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Analytic expressions for the first order bias and second order covariance of a general maximum
likelihood estimate~MLE! are presented. These expressions are used to determine general analytic
conditions on sample size, or signal-to-noise ratio~SNR!, that arenecessaryfor a MLE to become
asymptotically unbiased and attain minimum variance as expressed by the Cramer–Rao lower
bound~CRLB!. The expressions are then evaluated for multivariate Gaussian data. The results can
be used to determine asymptotic biases, variances, and conditions for estimator optimality in a wide
range of inverse problems encountered in ocean acoustics and many other disciplines. The results
are then applied to rigorously determine conditions on SNR necessary for the MLE to become
unbiased and attain minimum variance in the classical active sonar and radar time-delay and
Doppler-shift estimation problems. The time-delay MLE is the time lag at the peak value of a
matched filter output. It is shown that the matched filter estimate attains the CRLB for the signal’s
position when the SNR is much larger than thekurtosisof the expected signal’s energy spectrum.
The Doppler-shift MLE exhibits dual behavior for narrow band analytic signals. In a companion
paper, the general theory presented here is applied to the problem of estimating the range and depth
of an acoustic source submerged in an ocean waveguide. ©2001 Acoustical Society of America.
@DOI: 10.1121/1.1387091#
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I. INTRODUCTION

In many practical problems in ocean acoustics, geoph
ics, statistical signal processing, and other disciplines, n
linear inversions are required to estimate parameters f
measured data that undergo random fluctuations. The no
ear inversion of random data often leads to estimates tha
biased and do not attain minimum variance, namely
Cramer–Rao lower bound~CRLB!, for small sample sizes o
equivalently low signal-to-noise ratio~SNR!. The maximum
likelihood estimator~MLE! is widely used because if an a
ymptotically unbiased and minimum variance estimator
ists for large sample sizes, it is guaranteed to be the ML1

Since exact expressions for the bias, variance, and error
relation of the MLE are often difficult or impractical to de
rive analytically, it has become popular in ocean acous
and many other areas to simply neglect potential biases
to compute limiting bounds on the mean square error, suc
the CRLB, since these bounds are usually much easie
obtain. The CRLB, however, typically provides an unreal
tically optimistic approximation to the MLE error correlatio
in many nonlinear inverse problems when the sample siz
small, or equivalently the SNR is low. A number of boun
on the error correlation exist that are tighter than
CRLB.1–5 Some of these bounds are based on Baye
assumptions4,5 and so require thea priori probability density
of the parameters to be estimated, which can be problem
when thea priori probability density is not known.6
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The purpose of the present paper is not to derive a n
parameter resolution bound, but rather to determine, wit
the framework of classical estimation theory1,6,7 the condi-
tions on sample size, or SNR,necessaryfor the MLE to
become asymptotically unbiased and attain minimum v
ance. The approach is to apply the tools of higher or
asymptotic inference, which rely heavily on tensor analys
to expand the MLE as a series in inverse orders of sam
size or equivalently inverse orders of SNR.7 From this series
analytic expressions for the first order bias, second or
covariance and second order error correlation of a gen
MLE are presented in terms of joint moments of the lo
likelihood function and its derivatives with respect to th
parameters to be estimated. Since the first order error co
lation is shown to be the CRLB, which is only valid fo
unbiased estimates, the second order error correlation
provide a tighter error approximation to the MLE than t
CRLB that is applicable in relatively low SNR even whe
the MLE is biased to first order. These expressions are t
used to determine general analytic requirements on sam
size, or SNR, that arenecessaryfor an MLE to become as-
ymptotically unbiased and attain minimum variance. This
done by showing when the first order bias becomes ne
gible compared to the true value of the parameter and w
the second order covariance term becomes negligible c
pared to the CRLB.
1917917/14/$18.00 © 2001 Acoustical Society of America
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The first order bias is evaluated for general multivari
Gaussian data. The second order covariance and error c
lation terms are evaluated for two special cases of Gaus
data that are of great practical value in ocean acoustics,
physics, and statistical signal processing. The first is fo
deterministic signal vector embedded in additive noise
the second is for a fully randomized signal vector with ze
mean in additive noise. These cases have been widely
in ocean acoustic inversions, spectral estimation, beamfo
ing, sonar and radar detection, and localization problems
well as statistical optics.8–10 In a companion paper, each o
these cases is applied to determine the asymptotic bias
covariance of maximum likelihood range and depth e
mates of a sound source submerged in an ocean waveg
from measured hydrophone array data as well as neces
conditions for the estimates to attain the CRLB.11

In the present paper, these expressions are applied t
active sonar and radar time-delay and Doppler-shift esti
tion problems, where time delay is used for target range
timation and Doppler shift is used for target velocity estim
tion. Attention is focused on the commonly encounter
scenario of a deterministic signal with unknown spatial
temporal delay received together with additive white noi
The time-delay MLE is then the time lag at the peak value
a matched filter output. The matched filter estimate fo
signal’s time delay or position is widely used in many app
cations of statistical pattern recognition in sonar, radar,
optical image processing. This is because it has long b
known that the matched filter estimate attains the CRLB
high SNR.Necessaryanalytic conditions on how high th
SNR must be for the matched filter estimate to attain
CRLB have not been previously obtained but are deriv
here using the general asymptotic approach develope
Secs. II–IV.

