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Analytic expressions for the first order bias and second order covariance of a maximum-likelihood
estimate~MLE! are applied to the problem of localizing an acoustic source in range and depth in a
shallow water waveguide with a vertical hydrophone array. These expressions are then used to
determinenecessaryconditions on sample size, or equivalently signal-to-noise ratio~SNR!, for the
localization MLE to become asymptotically unbiased and attain minimum variance as expressed by
the Cramer–Rao lower bound~CRLB!. These analytic expressions can be applied in a similar
fashion to any ocean-acoustic inverse problem involving random data. Both deterministic and
completely randomized signals embedded in independent and additive waveguide noise are
investigated. As the energy ratio of received signal to additive noise~SANR! descends to the lower
operational range of a typical passive localization system, source range and depth estimates exhibit
significant biases and have variances that can exceed the CRLB by orders of magnitude. The spatial
structure of the bias suggests that acoustic range and depth estimates tend to converge around
particular range and depth cells for moderate SANR values. ©2002 Acoustical Society of
America. @DOI: 10.1121/1.1496765#

PACS numbers: 43.30.Wi, 43.60.Rw, 43.60.Gk@DLB#
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I. INTRODUCTION

In recent years, many acoustic techniques have b
developed to probe the marine environment. These te
niques typically require the nonlinear inversion of acous
field data measured by a hydrophone array.1–3 The data,
however, are often randomized by the addition of natu
ambient noise, or by fluctuations in the acoustic sour
waveguide refractive index, and waveguide boundar
Since the nonlinear inversion of random data often yie
estimates with biases and mean-square errors that are
cult to quantify, it has become popular to simply negle
these potential biases and to compute limiting bounds on
mean-square error, since the bounds are usually much e
to obtain than the actual mean-square errors. The m
widely used limiting bound is the Cramer–Rao lower bou
~CRLB!,4 which describes the minimum possible variance
any unbiased estimator, and has been introduced in the o
acoustic source localization literature via Refs. 5 and 6,
example. Other bounds, however, also exist in
literature,7–11 that are not directly relevant to the prese
work.

The purpose of the present paper is not to apply a n
general bound, but to demonstrate how the asymptotic p
erties of the maximum likelihood estimate~MLE! described
in a companion paper12 can be used to better understand t
statistical errors and biases that occur in a typical oc
acoustic inverse problem. The MLE has a straightforw
implementation. It is obtained by maximizing the likelihoo
function with respect to the parameter vector to be estima
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where the likelihood function is the conditional probabili
density of the data, given the unknown parameter vec
evaluated at the measured data values. The MLE is wid
used in statistics, because if an estimator becomes asymp
cally unbiased and attains the CRLB for large sample si
or high signal-to-noise ratio~SNR!, it is guaranteed to be the
MLE.4 It follows that an analysis of the conditions necessa
for a MLE to become unbiased and attain minimum
variance, and thus optimal performance, will also reveal
conditions necessary foranynonlinear estimate to asymptot
cally achieve optimal performance.

In ocean-acoustic inverse problems, the likelihood fun
tion can be maximized by an exhaustive or directed sea
via forward modeling with numerical wave propagatio
or scattering algorithms. While the linear least squares e
mator is also a widely used inversion scheme in acous
and geophysics,13 it is only identical to the MLE when the
data and parameter vectors are linearly related, and when
data are uncorrelated, follow a multivariate Gauss
distribution, and share the same variance.14 Since these con-
ditions are often not satisfied in practice, the linear le
squares estimator is often suboptimal even in the asymp
regime of high SNR, making the MLE a preferab
choice.

