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System-Orthogonal Functions for Sound Speed
Profile Perturbation

Wen Xu, Senior Member, IEEE, and Henrik Schmidt

Abstract—Empirical orthogonal functions (EOFs) are typically
derived from direct measurements of the sound speed profile
(SSP) and they are orthogonal in regard to the statistics of the
SSP uncertainty. Viewed from the output end of a particular
sonar system, however, the effect of an error in one EOF is usually
coupled with the effect of the error in another due to the strongly
nonlinear relation between the SSP parameters and the system
response. In this paper, a new set of basis functions, orthogonal
in regard to sonar performance measure, is developed to charac-
terize SSP perturbations. The performance measure used is the
Cramer–Rao bound (CRB) for SSP expansion coefficients derived
from a full-field random Gaussian signal model; a closed-form,
analytical solution is obtained for both the range-independent
and adiabatically range-dependent environments. The derived
functions make the CRB matrix diagonal, decoupling the errors
in the estimation of the expansion coefficients. Compared to
the EOFs, the new set of basis functions depends on both the
statistics of the sound speed uncertainty and the sound waveguide
propagation property; it incorporates the measurement noise as
well. The development makes possible the investigation of the
relative significance of the individual basis functions in system
response; it also provides a novel framework for optimum acoustic
parameterization in adaptive rapid environmental assessment.

Index Terms—Cramer–Rao bound (CRB), empirical orthogonal
functions (EOFs), matched-field methods, optimum acoustic pa-
rameterization, system-orthogonal functions.

I. INTRODUCTION

UNCERTAINTY of the acoustic environment is one of the
major obstacles to adapting new model-based sonar pro-

cessing frameworks, such as matched-field processing (MFP),
to the coastal environment [1]–[3]. It propagates through the
complete chain for sonar performance: Environment, acous-
tics, processing, and operator. Recently a general approach
of acoustic data assimilation has been developed [4], aiming
to reducing such uncertainty by assimilating instant environ-
mental measurements to dynamical oceanographic models.
To achieve that in a real application, one needs to identify the
most significant environment parameters observable in system
response, and design an optimal deployment of the available re-
sources to make direct measurements on those parameters. This
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would constitute the kernel of adaptive rapid environmental
assessment.

To limit the degrees of freedom ocean parameters are often
represented in terms of empirical orthogonal functions (EOFs).
In the water column, the EOFs are derived from direct measure-
ments of sound speed profile (SSP) and they are orthogonal in
regard to the statistics of the SSP variations [5]. Viewed from the
sonar output end, however, the effect of an error in one EOF is
usually coupled with the effect of the error in another, attributed
to the strongly nonlinear relation between the SSP parameters
and the response of a particular sonar system (cf., e.g., discus-
sions on modal phase perturbation in [3]). Thus, the relative sig-
nificance of the individual EOFs cannot be directly determined.

In this paper, we derive a new set of basis functions un-
coupled in system response. Specifically, we represent the
SSP variations in terms of an arbitrary set of basis functions,
and treat the individual coefficients as random parameters
estimated alone or together with the unknown source location
parameter using matched-field methods. We then evaluate the
Cramer–Rao bound (CRB) [6], [7] for the chosen parameters
and determine a set of basis functions so that the CRB matrix
corresponding to those SSP coefficients is diagonal. In this way,
errors in the estimation of individual coefficients are decoupled.
The coastal environment has variability over a wide range of
spatial scales; similar to the EOFs, the new parameterization is
in the form of distribution functions directly representing the
different scales of such variability.

The concept of the optimal orthogonal function has been in-
troduced in the context of ocean acoustic tomography for linear
travel-time inversion of sound speed [8]. Expressing the estima-
tion error explicitly in terms of arbitrary basis functions, the op-
timal ones are solved by minimizing the error. This optimal pa-
rameterization takes into account both the prior information on
SSP variations and the resolution with which each variation can
be measured by a particular system configuration. Some prelim-
inary results show more accurate tomographic inversions than
are possible with the EOFs.