A number of authors have derived tighter bounds th
the CRLB for the time-delay estimation problem to he
evaluate performance at low SNR where the CRLB is
attained by the MLE, as, for example, in Refs. 5, 12, 13. T
present paper follows a different approach by providing
plicit expressions for the second order variance of the tim
delay and Doppler-shift MLEs that are attained in low
SNR than the CRLB. The first order bias is also deriv
These expressions are then used to provide analytic co
tions on SNR necessary for the time-delay MLE, namely
matched filter estimate, and Doppler-shift MLE to becom
unbiased and attain minimum variance in terms of proper
of the signal and its spectrum. Illustrative examples for st
1918 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naf
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dard linear frequency modulated~LFM!, hyperbolic fre-
quency modulated~HFM!, and canonical waveforms are pro
vided for typical low-frequency active-sonar scenarios
ocean acoustics.

II. GENERAL ASYMPTOTIC EXPANSIONS OF THE
MLE AND ITS MOMENTS

Suppose the random data vectorX, givenm-dimensional
parameter vectoru, obeys the conditional probability densit
function ~pdf! p(X;u). The log-likelihood functionl (u) is
defined asl (u)5 ln(p(X;u)) when evaluated at measure
values ofX. Let the r th component ofu be denoted byu r .
The first log-likelihood derivative with respect tou r is then
defined as l r5] l (u)/]u r . If R15r 11...r 1n1

,.....,Rm

5r m1...mnm
are sets of coordinate indices, joint moments

the log-likelihood derivatives can be defined byvR1 ,...,Rm

5Eb l Rl
...l Rm

c, where, for example,vs,tu5E@ l sl tu# and

va,b,c,de5E@ l al bl cl de#.
The expected information, known as the Fisher inform

tion, is defined byi rs5E@ l r l s# where the indicesr, s are
arbitrary. Lifting the indices produces quantities that are
noted by vR1 ,...,Rm5 i r 11s11...i r mnm

smnmvs11 ...s1n1
,...,sm1 ...smnm

,

wherei rs5@ i21# rs is ther, s component of the inversei21 of
the expected information matrixi. The inverse of the Fishe
information matrix i21 is also known as the Cramer–Ra
lower bound~CRLB!. Here, as elsewhere, the Einstein su
mation convention is used. That is, if an index occurs tw
in a term, once in the subscript and once in the supersc
summation over the index is implied.

The MLE û, the value ofu that maximizesl (u) for the
given dataX,1,6,7 can now be expressed as an asympto
expansion aroundu in increasing orders of inverse samp
size n21 or equivalently SNR. Following the derivation o
Barndorff-Nielsen and Cox,7 the componentl r is first ex-
panded aroundu as

l̂ r5 l r1 l rs~ û2u!s1 1
2l rst~ û2u!s~ û2u! t

1 1
6l rstu~ û2u!s~ û2u! t~ û2u!u1¯ , ~1!

where (û2u) r5 û r2u r . Equation~1! is then inverted to ob-
tain an asymptotic expansion for (û2u) r , as shown in Ap-
pendix D. After collecting terms of the same asymptotic
der, this can be expressed as7
~2!
tali and N. C. Makris: Necessary conditions for a MLE to attain CRLB
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whereHR[ l R2vR . The terms are organized in decreasi
asymptotic order. The drops occur in asymptotic orders
n21/2 under ordinary repeated sampling, which is equival
to an asymptotic drop of (SNR)21/2. The asymptotic orders
of each set of terms are indicated by symbols such
OA(n2m) which denotes a polynomial that will be of orde
n2m whenn is large but may contain higher order terms, i.
Op(n2(m11)), that can be significant whenn is small. Here
the symbolOp(n2m) denotes a polynomial of exactly orde
n2m for all values ofn.
ar
e
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The first order bias of the MLE is then the expect
value of Eq.~2!, as derived by Barndorff-Nielsen and Cox7

~3!

Here we take a further step and use Eq.~2! to derive the
error correlation of the MLE to second order as given by
order-separated expression
he
~4!

where notation such asvbce,d, f ,s(n
2) means then2 order terms of the joint momentvbce,d, f ,s .

Using the identity Cov(û r ,ûa)5Cor(û r ,ûa)2b(u r)b(ua), we obtain the following expression for the covariance of t
MLE to second order:

~5!
-

les,
The first order covariance termi ra is the r, a component of
the inverse of the Fisher information, or ther, a component
of the CRLB. A bound on the lowest possible mean squ
error of anunbiased scalarestimate that involves invers
sample size orders higher thann21 was introduced by
e

Bhattacharyya.2 While it involves derivatives of the likeli-
hood function, it is quite different from the multivariate co
variance derived in Eq.~5! that is valid for multivariate es-
timates that may be biased. For discrete random variab
expressions equivalent to Eqs.~3!–~5! have been obtained in
1919N. C. Makris: Necessary conditions for a MLE to attain CRLB
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a significantly different form via a different approach b
Bowman and Shenton.14

A necessarycondition for the MLE to become asymp
totically unbiased. This is for the first order bias of Eq.~1! to
become much smaller than the true value of the param
u r . Similarly, anecessarycondition for the MLE to asymp-
totically attain minimum variance is for the sum of seco
order terms in Eq.~5! to become much smaller than the fir
order term, which is the CRLB.

