification algorithm computes the gain of the signal with re-
spect to the reverberation and decides for the presence or ab-
sence of the elastic response following the specular response.
A gain corresponds to a man-made target classification; on the
contrary, a unit gain corresponds to a natural object classifica-
tion. The classification parameters are defined as follows. For
the second-order statistic the gain is defined as

(14)

where is the reverberation PSD and is the bandwidth.
The classification parameter computed from the third-order sta-
tistics is named and is defined as

(15)
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TABLE I
WATER COLUMN AND BOTTOM PARAMETER VALUES

where again is the reverberation bispectrum and
and are the bandwidths relative to the bidimensional fre-
quency domain. Both performance measures are normalized so
that they can be compared with one another.

The results from the PSD and bispectrum estimation using
real data collected during the GOATS 1998 and the GOATS
2002 experiments, as well as simulated data, are discussed in
Section IV-D. The discrimination of the elastic response from
the reverberation requires the estimation of the reverberation
spectra. Thus, the spectra of the total signals are compared to
the spectra of the reverberation-only signals, relative to the
same investigation area. This information is available to the
AUV during the first stage of the mine hunting mission, prior to
when any target detection has occurred. The numerical analysis
demonstrates that the bispectrum improves the gain with
respect to the PSD, thus leading to improved classification
performance in low signal-to-noise ratio (SNR) scenarios.

IV. EXAMPLES

A. Analysis Tools

1) The Goats 1998 Experiment: The GOATS 1998 exper-
iment took place in Marciana Marina, off the coast of Isola
d’Elba, Italy. The GOATS 1998 experimental data used in this
example were collected by an AUV flying between a fixed
source, positioned in a tower, and the target field containing a
two fully buried spheres and a half buried sphere. The pings
processed in this example are collected when the AUV drives
close to the source, so the configuration may be considered
as monostatic. The water column and sea bottom parameter
values are reported in Table I and represent a fair reproduction
of both GOATS experimental environments. In Table I and

are the sound speed and the density in water, respectively;
and represent the same quantities in the bottom sediment;
is the bottom horizontal correlation length; is the standard

deviation of the sound speed in the inhomogeneous region,
relative to the sound speed ; is the grazing angle. The
source central frequency is kHz; the bandwidth is about
9 kHz; the sampling frequency is kHz. The length of
the elastic window for a 1 m diameter sphere is chosen to be 2
ms for the considerations discussed in Section III.

2) The Goats 2002 Experiment: The GOATS 2002 experi-
ment was held in the Ligurian Sea off the coast of Italy in June
2002. This experiment employed one Bluefin Odyssey III class
AUV, named Caribou, which was outfitted with two parallel

eight element linear arrays in a swordfish style. The data pro-
cessed in this example were collected in a mission where the
source had a central frequency kHz and a bandwidth
of 20 kHz, the sampling frequency was kHz, and
the nominal half-beamwidth of the source was 20 . The vehicle
moved at approximately 1.5 m/s over a preplanned “sliding box”
trajectory over a target field containing approximately 15 ce-
ment blocks that permanently exist in this area. The water depth
in the target region varied from 20–30 m and the vehicle at-
tempted to maintain a constant depth of 5 m. The simple detec-
tion algorithm described in Section II ran continuously during
this 20 min mission. The ping rate was and the
window length for the tracking algorithm was sam-
ples.

3) The SEALAB Acoustic Simulation Tool: The SEALAB
simulation tool relies on wave scattering theory and was de-
veloped by VASA Associates. The acoustic simulator generates
time series for arbitrary source/receiver geometries, including
direct path, multipaths, roughness scattering, and target scat-
tering components. The targets included are exact theoretical
solutions of fluid-filled spherical and cylindrical elastic shells
[12]. Although the target scattering theory is well developed,
the boundary conditions along the outside of the buried target
are very difficult to accurately model. The boundary conditions
influence the amplitudes and frequencies of resonance of the
targets, so the elastic behavior of the simulated targets may
not precisely match the real target behavior. The simulation
tool generates the reverberation process by calculating the scat-
tering from a random realization of the rough bottom interface.
In real situations, the bottom backscattered signal is generated
by two different processes: volume and surface scattering. The
volume scattering dominates the lower frequencies, while the
surface scattering dominates the higher frequencies. Of course,
for buried targets, as those of interest here, volume scattering
assumes a strong role. However, the simulation includes only
surface roughness scattering.