The rest of the paper is organized as follows. The acoustic
propagation modeling under random sound speed perturbation
is first introduced in Section II. Section III then presents the
Fisher information matrix (FIM) associated with the matched-
field source localization/environmental parameter estimation.
Section IV derives such matrix for SSP expansion coefficients
for both range-independent and adiabatically range-dependent
cases and solves the new basis functions accordingly. Section V
presents some examples, and some future issues on simulta-
neous source location and SSP coefficient estimation are dis-
cussed in Section VI. Finally, Section VII concludes the paper.
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Fig. 1. Example shallow water environments. (a) Ideal isovelocity channel. (b) PRIMER range-independent track [14]. Source and receiver configuration is also
shown.

II. ACOUSTIC PROPAGATION MODELING WITH RANDOM

SOUND SPEED PERTURBATION

Matched-field methods concern estimation of source loca-
tions and/or ocean environmental parameters by exploiting full
wave modeling of acoustic waveguide propagation. They are
particularly useful for the case of large vertical aperture or very
long horizontal array with some tilt where nonplane wave sig-
nals are encountered. Consider a stratified waveguide model
for the seismo/acoustic environment, which consists of water
column, multilayer sediment and semi-infinite basement, and
can be either range-dependent or independent (see Fig. 1 for an
example). A point source radiates narrowband or broadband sig-
nals, and the signal field is sampled by a vertical receiving array.
The waveguide transfer function from the source to the receiver
is the unit point source solution to the wave equation (Green’s
function) [9], which is a function of the source-receiver config-
uration as well as environmental parameters.

The SSP in the water column is one of the most important
parameters in determining the sound waveguide propagation,
for example, the existence of duct propagation or the fraction
of energy down to the bottom. It is, however, difficult to treat
this as deterministic due to both its temporal and spatial vari-
ations. In the following, we present wave field solutions under
random SSP perturbations based on the results in [3]. The results
are detailed in the context of range-dependent perturbations; the
range-independent problem is then solved as a special case.

A. SSP Orthogonal Function Representation

The SSP in a range-dependent environment can be described
by a mean profile, depth , plus some zero-mean
random perturbations, range . is often
expressed in terms of a set of orthogonal functions, ,1

so that

(1)

1An alternative and probably more realistic representation uses two-dimen-
sional (2-D) basis functions in r and z, which we would leave as future effort.

with as random coefficients. In reality, the SSP and its
variation are denoted by, i.e., , discrete depth points, leading
to a vector form representation

(2)

where

(3)

(4)

(5)

(6)

and denotes the matrix transpose operation. Note that when
is an orthonormal set with ,

where is an identity matrix with a dimension defined in the
context.

The complete EOF set is an example orthonormal basis,
which contains all the eigenvectors of the covariance matrix of
the random speed perturbations [5]. Denote the range-averaged
SSP perturbation by and the associated
covariance matrix by , then

(7)

where is the diagonal eigenvalue matrix. The covariance
matrix is usually estimated from the onsite and/or historical SSP
measurements. Each eigenvector represents one mode of the
SSP variation along depth while the corresponding eigenvalue
indicates the amount of energy in that mode. Often, due to the
correlation in SSP data, those eigenvalues diminish rapidly so
that only a few eigenvectors dominate the SSP characterization;
thus, the size of the EOF representation can be significantly re-
duced .

Obviously an arbitrary orthogonal basis can be related to the
EOF basis through a unitary transform

(8)

where . This allows a size-reduced (or-
thogonal but not orthonormal) basis representation based on the
size-reduced EOFs. In that case, the unitary transform matrix,
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, has a dimension of the number of retained EOFs. When is
an identity matrix, the result reduces to that of EOFs. Using (8),
(2) becomes

(9)

B. Pressure Field Under a Perturbed Environment

The pressure field in the case of has been
derived based on the adiabatic modal phase approximation [3].
Assume that a vertical receiving array is deployed at ,
consisting of sensors uniformly located from to with
spacing , and a point source of frequency is located at range

and depth . The Green’s function can be expressed as a sum
of normal modes [3]

(10)

where are modal horizontal wave num-
bers; are modal attenuations;

are modal shape functions; is the number of the
propagation modes; and the superscript indicates the asso-
ciation with the mean profile. The wave number perturbation,

, is attributed to the SSP perturbation; it then affects the
Green’s function through an added modal phase variation.