The present application concerns the classic oce
acoustic inverse problem of localizing a source in range
depth in a shallow water waveguide, using data received o
vertical hydrophone array,3 also known as the ‘‘matched-field
12(5)/1890/21/$19.00 © 2002 Acoustical Society of America
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processing’’~MFP! source localization problem.2,16 @There
are differences between some standard matched
processors and the MLE that have sometimes gone unno
in the MFP literature. For example, the ‘‘minimum-varian
distortionless response~MVDR! processor,’’ which is
presented as a MLE in Refs. 3 and 5, is neither a minimu
variance estimator nor the MLE for range and depth loc
ization in a waveguide, as discussed by Sullivan a
Middleton.15 The MVDR processor is a MLE, howeve
for the particular problem of estimating the complex amp
tude of a plane wave arriving from aknown direction,
in independent additive Gaussian noise.# Here the theory
presented in the companion paper12 is used to set condition
on the sample size and SNRnecessaryfor the MLE to be-
come asymptotically unbiased and attain the CRLB in M
source localization. These conditions can also be use
experimental design and analyses to ensure that statis
biases and errors are maintained within tolerable lim
set by the given scientific or engineering objective. The
proach follows that given in Ref. 12 and is based on the f
that the MLE can be expanded as an asymptotic serie
inverse orders of sample size17 or equivalently an appropri
ately defined SNR. From this series, analytic expressions
the first order bias and second order error correlation o
general MLE can be found in terms of the joint moments
parameter derivatives of the log-likelihood function.12 Since
the first order error correlation is the CRLB, which is on
valid for unbiased estimates, the second order error corr
tion can provide a better estimate of the MLE mean-squ
error that is applicable at relatively low SNR, even when
MLE is biased to first order. Necessary conditions
asymptotic optimality of the MLE are then obtained by de
onstrating when the first order bias becomes negligible c
pared to the true value of the parameter, and when the se
order error correlation becomes negligible compared to
CRLB.12

In this paper the localization performance of the ML
for both deterministic and randomized monopole sign
embedded in independent, additive waveguide noise
analyzed. As the energy ratio of received signal to addit
noise ~SANR! descends to the lower operational ran
of a typical passive localization system, the range a
depth MLE demonstrates significant bias and has a me
square error that exceeds the CRLB by orders
magnitude.

II. ASYMPTOTIC STATISTICS

A. Preliminary definitions

Following the theory and notation adopted in paper12

let the random data vectorX, givenm-dimensional paramete
vector u, obey the conditional probability density functio
~PDF! p(X;u). The log-likelihood functionl (u) is then de-
fined asl (u)5 ln(p(X;u)), when evaluated at the measur
values ofX. The first-order parameter derivative of the lo
likelihood function is then defined asl r5] l (u)/]u r , where
u r is ther th component ofu. Moments of the log-likelihood
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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derivatives are defined byvR[E@ l R#, whereR is an arbitrary

set of indices. IfR15r 11... r 1n1
,..., Rm5r m1 ... r mnm

are

sets of coordinate indices in the parameter space, joint
ments of the log-likelihood derivatives can be defined
vR1 ,R2 ,...,RM

[E@ l R1
l R2

¯ l RM
#, where, for example,vs,tu

5E@ l sl tu# andva,b,c,de5E@ l al bl cl de#.
The expected information, known as the Fisher inform

tion, is defined asi rs5E@ l r l s#, for arbitrary indicesr,s.4 Lift-
ing the indices produces quantities that are defin
as17

vR1 ,R2 ,...,Rm5 i r 11s11i r 12s12̄ i r 1n1
s1n1i r 21s21i r 22s22̄ i r mnm

smnm

3vs11s12¯s1n1
,s21s22¯smnm

, ~1!

wherei rs5@ i21# rs . Here, as elsewhere, the Einstein summ
tion convention is used, so that whenever an index appea
both a superscript and subscript in a term, summation o
that index is implied. The Fisher information matrix,i, has
an inversei21, known as the Cramer–Rao lower boun
~CRLB!,4,14,18which is a lower bound on the minimum var
ance an unbiased estimator can attain.

B. General asymptotic expansions for the bias and
covariance of the MLE

With the notation presented in Sec. II A, the first-ord
bias of the MLE can be written as12,17

~2!

where the symbolOp(n2m) denotes a polynomial of exactl
ordern2m, wheren is the sample size. It is noteworthy tha
third derivatives of the log-likelihood function may be ne
essary to compute the first-order bias.