B. Detection Example

This section shows a real-time onboard detection example
that was achieved during the GOATS 2002 experiment. The
actual implementation onboard the vehicle is indicated by the
block scheme depicted in Fig. 3. The nose array of the vehicle
collects acoustic data after each ping, which is discretized by the
DSP card to 10 000 samples per element per ping. The DSP card
then saves the digital data to disk, managed by the mission-ori-
ented operating system (MOOS) of the AUV [13]. The detection
algorithm runs continuously as a client of the operating system,
and begins to analyze the new data each time the MOOS informs
it of the location and name of the new data files. The detection
algorithm retains the locations of possible targets, i.e., those that
have met the thresholding criterion in (5), and returns detection
declarations to the MOOS when one of these possible targets is
tracked over ten consecutive pings.

The onboard implementation of the tracking algorithm was
simplified greatly due to the computational resources available
on the AUV, which included a Pentium I processor-based CPU.
The limited computational resources allowed only broadside
beamforming, reducing the receiver array to essentially a



MONTANARI et al.: VEHICLE-BASED CONCURRENT DETECTION AND CLASSIFICATION OF BURIED TARGETS 193

Fig. 3. Processing blocks for detection on board the AUV in the GOATS 2002 experiment.

Fig. 4. Online detections performed on board the AUV in the GOATS 2002
experiment.

range-only sensor. The tracking algorithm then allowed the
local detections to follow only a hyperbolic-type trajectory,
allowing some sway in the vehicle motion, to be classified
as a target of interest. Over the course of the mission in this
example, the detection algorithm detected and reported 16
targets of interest to the MOOS. One such target detection is
shown in Fig. 4, where the amplitude of the received echoes is
reported as a function of ping and sample number. The target
of interest lies 60 m in slant range from the closest point of
approach of the AUV. The detected target is highlighted inside
the dashed window, while other interfering noise sources, such
as the intermittent echo sounder of the R/V Alliance that is
seen throughout the plot and the onboard acoustic modem
seen as extended noise sources (horizontal lines), are discarded
by the tracking algorithm. Upon detection, the AUV simply
reported the ping number and estimated location of the target
to the MOOS, which in turn recorded this information in
the vehicle log. Because MOOS also controls the navigation
and propulsion hardware, it was envisioned that the vehicle
would take some appropriate action at this point to further
investigate the target of interest. Unfortunately, mechanical
and time issues prevented the vehicle to assume adaptive in-
dependent behavior during the experiment, but an example of
such adaptive behavior using simulated data is discussed in the
following subsection. This example and other results from both
experimental and simulated data, which are not reported here
for brevity, demonstrate that this detection algorithm provides a
capability to rapidly detect targets while discarding false alarms
from various interferers, including both nonstationary and

Fig. 5. Simulated mission with adaptive AUV path planning.

noncompact targets. These attributes allow a minimal number
of targets, limited to those that are stationary and compact, to
be passed into the classification stage.

C. Adaptive AUV Path Planning

Sensor-adaptive AUV missions are commonly implemented
for reasons of vehicle safety, e.g., mission abort commands for
exceeding depth or time constraints. On the other hand, sonar-
based adaptivity to meet mission objectives represents a signif-
icant increase in AUV capabilities and has not yet been widely
pursued. Attempts at sonar-adaptive behaviors have not yet been
implemented extensively, due to hardware constraints and lim-
ited mission availability, but are expected to become increas-
ingly prominent in future operations. In the context of this paper,
sonar-adaptive AUV behavior would occur between the detec-
tion stage and the classification stage. This adaptivity seeks to
mimic the behavior of the current kings of mine classification,
bottlenose dolphins [14], [15]. Upon detecting a target during
the course of its mission, the AUV, like the dolphin, would
swim to a series of perspectives that are advantageous for clas-
sifying the target. This capability has been demonstrated with
full SEALAB acoustic simulations and real-time simulations on
the vehicle operating system using experimental data in replay
mode, but has not yet been achieved onboard the AUV during
a mission. An example simulated mission is shown in Fig. 5. In
this simulation, a 1 m diameter proud rigid sphere is located at
the origin. The frequency is 8 kHz and the vehicle has an 8-el-
ement nose array with a uniform spacing of 0.1 m. The seabed
has a sound speed of 1800 m/s and a shear speed of 600 m/s. The
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Fig. 6. Theoretical reverberation power spectral density (PSD) and autocorrelation function (ACF) from an incident plane wave.