Some closed-form solution of the wave number perturbation
has been developed for small SSP perturbations by applying
the perturbation theory to wave equation [3], [10]. Note that

is nonzero only for to ( is the bottom
depth); hence, the perturbation in modal horizontal wave
number under the current configuration is derived as

(11)

where is the wave number for the mean
profile and (1) is used for the second equality.

Obviously, in (11) is a real number. Substituting (11)
into (10), the added phase term contains the following range
integration:

(12)

It is this averaged SSP coefficient term that is involved in per-
turbed sound propagation. An interesting observation from (12)
is that when the coherent range of the random sound perturba-
tion is much less than the source range, is subject to a
Gaussian distribution due to the central limit theorem regard-
less of the distribution of individual [3].

To evaluate (11), the integration of continuous variable needs
to be transformed to a sum of discrete points. The number of
discrete depth points is normally chosen such that both indi-
vidual and are well sampled because and
then are normally far less oscillatory. Typical sampling
grid for works for as well, particularly for
the low-order propagation modes in shallow water. In the case
that shows more oscillations, the integration step size
is determined from and the derivations below can still
be followed with the SSP interpolated accordingly.

From now on, we assume (11) can be evaluated in terms of
samples at the same depth points as in (3). Denote (13)–(15),
shown at the bottom of the page, with .
The added phase perturbation for individual modes is then
expressed by

(16)

where the integration in (11) is approximated by the matrix
product. A vector form of the Green’s function is stated by

(17)

where (18)–(20), shown at the bottom of the next page, and is
a vector of element-wise exponential

(21)

Note that is the unknown (random) environmental parameter
set.

C. Special Case: Range-Independent SSP Perturbation

For a range-independent environment, we have for the SSP
perturbation

(22)

(13)

(14)

(15)
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The SSP coefficients are no longer a function of range and the
integration in (12) becomes . Denote

(23)

The Green’s function is again given by (17) with a modified
phase perturbation

(24)

Note that is now derived from .

III. CRAMER–RAO BOUND ON MATCHED-FIELD METHODS

The development in this paper focuses on operation of
matched-field methods in the high signal-to-noise ratio (SNR)
region. In this region, the maximum likelihood estimator (MLE)
achieves the Cramer–Rao lower bound [6], thus making its
performance analysis analytically tractable.

A. Local, Bayesian, and Hybrid Cramer–Rao Bound

The CRB states for the mean-square error matrix

(25)

where is the parameter vector to be estimated; denotes the
estimate of ; and is the Fisher information matrix (FIM) [6].
In the case that the unknown parameters are deterministic, the
Fisher information is local, specified at a fixed parameter re-
alization (denoted by ). When the unknown parameters
are random, the Bayesian CRB is relevant; the associated Fisher
information includes a parameter-averaged local FIM term and
an a priori parameter information term [7]

(26)

For example, if is multivariate Gaussian with covariance ma-
trix , the prior information term equals .

Often, the parameter set includes both deterministic and
random parameters, for which a hybrid bound has been de-
veloped [7], [11]. Writing in terms of its two independent

subsets, , the hybrid Fisher information is
given by

(27)

where and are the local Fisher information for

and , respectively; is their coupling term; and
are all-zero matrices with their sizes defined accordingly; and

is the a priori Fisher information.
The off-diagonal term of the CRB matrix is an indication of

parameter coupling, which specifies how the error in the estima-
tion of one parameter correlates with the error in the estimation
of another parameter [12], i.e., the error coupling at the system
output end. A typical quantitative coupling measure is defined
by

(28)

which obviously falls between 0 and 1. Note that when the CRB
is achieved (as in the case of MLE at high SNR), the coupling
specified by the CRB is truly the error coupling in the estima-
tion; thus, diagonalizing the CRB matrix indeed decouples the
errors in the estimation of chosen parameters, which is exploited
in the development in Section IV.