III. ASYMPTOTIC BIAS, ERROR CORRELATION AND
COVARIANCE OF THE MLE FOR GAUSSIAN
DATA

The asymptotic expressions presented for the bias, e
correlation, and covariance of the MLE in Sec. II are no
evaluated for real multivariate Gaussian data. General m
variate Gaussian data can be described by the conditi
probability density

p~X;u!5
1

~2p!nN/2

1

uC~u!un/2 expH 2
1

2 (
i 51

n

~X i2m~u!!T

3C21~u!~X i2m~u!!J , ~6!

where the dataX5@X1
TX2

TX3
T ...Xn

T#T are comprised ofn in-
dependent and identically distributedN-dimensional data
vectorsX i to show an explicit dependence under normal
peated sampling for convenient reference. It is notewor
that the CRLB is always proportional to 1/n but may be
proportional to a more complicated function of the length
the data vectorN.

We begin by deriving the first order bias for the gene
multivariate Gaussian case where the data covarianceC and
the data meanm depend on the parameter vectoru. The joint
moments required to evaluate both the error correlation
covariance for the general case are quite complicated bu
of great relevance in most standard ocean acoustic and s
processing problems.8 They are not derived in this paper, b
are the subject of another work where the second order
is also derived.15 We instead define two special cases th
have great practical value, since they describe a determin
signal in additive noise and a fully randomized signal
noise, respectively. In the former the data covarianceC is
independent of the parameter vectoru, while the meanm
depends onu which is the subject of the estimation problem
In the latter, the data meanm is zero while the covarianceC
depends on the parameter vectoru to be estimated. In the
latter case, the sample covariance of the data is a suffic
1920 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naf
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statistic that contains all measurement information about
parameters to be estimated.1,16

The assumption of Gaussian data is valid, by virtue
the central limit theorem even for smalln and N, when the
total received field is the sum of a large number of stati
cally independent contributions. In the case of a determin
tic signal in additive noise, the additive noise typically aris
from a large number of independent sources distributed o
the sea surface.17 These noise sources may be either cau
by the natural action of wind and waves on the sea surfa
or they may be generated by ocean-going vessels.18

A particular fully randomized Gaussian signal mod
that is very widely used and enjoys a long history in aco
tics, optics, and radar19,20 is the circular complex Gaussia
random~CCGR! model. The basic assumption in this mod
is that at any time instant, the received signal field is
CCGR variable.9,19 This means that the real and imagina
parts of the instantaneous field are independent and ide
cally distributed zero-mean Gaussian random variables
active detection and imaging problems, this model is ty
cally used to describe scattering from fluctuating targets21,22

and surfaces with wavelength scale roughness.9 When the
target or resolved surface patch is large compared to
wavelength, the total received field can be thought of as a
ing from the sum of a large number of independent scat
so that the central limit theorem applies. Since World War
the CCGR signal model has been used to describe oc
acoustic transmission scintillation in what is known as t
saturated region of multi-modal propagation.19,23,24 In this
regime, natural disturbances in the waveguide, such as
derwater turbulence and passing surface or internal gra
waves, lead to such randomness in the medium that
waveguide modes at the receiver can be treated as sta
cally independent entities. The central limit theorem can th
be invoked for the total received field, which behaves a
CCGR process in time.16,19 In passive source localizatio
problems in ocean-acoustics, the source signal is typic
mechanical noise that is accidentally radiated into the oc
by a vessel. This noise typically has both narrow and bro
band components that arise from a broad distribution of
dependent mechanical interactions that lead to a signal
can be represented as a CCGR process in time. The CC
signal model has become a very standard model in oce
acoustic matched field processing.16,25,26

A. The general multivariate Gaussian case

We obtain the following expression for the first ord
bias of the MLE given general multivariate Gaussian dat
b~ û r !5 1
2i

rsi tu~vstu12vst,u!1Op~n23/2!

5(
s51

m

(
t51

m

(
u51

m
2

n
@ i21# rs@ i21# tuH12trS C21

]2C

]us ]u t C21
]C

]uuD1S ]2m

]us ]u tD T

C21S ]m

]uuD1S ]m

]usD T

C21S ]C

]uuDC21S ]m

]u tD
2(

s,t
S ]2m

]us ]uuD T

C21S ]m

]u tD2(
s,t

S ]m

]usD T

C21S ]C

]u tDC21S ]m

]uuD2
1

2 (
s,t

trS C21
]2C

]us ]uu C21
]C

]u t D J , ~7!
tali and N. C. Makris: Necessary conditions for a MLE to attain CRLB
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by substituting Eqs.~A1!–~A3! for the relevant joint mo-
ments into Eq.~3! for the first order bias, where(s,t indi-
cates a sum over all possible permutations ofs, torderings, a
total of two. For example,(s,tvst5vst1v ts .

It should be noted that the expression contains both
sor notation, denoted by the indicess, t, andu, and vector-
matrix notation. For the first order bias, only first and seco
order parameter derivatives are required of the mean
covariance.

Suppose, for example, the bias of the vector

û5F m̂

ĈG
is desired, wherem̂ andĈ are the maximum likelihood esti
mates of the mean and variance, respectively, from a setn
independent and identically distributed Gaussian rand
variablesxi . The bias obtained from Eq.~6! is zero for the
mean component and2(C/n) for the variance componen
This result can be readily verified by taking expectation v
ues directly.27

It is noteworthy that the first order bias of ascalar pa-
rameter estimate always vanishes for general Gaussian
as can be seen by inspection of Eq.~7!.