AUV pings three times per second. All of the relevant param-
eters were chosen to closely match the actual conditions of the
GOATS experiments. The AUV is assigned a preprogrammed
trajectory that passes near the target, given by a straight-line path
from the lower left of the figure at a heading of 75 , and repre-
sented by the dashed line in the figure. The actual path of the
AUV is shown as a solid line. At the beginning of the mission,
the AUV attempts to follow the preprogrammed trajectory at a
speed of 1.5 m/s. The deviation from the preprogrammed path in
this stage of the mission is attributable to a Gaussian-distributed
heading uncertainty with a standard deviation of 3 that is in-
cluded to approximate the actual compass sensor performance.
The scattered signals from the seabed and target are received by
the vehicle and searched for targets. The target detection statistic
is given by the following:

(16)

where is the range from the vehicle position at ping to
the pixel is the beamformer output at broad-
side at the appropriate range, and is the standard deviation
operator. Broadside beamforming was employed in the simula-
tion to match the conditions on the vehicle, as discussed in Sec-
tion IV-B. If a target is detected at the same point for 20 consec-
utive pings using the adaptive procedure described in Section II,
then it is declared a target of interest and the AUV is allowed

to pursue an adaptive path to maximize SNR of the target re-
turn. The point at which the AUV trajectory significantly devi-
ates from the preprogrammed path in the figure indicates when a
target of interest has been declared. The color map in the figure
shows the SNR of the target signal summed over the adaptive
part of the AUV trajectory. Given the side-looking geometry of
the sonar in this example, the adaptive behavior rule is given by

otherwise
(17)

where is the desired heading at the time of ping . This partic-
ular adaptive behavior rule is somewhat simplistic, but it takes
advantage of the monostatic sonar geometry by turning toward
the side-looking source as the detection statistic increases. In
effect, the vehicle tries to maintain the target of interest in the
main lobe of the source while moving forward. The result is that
the vehicle circles the target, as can be seen in the figure. During
the circuit around the target, target classification methods such
as those described in this paper are applied to further reduce
the false alarm rate for mine detection. Upon completion of the
circuit, the vehicle is positioned and ready to continue its pre-
programmed mission.

D. Classification Examples

Examples of mine classification through PSD and bispectrum
analysis are shown in this section using real data collected from
the GOATS 1998 [1] and GOATS 2002 experiments, as well as
simulated data generated using SEALAB. Although the exact
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Fig. 7. Theoretical and simulated reverberation PSD.

experimental conditions cannot be perfectly known, the exper-
imental scenario is reproduced in each case with the highest fi-
delity possible.

In the first subsection, the acoustic simulation tool is used and
its strengths and weaknesses briefly discussed. The following
two subsections show the numerical results for the GOATS 1998
and GOATS 2002 experimental scenario, respectively. In both
cases, the SEALAB simulation tool is run as a theoretical base-
line for comparison. In all the examples the targets are 1 m diam-
eter buried spheres, with the center of the sphere positioned at
0.5 m under the bottom surface. The classification is achieved by
applying the full CDAC processing on the simulated or experi-
mental time series just as it would be implemented onboard the
AUV. The detection algorithm proposed in Section II is first ap-
plied to the data to detect the presence and the position of the tar-
gets. Once a detection has occurred, the classification algorithm
is applied to the data inside the elastic search window. The PSD
and the bispectrum of the received signal are then compared to
the reverberation-only PSD and bispectrum, respectively. In the
numerical examples the filtering windows in (12) and (13) are
chosen to be the Hamming window.