B. Fisher Information in the Matched-Field Problem

The discussions in the sequel are constrained to the single-
frequency case. For the usual matched-field source localization
or tomography problem, the source is assumed to be a stationary
random process. The complex envelope of the received signal
can be expressed as [13]

(29)

where is an vector (recall that is the number
of receiving sensors); is the signal frequency of interest;

(18)

...
. . .

...
. . .

...

...
. . .

...
. . .

...

(19)

...
. . .

... (20)
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includes the unknown source/environmental parameters (e.g.,
); is a random process incorporating am-

plitude and phase variability of the source; is a vector
of Green’s function for the propagation from the source to the
receiving sensors; and is the stationary noise vector.

Both the signal and noise terms are assumed to follow a zero-
mean complex Gaussian distribution and the noise is indepen-
dent of the signal process as well as the parameter set. In the
absence of strong interferences, this assumption is reasonable
when the total field environmental-dependence is dominated by
that of the source signal propagation. Accordingly, the noise is
spatially white, uncorrelated across sensors.

Given the matched-field data model in (29), an expression of
the local Fisher information is available based on the results in
[13]

(30)

where is the SNR for the
Green’s function referenced in the space of the additive
noise; is a mea-
sure of the mean of the parameter sensitivity in the same
space; is
a measure of the convexity of the parameter sensitivity;

; is the variance of the signal
process; is the variance of the noise process; and
denotes the complex conjugate transpose operation. Clearly the
local information matrix is determined from the shape of the
ambiguity mainlobe, i.e., the slope and curvature of the signal
correlation at the true parameter point.

One should be aware that the local performance often de-
pends on specific environments as well as specific parameter
values, and the ocean environment often shows strong error in-
homogeneity and coupling variability over a wide range of pa-
rameter values. In such scenarios, a Bayesian bound bounds the
mean-square error and the error coupling averaged over the prior
parameter space.

IV. BASIS FUNCTIONS IN SOUND SPEED PROFILE ESTIMATION

In this section, the problem of SSP estimation is considered
and the Bayesian CRB is applied. The derivations are based on
the matched-field data model in (29) with the Green’s function
given by (17). Specifically, the CRB is derived for an arbitrary
basis set in (8) and then a special transform matrix is chosen
so that the CRB matrix is diagonal. For simultaneous source
location and SSP estimation a hybrid CRB is often assumed,
which is addressed in Section VI.

As discussed in Section II-B, a multivariate Gaussian distri-
bution is assumed for the SSP coefficients, . Equation (9) spec-
ifies that

(31)

Hence, the covariance matrix of can be derived from

(32)

When the EOF set is used is the diagonal eigen-
value matrix in (7), which says are
mutually independent. For an arbitrary , however, is
no longer diagonal, yielding correlated ’s.

A. Range-Dependent Case

Under the assumption that the receiving array fully spans
the water column, an analytical closed-form expression for the
Fisher Information is derived in Appendix A, and the result is
stated by

(33)

where

(34)

...
. . .

...

(35)

and is an all-one vector.
Inverse of (33) generates the CRB matrix. To make the CRB

matrix diagonal, we only need to make the FIM diagonal. Notice
that (33) can be rewritten in a more compact form

(36)

The desired transform matrix, denoted by , is readily
solved from an eigendecomposition problem, i.e., the eigen-
vectors of the matrix

(37)

The new set of SSP basis functions is then obtained by
.