B. Deterministic signal in additive noise, parameter-
independent covariance

The multivariate error correlation and covariance of t
MLE can be obtained to second order for a determinis
signal vector in additive Gaussian noise by substituting E
~B1!–~B10! into Eqs.~4! and ~5!, respectively. In this case
C is independent ofu in Eq. ~6!. For scalar parameter an
data, the following simple expressions for the mean-squ
error and variance are obtained

~8!

~9!

Suppose, for example, that the bias, mean-square error
variance of the MLE of the parameteru5m2 are desired,
where thexi are againn independent and identically distrib
uted Gaussian random variables, andC is independent ofu.
The corresponding biasC/n, mean-square error 4Cm2/n
13C2/n2, and variance 4Cm2/n12C2/n2, obtained using
Eqs. ~3!–~5! can be readily shown to correspond to tho
obtained by taking expectation values directly.27 Since the
MLE for u5m2 is biased, the Bhattacharyya bound does
hold for this example and in fact can exceed the actual v
ance of the MLE.27
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C. Random signal in noise: Zero-mean and
parameter-dependent covariance

Similarly, the error correlation and covariance of th
MLE can be obtained to second order for a zero-me
Gaussian random signal vector in Gaussian noise by su
tuting Eqs.~C1!–~C10! into Eqs.~4! and~5!, respectively. In
this case,m is zero in Eq.~6!. For scalar parameter and dat
the following simple expressions for the mean-square e
and variance expressions are obtained:

~10!

~11!

Suppose, for example, that the bias, mean-square error,
variance of the MLE of the parameteru5C2 are desired,
where thexi are n independent and identically distribute
Gaussian random variables with zero-mean. It can be rea
shown that the corresponding bias 2C2/n, mean-square erro
8C4/n144C4/n2, and variance 8C4/n140C4/n2, obtained
using Eqs.~3!–~5!, correspond to those obtained by takin
expectation values directly.27

IV. CONTINUOUS GAUSSIAN DATA: SIGNAL
EMBEDDED IN WHITE GAUSSIAN NOISE

Let a real signalm(t;u) that depends on parameteru be
received together with uncorrelated white Gaussian nois
power spectral densityN0/2 that is independent ofu. Sup-
pose the real signal has Fourier transformm(t;u)↔C( f ;u).
The complex analytic signal and its Fourier transfo
m̃(t;u)↔C̃( f ;u) are conventionally defined such th
C̃( f ;u)52C( f ;u) for f .0, C̃( f ;u)50 for f ,0, and
C̃( f ;u)5C( f ;u) for f 50, so thatm(t;u)5Re$m̃(t;u)%. The
total received analytic signal,w̃ i(t), then follows the condi-
tional probability density28

p~ w̃ i~ t !;u!5k expH 2
1

2N0
E

0

T

u~ w̃ i~ t !2m̃~ t;u!!u2 dtJ , ~12!

where k is a normalization constant. The bias, the mea
square error, and the variance of the MLEû are obtained
from Eqs.~3!–~5! as

b~ û !52
N0

2

Re$ Ĩ 2%

Ĩ 1
2

, ~13!
1921N. C. Makris: Necessary conditions for a MLE to attain CRLB
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~15!

after evaluating the joint moments for the paramet
independent covariance, whereĨ 1 , Ĩ 2 , Ĩ 3 are defined as fol-
lows:

Ĩ 15E S ]m̃~ t;u!

]u D * S ]m̃~ t;u!

]u Ddt, ~16!

Ĩ 25E S ]m̃~ t;u!

]u D * S ]m̃2~ t;u!

]u2 Ddt, ~17!

Ĩ 35E S ]m̃~ t;u!

]u D * S ]m̃3~ t;u!

]u3 Ddt. ~18!

There are two important issues to note. First, we are n
working with continuously measured data as opposed to
discrete data vectors of Sec. III. Second, the fact that we
only estimating a scalar rather than a vector param
greatly simplifies the evaluation of the joint moments.

V. TIME-DELAY ESTIMATION

Supposem̃(t;u)5m̃(t2t) in Eq. ~12! so that the scala
time delayu5t is to be estimated. The MLEû5 t̂ of time-
delayt corresponds to the peak output of a matched filter
a signal received in additive Gaussian noise.8 Estimates of
the time delay between transmitted and received sig
waveforms are typically used in active-sonar and radar
plications to determine the range of a target in a nondisp
sive medium. The asymptotic bias, mean-square error,
variance oft̂ are obtained by substitutingt for u in Eqs.
~13!–~18!.

The following alternative expressions are obtained
Eqs.~16!–~18! by applying Parseval’s Theorem

Ĩ 15E S ]m̃~ t2t!

]t D * S ]m̃~ t2t!

]t Ddt

5~2p!2E
0

`

f 2uC̃~ f !u2 d f , ~19!

Ĩ 25E S ]m̃~ t2t!

]t D * S ]m̃2~ t2t!

]t2 Ddt

5 j ~2p!3E
0

`

f 3uC̃~ f !u2 d f , ~20!
1922 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naf
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Ĩ 35E S ]m̃~ t2t!

]t D * S ]m̃3~ t2t!

]t3 Ddt

52~2p!4E
0

`

f 4uC̃~ f !u2 d f . ~21!

Noting that the first order bias of Eq.~13! is directly
proportional to Re$Ĩ2%, where Re$Ĩ2%50 from Eq. ~19!, we
find thatthe first order bias for the maximum likelihood tim
delay estimation problem is identically zero, as expected by
inspection of Eq.~7!.