1) SEALAB Acoustic Simulated Data: Before using the sim-
ulation tool to recreate the experimental scenario, the PSD cal-
culated from simulated data is compared with the PSD derived
from a theoretical model which considers only surface scat-
tering [16]. The reverberation second-order statistics are de-
rived for a linear geometry, assuming that the water column and
the lower bottom are homogeneous media with constant den-
sity and sound speed. A constant density, but random sound
speed profile medium is positioned between the two homoge-
neous media. The density and the sound speed mean value are
equal to those of the homogeneous lower medium. The param-
eter values used in the examples are reported in Table I. Fig. 6
shows the reverberation PSD and corresponding autocorrelation
function (ACF) computed for a planar wave impinging on the

sea bottom as described above. A slightly more realistic model,
which involves cylindrical geometry consideration, is consid-
ered in [17]. However, the most significant omission of the sim-
ulations is expected to be that of sub-bottom volume scattering.
This phenomenon indeed appears clearly in the following nu-
merical examples, as will be discussed in the following section.

The PSD shown in Fig. 6 is integrated at each frequency over
the wave number plane to simulate the source beam, and it is
then possible to compare it with the PSD calculated from the
time series generated by SEALAB. The result in Fig. 7 shows
a very good agreement between theoretical and simulated re-
sults. The PSD are evaluated in dB re 1 Pa. Having established
the consistency between analytical results and the reverbera-
tion signals generated by SEALAB, the SEALAB-generated re-
sults will be used as the theoretical baseline for comparison with
GOATS experimental data in the following examples.

2) GOATS 1998 Experimental Data: The plots in Fig. 8
show the estimated PSD when the sphere is present in the
target field as well as the reverberation-only estimated PSD
for the experimental and simulated data, respectively. The data
used to estimate the reverberation PSD are collected inside the
same temporal window that was established after the specular
detection has occurred, in order to process data backscattered
from the same spatial field. The reverberation data are collected
before the detection, when no target is present in the illuminated
patch. Fig. 8 shows the experimental results, as well as the
simulation results, and the estimated PSD when the target is
simulated as a rock. The PSDs are evaluated in dB re 1 Pa and
the frequency axis is in kHz. Both experimental and simulated
data show that the elastic response is a valuable means to
discriminate man-made objects, such as mines, against natural
objects, such as rocks. The natural frequency-selectivity of
the elastic targets causes the peaks of the elastic response to
show up at specific frequencies, thus making the use of spectral
analysis a powerful means to discriminate such peaks. The
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Fig. 8. Sphere PSD estimation compared to the reverberation and rock spectra, using the GOATS 1998 and simulated data.

Fig. 9. Sphere bispectrum gain over reverberation, using the GOATS 1998 and simulated data. (a) Experimental data. (b) Simulated data. (Color version available
online at http://ieeexplore.ieee.org.)

peaks stand up to 5 dB over the reverberation for experimental
data and the total gain computed as in (14) is
dB. As previously documented, the simulation tool neglects
the sub-bottom volumetric scattering that becomes significant
at lower frequencies. This omission is evident in Fig. 8 and
is believed to be partly responsible for the apparent higher
gain achieved in simulation ( dB). Finally, it is
worthwhile to note that when the target sphere is a rigid rock
there is no elastic response following the specular response
and the PSD is the same as the PSD of the reverberation signal
( dB), as shown in Fig. 8

Fig. 9 shows the modulus of the elastic sphere-plus-reverber-
ation bispectrum normalized to the modulus of the reverberation
bispectrum, using the same experimental and simulated data as
in the previous example. The normalized bispectra are shown

in dB re 1 Pa, and the frequency units in the axis are kHz, as
in the previous example. The results obtained by applying the
third-order spectral analysis show the presence of a significant
gain in the experimental data when the target is a mine-like ob-
ject, with peaks over 5 dB with respect to the reverberation. The
total gain, computed as in (15), is dB for the exper-
imental data, and dB for the simulated data. The
same quantities calculated for a simulated rock-like target give
rise to a unit gain (i.e., dB), due to the fact that the signal
received inside the elastic window has the same statistical prop-
erties as the reverberation, causing the normalized bispectrum
to equal 0 dB over the entire frequency plane.