Clearly, the new basis functions depend on not only the sta-
tistics of the SSP uncertainty, , but also the propagation of
the environmental property through the waveguide system in-
cluding the signal receiving system as embedded in and .
They also include the SNR in measurements through the term
of . Even though the detailed behavior of (37) in terms of SNR
can be quite complicated, at high SNR the first term is expected
to dominate; as the SNR decreases, the prior statistical infor-
mation becomes important. In the same sense, when the prior
information is quite accurate (small variance), the second term
in (37) is expected to make more contributions.

It is interesting to note that we are actually trying to orthog-
onalize the retained EOFs from the system view. When a com-



XU AND SCHMIDT: FUNCTIONS FOR SOUND SPEED PROFILE PERTURBATION 161

Fig. 2. Empirical orthogonal functions computed from the PRIMER onsite measurements [17].

plete EOF set is used (i.e., all the SSP statistical information is
retained), (36) can be rewritten as

(38)

since . Hence, is
simply the eigenvector set of the matrix (cf. (8))

(39)

B. Range-Independent Case

For the range-independent case, the Fisher Information is de-
rived as (cf. Appendix A)

(40)

To make this FIM associated with diagonal, the transform
matrix, , is the eigenvector set of the matrix

(41)

Note that can be cancelled out by some related quantities in
. This can be understood under the range-independence as-

sumption. The only source range-dependent term is the attenu-
ation [cf. (35)], which can be combined into the SNR term in

.
It is worth noting that the array full-spanning assumption is

not indispensable for an analytical solution in the problem. For
a short array, even though (50) is no longer met, one can still

derive the Fisher Information using the first lines of (51), (52),
and (53). The result is similar to (36), (38), or (40), but the term
between and is quite lengthy, which is omitted here.

V. EXAMPLES

To demonstrate the developed concept, we present a few
shallow water examples of SSP representation. The SSP statis-
tics comes from the shelf break PRIMER experiment, which
was conducted south of New England in the Middle Atlantic
Bight during summer 1996 [14]. The PRIMER site is typical
of shallow water propagation, characterized by a wide range
of highly variable oceanographic processes including the shelf
break front, the external forcing by the nearby Gulf stream,
and the nonlinear internal waves [15]. An isovelocity channel
[Fig. 1(a)] is first considered, for which an exact analytical
expression for sound propagation is available [9]; then, an
example track from the PRIMER site [Fig. 1(b)] is studied;
both environments are range-independent.

In both cases, the SSP is sampled by discrete depth
points from the surface (0 m) to the bottom (92 m), equally
spaced by 2 m. This spacing is chosen from the available SSP
data measurements, and can certainly be larger for the purpose
of representing either the SSP variations or the modal shape
functions. For the convenience of computation, the sensors in
the vertical receiving array are chosen at the same depth points
as for the SSP (thus, ). A point source at a single fre-
quency of 100 Hz is considered, located at 18 m depth and 50
km range. For the real PRIMER track, the Kraken normal modes
model [16] is used to compute the Green’s function for the given
mean environment and source-receiver configuration.
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Fig. 3. Cramer–Rao bound matrix for EOF coefficient estimation under the environment of Fig. 1(a). The bottom panel is the normalized parameter coupling in
(28). SNR = 0 dB.

Fig. 4. System orthogonal functions under the environment of Fig. 1(a). SNR = 0 dB.

The EOFs are computed based on the onsite sound speed
measurements along the range-independent track from core 1
to 3 (cf. [14], Fig. 4). The first six EOFs are shown in Fig. 2,
which, in terms of energy, describe 99.96% of the sound speed
variation. The available data include 22 SSPs at 47 depth points;
a diagonal loading is thus used to avoid the singularity of the co-
variance matrix. The sound speed variation presents highly os-
cillatory behavior with mid-depth peaks, which can be attributed

to some complicated oceanographic processes in the studied re-
gion, for example, the internal wave. In the very top some mea-
surement data are missing; a constant speed is used instead.

Fig. 3 displays the CRB matrix for EOF coefficients estima-
tion under the ideal isovelocity channel [Fig. 1(a)]. The small
value of individual mean-square errors is reasonable given the
complete duct propagation without any bottom reflection/ab-
sorption energy loss. To better look at the parameter coupling,
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Fig. 5. Cramer–Rao bound matrix for SOF coefficient estimation under the environment of Fig. 1(a). The bottom panel is the normalized parameter coupling in
(28). SNR = 0 dB.