To evaluate the mean-square error and the variance
three integrals are needed. Noting that Re$Ĩ2%50 and Re$Ĩ3%
5Ĩ3 the following results are obtained:

~22!

where Ĩ 1 , Ĩ 3 are evaluated in Eqs.~19! and ~21!, respec-
tively. The mean-square error can also be expressed ex
itly in terms of SNR52E/N0 and signal parameters via

~23!

where f c5vc /(2p) is the carrier frequency,E is the total
energy of the real signal,b is commonly defined as the sig
nal’s root mean square~rms! bandwidth, andg4 is the fourth
moment of the expected signal’s energy spectrum.

2E5E
2 f c

`

uC̃~v1 f c!u2 dv, ~24!

b25
~2p!2*2 f c

` v2uC̃~v1 f c!u2 dv

2E
, ~25!

g45
~2p!4*2 f c

` v4uC̃~v1 f c!u2 dv

2E
. ~26!

Equation ~23! explicitly shows the asymptotic depen
dence of the MLE time-delay variance on increasing ord
of (SNR)21. For a base-banded signal, wherevc50, the
first order variance term of Eq.~23! is proportional to the
inverse ofb2, while the second term is proportional to th
ratio g4/b6. While it is well known that the first order vari
ance or CRLB decreases with increasing rms bandwidth
fixed SNR, the behavior of the second order variance te
has a more complicated interpretation since it involves b
g andb.
tali and N. C. Makris: Necessary conditions for a MLE to attain CRLB
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The time-delay MLE asymptotically attains the CRL
when (g418vc

2b213vc
4)/(b21vc

2)2!2E/N05SNR. For
a base-banded signal, this condition means that the S
must be much larger than thekurtosisg4/b4 of the expected
signal’s energy spectrum. This can be interpreted as mea
that as the signal’s energy spectrum becomes more pea
higher SNR is necessary to attain the CRLB.

Example 1

Assume a real Gaussian base-banded signal with a
stant energy. Its waveform can be represented as

h~ t !5
1

Ats

exp~2p~ t2/ts
2!!, utu<T/2,

whereh↔H. For real signals, 2E is replaced byE/2, andC

replacesC̃ in Eqs. ~24!–~26!, where in the present caseC
5H. Under the assumption thatts /T is sufficiently small
that the limits of integration@2T/2,T/2# can be well ap-
proximated as@2`, `#, Eq.~23! for the variance of the time
delay MLE can be written to second order as

Since the signal’s energy is 1/&, the first and second orde
terms equalize when the SNR is 3, which is the kurtosis o
Gaussian density, where the SNR52E/N0 . This makes
sense because a Gaussian signal has a Gaussian energy
trum by the convolution theorem. For SNRs less than 3, o
decibels for 10 log SNR,5 dB, the second order term i
higher than the first and the CRLB is a poor estimate of
true mean-square error. Moreover, since 1/ts is a measure of
the signal’s bandwidth, decreasingts , or increasing the sig-
nal’s bandwidth, will decrease both first and second or
variance terms, and so improve the time-delay estimate.

VI. DOPPLER SHIFT ESTIMATION

Suppose now that anarrow bandsignal waveform is
transmitted in a nondispersive medium and measured
additive Gaussian noise at a receiver that is moving rela
to the source at low Mach numberu/c!1, whereu is the
speed of relative motion andc the speed of wave propaga
tion. The expected analytic signal waveform at the recei
m̃(t; f D) is then frequency shifted with Doppler-shift param
eter f D522u/c. The total signal and noise measured at
receiver will then obey the conditional probability density
Eq. ~12! with u5 f D . The goal now is to examine th
asymptotic statistics of the MLEf̂ D for the Doppler-shift
parameter.

With the given assumptions, the signal waveform can
represented as

m̃~ t; f D!5g̃~ t !ej 2pt~ f c1 f D!, ~27!

where the complex envelopeg̃(t) is known and is zero out
side the interval2T/2<t<T/2. By applying Parseval’s
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Theorem, the following expressions are obtained:

Ĩ 15E S ]m̃~ t; f D!

] f D
D * S ]m̃~ t; f D!

] f D
Ddt

5~2p!2E
2T/2

T/2

t2ug̃~ t !u2 dt, ~28!

Ĩ 25E S ]m̃~ t; f D!

] f D
D * S ]m̃2~ t; f D!

] f D
2 Ddt

5 j ~2p!3E
2T/2

T/2

t3ug̃~ t !u2 dt, ~29!

Ĩ 35E S ]m̃~ t; f D!

] f D
D * S ]m̃3~ t; f D!

] f D
3 Ddt

52~2p!4E
2T/2

T/2

t4ug̃~ t !u2 dt. ~30!

To evaluate the bias,Ĩ 1 and Re$Ĩ2% are substituted into
Eq. ~13!. Noting that Re$Ĩ2%50, we find thatthe first order

bias for the Doppler-shift MLE fˆ
D is identically zero, as

expected by inspection of Eq.~7!.
Equations~28!–~30! are then substituted into Eqs.~14!–

~15! to evaluate the mean-square error and the varianc
second order. The resulting relations for the second or
mean-square error and variance of the Doppler-shift M
are similar to those obtained for the time-delay MLE:

~31!

since the two problems are related through the tim
frequency duality principle. ExpressingĨ 1 , Ĩ 3 in terms of
SNR and signal parameters then explicitly yields t
Doppler-shift MLE mean-square error in terms of increas
orders of (SNR)21 as

~32!

where

2E5E
2T/2

T/2

ug̃~ t !u2 dt, ~33!

a25
~2p!2*2T/2

T/2 t2ug̃~ t !u2 dt

2E
, ~34!

d45
~2p!4*2T/2

T/2 t4ug̃~ t !u2 dt

2E
. ~35!