A necessarycondition for the MLE to become asymp
totically unbiased is for the first-order terms in Eq.~2! to
become much smaller than the true value of the param
u r . Equation~2! may then be used to determine the min
mum sample sizen necessary for the MLE to become effe
tively unbiased.

An expression for the asymptotic covariance of the ML
has been derived by Naftali and Makris in paper I,12 who
obtained the first two asymptotic orders of the MLE cova
ance as
1891Thode et al.: Maximum likelihood estimate bias
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The notationvbce,d, f ,s(n
2) indicates that in the joint momen

vbce,d, f ,s only polynomial terms of ordern2 are retained. The
first-order covariance term of this expansion is simply
CRLB, and the sum of the other 10 terms provides
second-order variance. The ratio of this sum to the first-or
variance~CRLB! is hereafter defined as the ‘‘second-to-fir
order variance ratio’’~SFOVR!, which is inversely propor-
tional to sample sizen. A necessary criterion for the MLE to
attain minimum variance is for this ratio to become neg
gible. Note that this is only anecessarycondition to attain
minimum variance, and not asufficientcondition, because
there is no guarantee that higher-order variance terms
glected in Eq.~3! will not exceed the second-order varian
for sufficiently smalln. For sufficiently largen, the series is
guaranteed to converge if a minimum variance and unbia
estimate exists. In many practical scenarios the neces
conditions specified here are also sufficient for establish
optimality.

C. Gaussian data, deterministic, and random signals

The general bias and variance expressions of Eqs.~2!
and~3! are now applied to the specific case of data that o
the conditional Gaussian probability density14

p~X;u!5
1

~2p!nN/2uC~u!un/2

3expH 2
1

2 (
j 51

n

~X j2m~u!!TC~u!21~X j

2m~u!!J . ~4!

HereX i is one ofn independent and identically distrib
uted N-dimensional real-valued data vectors, a
1892 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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X5@X1
T,X2

T,...,Xn
T#, C is the real-valued covariance matrix

and m is the real-valued mean of the real random data.
the present study of underwater localization,X i represents
the real and imaginary parts of the narrow-band acoustic d
collected across an array ofN/2 sensors around the give
harmonic-source frequency, and the parameter setu repre-
sents the range and depth of the acoustic source. The fac
the number of hydrophones is half the length of the d
vectorX i follows from the use of this real vector to describ
complex data as will be discussed in the next section.

In general both the data mean and covariance in Eq.~4!
are functions of the desired parameter setu, a situation that
makes evaluation of the joint moments in Eqs.~2! and ~3!
difficult. Two limiting cases, however, are of great practic
interest, since they describe a deterministic signal in addi
noise and a completely randomized signal in noise, resp
tively. In the deterministic scenario the covariance matrixC
is independent of the parameter vectoru, while the meanm
depends onu. In the randomized scenario the sample cov
rianceC depends onu and the data meanm is zero. For this
latter case the sample covariance of the data is thus a s
cient statistic that contains all information about the estim
tion parameters contained in the measured data.4,19

Deterministic signals are typically measured in the pr
ence of independent, additive noise in ocean acoustics. T
deterministic signals may arise from narrow-band sources
seagoing vessels, or from deployed tomographic source
narrow-band time series from such a combination of sig
and noise would have the formz(t)exp(i2pfct)1j(t), when
measured at a single omni-directional receiver, wherej(t) is
the independent, additive noise,z(t) is a deterministic enve-
lope, andf c is the carrier frequency. The additive noisej(t)
typically arises from a large number of independent sour
distributed over the sea surface.20 These noise sources ma
be generated by wind, wave interactions, or ocean-going
Thode et al.: Maximum likelihood estimate bias
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sels. Since the total noise field is the sum of large number
statistically independent contributions, it follows a Gauss
probability density, by virtue of the central limit theorem
The Gaussian probability density of Eq.~4! is then a valid
representation of a deterministic signal embedded in add
noise.