Fig. 6. System orthogonal functions at different SNRs under the environment of Fig. 1(a).

the normalized term defined in (28) is plotted in the bottom
panel. Obviously, some of those errors are highly coupled, well
above 0.5. As mentioned in Section I, it is thus hard to tell the
relative error contributions of individual EOFs, even though the

appears to be the most difficult one to estimate.
A new set of basis functions is obtained for the same envi-

ronment using the approach developed in Section IV-B. They

are shown in Fig. 4 with the corresponding CRB matrix in
Fig. 5. Those functions are individually linear combinations
of the EOFs, but are now mutually decoupled in terms of the
estimation error. Among them, has the largest error,
which is indeed highly correlated with , i.e., the inner
product between these two functions is high (close resemblance
in depth-dependent shape). Note that is highly correlated
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Fig. 7. Cramer–Rao bound matrix for EOF coefficient estimation under the environment of Fig. 1(b). The bottom panel is the normalized parameter coupling in
(28). SNR = 0 dB.

Fig. 8. System orthogonal functions under the environment of Fig. 1(b). SNR = 0 dB.

with ; even though dominates the SSP variation
and is thus the most uncertain one, it can actually be estimated
to a high degree of accuracy. It would be very interesting to
relate the derived SOFs to a specific environmental/system
configuration and then explain why they are causing more or
less error. This is, though, beyond the scope of the current
paper.

So far the SNR is assumed to be at 0 dB defined at individual
sensors averaged across the array. This is not an insignificant
number considering that the array gain is about 17 dB. The SOFs
include the effect of the measurement noise; in reality, how-
ever, one might want a basis set less sensitive to noise while
remaining decoupled. Fortunately, as seen from Fig. 6, the SOFs
differ slightly over a wide range of SNR above dB. Those
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Fig. 9. Cramer–Rao bound matrix for SOF coefficient estimation under the environment of Fig. 1(b). The bottom panel is the normalized parameter coupling in
(28). SNR = 0 dB. (Color version available online at http://ieeexplore.ieee.org.)

correspond to the CRB-operation region where the asymptotic
performance can be achieved by the MLE. At
dB, some significant difference is observed, showing that the a
priori SSP information (EOFs) becomes important as the noise
level increases. (Each SOF is in close resemblance with one of
the EOFs).

The environmental model in Fig. 1(b) is based on tomo-
graphic inversion of sediment properties along the same track
[14] measuring the SSP. At source depth, the water column
has a strongly downward refraction SSP, which is then almost
isovelocity in the bottom half with a few local minor ducts.
A strong bottom interaction is expected, which, together with
the sediment attenuation, makes the signal field smeared out
in terms of the resolvability of individual EOFs. This is seen
from the CRB matrix in Fig. 7. The estimation errors are much
larger compared to those in Fig. 3. Some of the EOFs are highly
coupled in the estimation, for example, and . On
the contrary, the derived SOFs (Fig. 8) are decoupled as seen
from the CRB matrix (Fig. 9). Note that the first few EOFs
dominate the estimation error. The first three SOFs are highly
correlated with the corresponding EOFs but with some slight
modification the SOFs are able to decouple the errors in the
estimation. The error is now nearly compacted to the first SOF
coefficient as a result of decoupling.

VI. FURTHER DISCUSSIONS

Parameter coupling in the matched-field problem is often
introduced by the waveguide sound propagation physics [12].

A priori analysis of a particular application scenario by the
CRB discloses such properties. Even though a practical envi-
ronmental inversion technique may not achieve the CRB, we
expect that the error coupling, imposed by the same physical
rule, can still be described by the CRB, and thus the develop-
ment in this paper applies.