The Doppler-shift MLE then asymptotically attains th
CRLB when d4/a4!2E/N05SNR. For an analytic signa
1923N. C. Makris: Necessary conditions for a MLE to attain CRLB
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FIG. 1. Gaussian signal time-dela
variance terms as a function of SNR
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e

is 6,
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so
rms,
with symmetric magnitude, this can be interpreted as me
ing that the SNR must be large compared to thekurtosisof
the signal’s squared magnitude.

Example 2

For real signals wherem(t; f D)5g(t)cos 2pt(fc1fD),
Eq. ~32! can be used when 2E is replaced by 4E in Eqs.
~34!–~35!, and the real signal envelopeg(t) replacesg̃(t) in
Eqs. ~33!–~35!. For the CRLB to be attained in this rea
signal case, the SNR must be large compared totwice the
kurtosis of the squared magnitude of the real signal en
lope, assuming a symmetric magnitude. ComputingE, a2,
andd4 for the real signal envelopeg(t)5h(t) of example 1,
by Eq. ~32!, the variance of the Doppler-shift MLE can b
written to second order as
1924 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naf
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The first and second order terms equalize when the SNR
twice the Gaussian kurtosis as expected, where S
52E/N0 . For SNRs less than 6, or in decibels wh
10 log SNR,7.8 dB, the second order term is higher than t
first, and the CRLB provides a poor estimate of the tr
MSH. Increasingts decreases the signal’s bandwidth and
also decreases both first and second order variance te
which improves the Doppler-shift estimate.
FIG. 2. LFM signal time-delay vari-
ance terms as a function of SNR.
tali and N. C. Makris: Necessary conditions for a MLE to attain CRLB



FIG. 3. HFM signal time-delay vari-
ance terms as a function of SNR.
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VII. ASYMPTOTIC OPTIMALITY OF GAUSSIAN, LFM
AND HFM WAVEFORMS IN MAXIMUM
LIKELIHOOD TIME-DELAY AND DOPPLER-SHIFT
ESTIMATION

The general expressions for the second order varia
for both the MLE time-delay and the Doppler-shift estim
tors, Eqs.~22! and~31!, are now implemented for the Gaus
ian linear frequency modulated~LFM! and hyperbolic fre-
quency modulated~HFM! waveforms. All waveforms are
demodulated.

The Gaussian signal is described in examples 1 an
above. The LFM signal is defined by

m~ t !5cos~v0t1 1
2bt2!, utu<T/2, ~36!
J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naftali and
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wheref 05v0/2p is the carrier frequency and the bandwid
is given bybT/2p. The signal is demodulated when mult
plied by cos(v0t) and low-pass filtered. The HFM signal i
defined by

m~ t !5sin~a log~12k~ t1T/2!!!, utu<T/2, ~37!

where k5( f 22 f 1)/ f 2T, a522p f 1 /k, and f 1 and f 2 are
the frequencies that bound the signal’s spectrum. This sig
is demodulated when multiplied by cos(v0t), where f 0

5Af 1f 2, and is low-pass filtered. To control sidelobes in t
frequency domain, the signal is often multiplied by a temp
ral window function, or taper. We use the modified Tuk
window that has the form
.

FIG. 4. LFM signal Doppler-shift
variance terms as a function of SNR
1925N. C. Makris: Necessary conditions for a MLE to attain CRLB
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FIG. 5. Gaussian signal Doppler-shif
variance terms as a function of SNR
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t by
w~ t !

55
p1~12p!sin2S p

t1T/2

2Tw
D for 0<t<Tw

1 for Tw<t<T2Tw

p1~12p!sin2S p
~ t1T/2!2~T22Tw!

2Tw
D

for T2Tw<t<T

,

~38!

whereTw50.125T is the window duration andp50.1 is the
pedestal used.

The dependence of the first and second order varia
terms on SNR is presented in Figs. 1–3 for the time-de
1926 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naf
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MLE and in Figs. 4–6 for the Doppler-shift MLE for the
three signals. The bandwidth is fixed at 100 Hz in Figs. 1–
for a typical low-frequency active-sonar scenario.29 The fig-
ures illustrate some important characteristics of the varia
terms for both the time-delay and the Doppler-shift MLE. A
SNR increases, the first order variance exhibits the expe
linear fall-off and the second order variance falls off with t
expected second order power law as can be seen more
erally in Eqs.~23! and ~32! where the second order term
proportional to 220 log10(N0/2E), and the first to
210 log10(N0/2E). The value of either term at a specifi
bandwidth and SNR can then be used to determine its v
at the same bandwidth for all SNRs.

Table I specifies the SNR’s values beyond which t
second order variance can be neglected relative to the firs
.

FIG. 6. HFM signal Doppler-shift
variance terms as a function of SNR
tali and N. C. Makris: Necessary conditions for a MLE to attain CRLB
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showing where the former is an order of magnitude less t
the latter. Table I then provides conditionsnecessaryfor the
MLE to attain the CRLB in time-delay and Doppler-sh
estimation for the given signals. It also specifies conditio
necessaryfor the MLE to be approximated as a linear fun
tion of the measured data.