These examples confirmed that the computation of the bis-
pectrum allows a higher gain than the PSD, i.e., for
both experimental and simulated data.
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Fig. 10. Sphere PSD estimation compared to the reverberation and rock spectra, using the GOATS 2002 and simulated data.

Fig. 11. Sphere bispectrum gain over reverberation, using the GOATS 2002 and simulated data. (a) Experimental data. (b) Simulated data. (Color version available
online at http://ieeexplore.ieee.org.)

3) GOATS 2002 Experimental Data: The same quantities
calculated in the previous subsection are now computed using
the GOATS 2002 experimental data. Fig. 10 shows the estimated
PSD of the sphere-plus-reverberation signal compared to the
estimated reverberation PSD for both experimental and simu-
lated data. As in the previous example, the estimated PSD for
the simulated data is also plotted when the target sphere is mod-
eled as a rock. For both the experimental and simulated data, the
elastic peaks are clearly distinguishable from the reverberation
spectrum, although these peaks appear to be more pronounced
in the simulated data. As previously discussed for the GOATS
1998 data, the PSD for the rock target is the same as the rever-
beration PSD, because the target does not radiate elastic waves
into the ocean. For the experimental data, the elastic response
shows peaks up to 2 dB with respect to the reverberation, and
the total gain is dB. Again, it can be inferred from
the experimental data that the bottom scattering process is dom-

inant over the surface scattering at the lower frequencies. The
volume scattering dominance in this case goes up to 15 kHz
as opposed to 10 kHz in the previous example. This increased
frequency range is probably due to the higher grazing angle in
the GOATS 2002 experiment (25 degrees versus 16.2 degrees),
which leads to increased sub-bottom penetration. The resulting
increase in volume scattering follows intuitively, although more
rigorous proof of this effect has been demonstrated both theoret-
ically and experimentally [18]. In the simulated case, the total
gain is dB.

Fig. 11 shows the modulus of the mine-like target-plus-re-
verberation bispectrum normalized to the modulus of the corre-
sponding reverberation bispectrum, for both experimental and
simulated data. In both cases it is possible to classify the mine-
like object, because the target bispectrum gains up to 3.5 dB for
the experiment and up to 7.5 dB for the simulation. The higher
gain at the lower frequencies for the simulated data is in agree-
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ment with the plots in Fig. 10. The total gains are
dB and dB for the experimental and simulated
data, respectively.

In conclusion, as in the previous example, the bispectrum of-
fers improved classification capabilities compared to the PSD,
and the improvement is higher for the simulated data. The gains

and obtained for the GOATS 2002 experiment are lower
than the corresponding gains obtained for the GOATS 1998 ex-
periment, due the higher reverberation levels in the GOATS
2002 scenario caused by the wide-beam source. The generally
higher gains achieved in the simulation are again a result of
the fact that the simulation tool neglects the volume scattering
process.

V. CONCLUSION

A two-stage system for CDAC of mine-like objects has
been presented and shown to be effective in theory, simulation
and live experiments. The HOS classification method shows a
significant improvement over classical spectral estimation in
simulation. In at-sea experiments the classification advantage
of the higher order method is diminished, likely due to the less
Gaussian statistics of the sub-bottom volume inhomogeneities.
These results, although they are from two very different live
at-sea experiments with AUVs, illustrate a common feature
of automatically detectable elastic returns using the proposed
CDAC algorithm. Further enhancement of the classification
is achievable through the use of adaptive vehicle motions,
but this approach has yet to be successfully used in practice.
While the experiments were chosen to closely resemble re-
alistic mine-hunting situations, they are limited due to the
use of canonical mine-like targets and a relatively clutter-free
environment. It remains to be seen whether the elastic returns
of real mines will be detectable for this classification process,
as well as whether the HOS classification advantage will be
maintained. This will be the target of future experiments and
analysis.
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