In the framework of acoustic data assimilation, the matched-
field tomography approach to sound speed field estimation is
generalized to include a variety of sources of information of in-
terest such as an oceanographic model of sound speed field, di-
rect local sound speed measurements, and a full filed acoustic
propagation model as well as measurements [4]; the strengths of
individual data types, e.g., the large coverage of integral acoustic
measurements and the high resolution of local direct measure-
ments, can then all be exploited. The system orthogonal func-
tion approach helps identify prominent sound speed perturba-
tion features (associated with individual basis functions), thus
facilitating optimum deployment of environmental assessment
resources, otherwise limited, for local measurements. For exam-
ples, if a particular system determines certain SOFs are impor-
tant, they are to be represented well in the environmental sam-
pling scheme; the oceanographic model assimilates the local
measurements to improve large-scale sound speed field predic-
tion, which is then used to reduce the SSP estimation error by
the same system defining the SOFs.

Environmental parameter estimation is often addressed
in the context of source localization as well. For a physical
model-based method such as matched-field processing, envi-
ronmental uncertainty is the main limiting factor to achieve
the performance such method is designed to achieve under
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Fig. 10. System orthogonal functions under the environment of Fig. 1(a) with source range simultaneously estimated. SNR = 0 dB.

ideal conditions. In a typical implementation, an environ-
mental/system model is assumed and some of the parameters
values are assigned per one’s best knowledge on the test site.
It is very common that this assumed model differs from the
true one, leading to biased source location estimates even at
high SNR. To deal with this mismatch problem, a common
technique is to implement concurrent source localization and
environmental inversion, which involves identifying environ-
mental features critical to source localization and reducing their
forecast uncertainty using, for example, the data assimilation
approach. Issues on the choice of environmental parameteriza-
tion can then be much different from the sole environmental
parameter estimation problem.

Consider, for example, simultaneous source range and SSP
coefficient estimation in a range independent channel. The
source range is assumed as deterministic but unknown. The
hybrid Fisher information in (27) is thus applicable and derived
as (42), as shown at the bottom of the page, (cf. Appendix B),
where is the trace operation, and

(43)

The hybrid CRB matrix can be written as

(44)

To decouple the SSP coefficients as done in Section IV, we need
to make diagonal. Using the matrix inversion result
in ([6], p. 572), we have

(45)

The desired transform matrix is then given by the eigen-
vector set of the matrix

(46)

Comparing (46) to (41), we now have the contribution from
the coupling between source range and SSP coefficients. Fig. 10
displays the SOFs under the environment of Fig. 1(a). They
are quite similar to the previous ones with source range exactly
known (cf. Fig. 4), except a new replacing the previous

. Indeed, this new has a strong coupling with source
range, as shown in Fig. 11(b).

(42)
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Fig. 11. Normalized parameter coupling in simultaneous source range and SSP coefficient estimation under the environment of Fig. 1(a): EOFs (top); SOFs
(bottom). SNR = 0 dB. Parameter 1 corresponds to source range; parameters 2–7 correspond to the first six SSP coefficients.

For the purpose of source localization, however, some other
interesting physical interpretations are available from the CRB
matrix in (44). Recall that the off-diagonal submatrix describes
the error coupling between source range estimation and pertur-
bation coefficients estimation. To obtain a robust estimation of
source range, insensitive to sound speed estimation error, the or-
thogonal basis should be chosen so that is close to .
On the other side, if is chosen such that is close to ,
the source range estimation error can be reduced with reduced
uncertainty in SSP. This is a desired feature in adaptive rapid
environmental assessment. To limit the degree of freedom, one
may want a compact size of such environmental parameter set.
Thus, in reference to (42) some of columns in are colinear to

, while the rest are orthogonal to .
Due to some physical constraints, one might never find a

transform matrix satisfying the exact requirements mentioned
above, but some close approximations are certainly desirable,
which is left for future research effort. In fact, the concept is
well demonstrated even with the system-orthogonal functions
developed. As seen from Fig. 11, three EOF coefficients are
strongly coupled with source range (their coupling coefficients
are above 0.3 while the rest below 0.1). Using the SOFs, only
two are strongly coupled with source range in the same sense,
and those two are mutually decoupled.