VIII. CONCLUSION

By employing an asymptotic expansion of the likeliho
function, expressions for the first order bias, as well as
second order covariance and error correlation of a gen
MLE, are derived. These expressions are used to determ
conditionsnecessaryfor the MLE to become asymptoticall
unbiased and attain the CRLB. The approach is then app
to parameter estimation with multivariate Gaussian da
Analytic expressions for the general first order bias of
multivariate Gaussian MLE and the second order error co
riance and correlation of the MLE for two special cases
multivariate Gaussian data that are of great practical sig
cance in acoustics, optics, radar, seismology, and signal
cessing. The first is where the data covariance matrix is
dependent of the parameters to be estimated, the stan
deterministic signal in additive noise scenario. The secon
where the data mean is zero and the signal as well as
noise undergo circular complex Gaussian random fluc
tions. In a companion paper, the expressions derived here
applied to determine the asymptotic bias, covariance,
mean-square error of maximum likelihood range and de
estimates of a sound source submerged in an ocean w
guide from measured hydrophone array data.11 Necessary
conditions for these source localization estimates to at
the CRLB are also obtained.11

In the present paper, general expressions for the
order bias, second order mean-square error, and varian
scalar maximum likelihood time-delay and Doppler-shift e
timates are obtained for deterministic signals in addit
Gaussian noise. The time-delay MLE is the peak value o
matched filter output. Both time-delay and Doppler-sh
MLEs are shown to be unbiased to first order. Analytic co
ditions on SNR necessary for the time-delay and Dopp
shift MLEs to attain the CRLB are provided in terms
moments of the expected signal’s squared magnitude
energy spectrum. For base-banded signals, the time-d
MLE, namely the matched filter estimate, attains the CR
when thekurtosisof the expected signal’s energy spectrum
much smaller than the SNR. This can be interpreted as m
ing that higher SNR is necessary to attain the CRLB a
demodulated signal’s energy spectrum becomes m
peaked. The Doppler-shift MLE is found to have dual beh
ior for narrow band analytic signals.

TABLE I. Minimum signal-to-noise ratios~SNRs! necessaryfor the MLE to
asymptotically attain the CRLB. The given values are the minimum SN
needed for the CRLB to exceed the second order MLE variance by 10
All signals have 100 Hz bandwidth.

Gaussian signal LFM signal HFM signal

Time Delay 15 dB 32 dB 18 dB
Doppler Shift 18 dB 16 dB 15 dB
J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001 E. Naftali and
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APPENDIX A: JOINT MOMENTS FOR ASYMPTOTIC
GAUSSIAN INFERENCE: GENERAL MULTIVARIATE
GAUSSIAN DATA

For thegeneral multivariate Gaussiancase of Eq.~6!,
both the meanm and the covariance matrixC depend on the
parameter vectoru. The joint moments required to evalua
the first order bias are

i ab5
n

2
tr~C21CaC21Cb!1nma

TC21mb , ~A1!

vabc5
n

3 (
a,b,c

tr~C21CaC21CbC21Cc!

2
n

4 (
a,b,c

tr~C21CabC
21Cc!2

n

2 (
a,b,c

mab
T C21mc

1
n

2 (
a,b,c

ma
TC21CbC21mc , ~A2!

vab,c52
n

2 (
a,b

tr~C21CaC21CbC21Cc!1nmab
T C21mc

1
n

2
tr~C21CabC

21Cc!

2n(
a,b

ma
TC21CbC21mc , ~A3!

where, for example,(a,b,c indicates a sum over all possibl
permutations ofa, b andc orderings, leading to a total of six
terms. Terms such asCab and mab represent the derivative
of the covariance matrixC and the mean vectorm with re-
spect toua andub, respectively.

APPENDIX B: JOINT MOMENTS FOR ASYMPTOTIC
GAUSSIAN INFERENCE: MULTIVARIATE
GAUSSIAN DATA WITH PARAMETER-INDEPENDENT
COVARIANCE: DETERMINISTIC SIGNAL IN
INDEPENDENT ADDITIVE NOISE

For this case the covariance matrix of Eq.~6! is inde-
pendent of the parameters to be estimated, i.e.,]C/]u i50
for all i. The joint moments required to evaluate the fi
order bias, as well as the second order error correlation
covariance are

i ab5nma
TC21mb , ~B1!

vabc~n1!52
n

2 (
a,b,c

mab
T C21mc , ~B2!

va,b,c~n1!50, ~B3!

vab,c~n1!5nmab
T C21mc , ~B4!

vabcd~n1!52
n

8 (
a,b,c,d

mab
T C21mcd

2
n

6 (
a,b,c,d

mabc
T C21md , ~B5!

s
B.
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va,b,c,d~n2!5
n2

8 (
a,b,c,d

ma
TC21mbmc

TC21md , ~B6!

va,b,cd~n1!50, ~B7!

va,b,c,de~n2!5
n2

2 (
a,b,c

ma
TC21mbmc

TC21mde , ~B8!

va,b,cd,e f~n2!5
n2

2 (
~a,b!3~cd,e f !

ma
TC21mcdmb

TC21me f

1n2mcd
T C21me fma

TC21mb , ~B9!

va,b,c,de f~n2!5
n2

2 (
a,b,c

ma
TC21mbmc

TC21mde f , ~B10!

where the notation( (a,b)3(cd,e f ) indicates a sum over al
possible permutations ofa and b orderings combined with
permutations ofcd andef orderings, leading to a total of fou
terms.