VII. CONCLUSION

In this paper, a new concept for system-optimal environ-
mental parameterization is developed. Specifically, a new set of
basis functions have been derived to represent the SSP in water
column. Compared to the traditional EOFs, the new function
set decouples the errors in the estimation of the expansion
coefficients. It depends on both the statistics of the sound speed
uncertainty and the sound waveguide propagation property,
and includes the measurement noise as well even though sim-
ulations show those functions are quite similar at high SNRs.
The analytical, closed-form solution is obtained under the

adiabatically range-dependent environment; for more general
cases, some numerical approach may need to be exploited.

Using such system-orthogonal basis functions reduces the de-
grees of freedom in environmental uncertainty modeling; it also
makes possible the investigation of the relative significance of
the individual basis functions in system response, thus simpli-
fying the design of optimal adaptive sampling of environment.
Fundamentally, the new development provides a framework to
connect oceanographic parameterization to sonar modeling and
potentially to end-user modeling.

Following the concept developed here, some other interesting
results are expected, for example, basis functions coupled/un-
coupled to source parameters as discussed in Section VI. In ad-
dition, a more realistic sound speed model involving 2-D (range
and depth) basis functions, potentially feature related (like those
characterizing the surface and internal wave effects [8]), may be
applied. Furthermore, since the perturbation theory applies to
many other parameters [10], a comprehensive basis set for en-
vironmental parameters including those sediment ones can be
developed in a straightforward way.

APPENDIX

DERIVATION OF THE FISHER INFORMATION MATRIX

A. SSP Coefficient Estimation Only

We first derive the derivative of the Green’s function with
respect to . Denote from (16)

...
. . .

...
...

. . .
. . .

...
...

(47)

and

(48)
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Then, from (17)

(49)

The receiving array is assumed densely populated and spanning
the entire water column; in this case, the acoustic modes sam-
pled by the array are orthogonal with each other

(50)

In general, given propagation modes, the highest-order mode
has zeros, which indicates about oscillation cycles;
thus, from the Nyquist sampling theorem, samples
are enough to recover the modal shape function. To achieve
the orthogonality of modes, however, may have to be larger
than , e.g., .

Given the Green’s function in (17) and its derivative in (49),
the involved quantities in (30) are derived as follows:

(51)

(52)

(53)

where , defined in (35), is a diagonal matrix. Note that is
purely imaginary.

The local Fisher information matrix is then derived by

(54)

where is defined in (34). Notice that the matrix is singular
since the sum of columns is a null vector. The symmetrical struc-
ture with respect to and in (54) leads to a compact form for
the entire local FIM

(55)

Now we need to integrate the local Fisher information over
the distribution of . Fortunately, the local FIM is in fact inde-
pendent of , which essentially removes the integration. Thus,
the total Fisher information matrix in (26) is given by

(56)

Using the result in (32) and the orthonormality of , we finally
reach (36).

For the range-independent case, , and thus
. The derivative of the Green’s

function is

(57)

where in is defined according to (24). Following the
derivation leading to (51)–(56), the total Fisher information is
obtained as shown in (40).

B. Simultaneous SSP Coefficient and Source Range Estimation

The derivative of the Green’s function with respect to source
range is solved from (17)

(58)

where is defined in (43) and the notations in Section IV are
used. For long range propagation modes, the imaginary part in

is much smaller compared to the real part and thus often
ignored. Denote source range by parameter index 1 and SSP
coefficients 1 to by parameter index 2 to . The -related
quantities in the FIM [cf. (30)] can be derived as

(59)

(60)

(61)

The -related Fisher information is then given by

(62)

(63)

Recall that is zero-mean Gaussian and for two ar-
bitrary column vectors of the same length, a and b,
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. We can thus easily verify

(64)

(65)

The Fisher information is now solved in (42) by combining (40),
(64), and (65).
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