APPENDIX C: JOINT MOMENTS FOR ASYMPTOTIC
GAUSSIAN INFERENCE; MULTIVARIATE
GAUSSIAN DATA WITH ZERO-MEAN: RANDOM
SIGNAL IN NOISE

For this case the mean is zero in Eq.~6!. The joint mo-
ments required to evaluate the first order bias, as well as
second order error correlation and covariance are then

i ab5
n

2
tr~C21CaC21Cb!, ~C1!

vabc~n1!5
n

3 (
a,b,c

tr~C21CaC21CbC21Cc!

2
n

4 (
a,b,c

tr~C21CabC
21Cc!, ~C2!

va,b,c~n1!5
n

6 (
a,b,c

tr~C21CaC21CbC21Cc!, ~C3!

vab,c~n1!52
n

2 (
a,b

tr~C21CaC21CbC21Cc!

1
n

2
tr~C21CabC

21Cc!, ~C4!
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vabcd~n1!52
3n

8 (
a,b,c,d

tr~C21CaC21CbC21CcC
21Cd!

1
n

2 (
a,b,c,d

tr~C21CabC
21CcC

21Cd!

2
n

16 (
a,b,c,d

tr~C21CabC
21Ccd!

2
n

12 (
a,b,c,d

tr~C21CabcC
21Cd!, ~C5!

va,b,c,d~n2!5
n2

32 (
a,b,c,d

tr~C21CaC21Cb!tr~C21CcC
21Cd!,

~C6!

va,b,cd~n1!52
n

2

3 (
~a,b!3~c,d!

tr~C21CaC21CbC21CcC
21Cd!

1
n

2 (
a,b

tr~C21CaC21CbC21Ccd!, ~C7!

va,b,c,de~n2!52
n2

24 (
~a,b,c!3~d,e!

tr~C21CdC21Ce!

3tr~C21CaC21CbC21Cc!

2
n2

8 (
~a,b,c!3~d,e!

tr~C21CaC21Cb!

3tr~C21CcC
21CdC21Ce!

1
n2

8 (
a,b,c

tr~C21CaC21Cb!

3tr~C21CcC
21Cde!, ~C8!
va,b,cd,ef~n
2!5

n2

8 (
~cd,ef !3~a,b!3~c,d!3~e,f !

Htr~C21CcC
21Cd!F tr~C21CaC21CbC21CeC

21Cf !2
1

2
tr~C21CaC21CbC21Ce f!G J

1
n2

8 (
~cd,e f !3~a,b!3~c,d!3~e, f !

H tr~C21CaC21Cb!F1

2
tr~C21CcC

21CdC21CeC
21Cf !

2
1

2
tr(C21CcC

21CdC21Ce f)1 1
8tr(C

21CcdC
21Ce f)G J

1
n2

8 (
~cd,e f !3~a,b!3~c,d!3~e, f !

tr~C21CaC21CcC
21Cd!tr~C21CbC21CeC

21Cf !
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n2

8 (
~cd,e f !3~a,b!

tr~C21CaC21Ccd!tr~C21CbC21Ce f!

2
n2

8 (
~cd,e f !3~a,b!3~c,d!3~e, f !

tr~C21CaC21Ccd!tr~C21CbC21CeC
21Cf !, ~C9!

va,b,c,de f~n2!5
n2
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~a,b,c!3~d,e, f !

tr~C21CaC21CbC21Cc!tr~C21CdC21CeC
21Cf !

2
n2

24 (
~a,b,c!3~d,e, f !

tr~C21CaC21CbC21Cc!tr~C21CdeC
21Cf !

1
n2
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The notation( (a,b,c)3(d,e, f ) indicates summation over a
possible permutations ofd, e, fanda, b andc, leading to a
total of 36 terms.

APPENDIX D: DERIVATION OF THE ASYMPTOTIC
EXPANSION OF THE MAXIMUM LIKELIHOOD
ESTIMATE

Following Barndoff-Nielsen and Cox,7 Eq. ~1! is first
inverted for (û2u) r to obtain the expansion

~ û2u!r5 j rsl s1
1
2 j rsl stu~ û2u! t~ û2u!u1 1

6 j rsl stuv

3~ û2u! t~ û2u!u~ û2u!v1¯ , ~D1!

where j rs is the inverse of the observed information mat
j rs52 l rs . Iterating this procedure leads to an expression
( û2u) r that is solely in terms of the derivatives of the lik
lihood function

~ û2u!r5 j rsl s1
1
2 j rs j tuj vwl stvl ul w1 1

6 j rs j tuj vwj xy~ l suyw

13l swpj
pql quy!l tl vl x1¯ . ~D2!

The difficulty with this expression is thatj rs is not well
defined for all likelihood functions and all values ofû. This
problem is circumvented by expandingj rs in terms of well-
defined quantities. First, note that

j5 i$I2 i21~ i2 j !%, ~D3!

whereI is the identity matrix. The inverse is then

j215$I2 i21~ i2 j !%21 i21. ~D4!

which can be expanded as

j215 i211 i21~ i2 j !i211 i21~ i2 j !i21~ i2 j !i211¯ ,
~D5!

or equivalently as

j rs5 i rs1 i rt i suHtu1 i rt i sui vwHtvHuw1¯ , ~D6!

where HR5 l R2vR for any set of coordinate indicesR
5r 1 ...r m , where, for example,Htu5 l tu2v tu . Inserting Eq.
~D6! into Eq. ~D2! then leads to Eq.~2!.
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