The second limiting case explored here is for a fu
randomized signal. A particular fully randomized Gauss
signal model that is very widely used and enjoys a lo
history in acoustics, optics, and radar is the circular comp
Gaussian random~CCGR! model.21 A scalar signal centered
around a carrier frequencyf c that obeys CCGR statistic
would have the formz(t)exp(i2pfct)1j(t), wherej(t) is the
independent, additive noise, and wherez(t) is an envelope
whose real and imaginary parts are independent Gaus
random variables with zero mean, and equal variance.
instantaneous intensity of this signal thus obeys an expo
tial probability density function~PDF!.22,23In the radar litera-
ture the Swerling II model for radar returns from a fluctu
ing target is equivalent to the CCGR model, since
instantaneous intensity received in that case also follows
exponential PDF.23,24 There are many physical mechanism
for generating ocean acoustic signals with CCGR propert
Various types of mechanical and propeller noise genera
by the complex source distribution of a ship or submar
generate incoherent source fluctuations that can be re
sented as a CCGR process in time. Even when the in
source signal is deterministic, natural disturbances in
waveguide, such as underwater turbulence or passing i
nal or gravity waves, lead to such randomness in the med
that the waveguide modes at the receiver can be treate
statistically independent entities. The total received fie
which is the weighted sum of these modes, can then be m
eled as a CCGR process in time. Randomized ocean aco
signals have been modeled with CCGR statistics since W
War II,22,25 and as a consequence the CCGR model has
come a standard assumption for analyses of M
performance.5,15,26,27

Once C and m have been obtained from either sign
model, the joint moments are evaluated and inserted
Eqs.~2! and~3!, to compute the asymptotic bias and cova
ance. The appropriate formulas for the joint moments
provided in Appendixes B and C in the companion pape12

for both deterministic and fully randomized signals, resp
tively.

III. WAVEGUIDE, SIGNAL AND NOISE MODELS

Four simple shallow-water ocean waveguide enviro
ments have been modeled to examine the effects of var
bottom composition and sound-speed profile on the bias
variance of a MLE for the location of an acoustic source

Figure 1 displays the selected array geometry, so
speed profiles, and bottom composition for each envir
ment. All simulations employ a 100 Hz monopole source
50 m depth, and a 10-element vertical array with 7.5 m sp
ing, in a 100 m deep range-independent waveguide.
shallowest element lies at 16.25 m depth, so that the arra
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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centered in the waveguide. The ocean bottom is a fluid h
space.

The first environment, case A, is a Pekeris wavegu
with a bottom sound speed of 1700 m/s, a density of 1.9 g
and an attenuation of 0.8 dB/wavelength, which are rep
sentative values for sandy environments.3 In case B, a silt
bottom is simulated, using a bottom speed of 1520 m/s, d
sity of 1.4 g/cc, and an attenuation of 0.3 dB/waveleng
Case C retains the sand bottom parameters, but us
downward-refracting water sound-speed profile, measu
during the Swellex-93 experiments28,29conducted off the San
Diego coast in 1993, under typical oceanic summer con
tions in temperate latitudes.29 Finally, case D illustrates the
effects of propagation through an upward-refracting sou
speed profile. The profile linearly decreases from 1500 m/
the ocean bottom to 1480 m/s at the surface.

For ranges greater than a few ocean depths, the G
function for the acoustic field received by themth hydro-
phone array element from a monopole source at horizo
ranger and depthz at angular frequencyv can be expressed
as a sum of normal modes3

g̃~zm,z,r ,v!5
ie2 ip/4

r~z!A8pr
(

l
C l~z!C l~zm!

eikl r

Akl

, ~5a!

where kl is the horizontal wave number of model with
modal amplitudeC l(z). Equation~5a! defines themth ele-
ment of the spatial vectorg̃ for m51,2,3,...,N/2, whereN/2

FIG. 1. Illustration of the ocean waveguide environments used in the pa
All cases employ a 100 m deep water column overlying a semi-infinite fl
half space, and a 10-element vertical array with 7.5 m spacing, with the
element positioned at 16.25 m depth. Cases A and B employ an isovel
water profile of 1500 m/s~Pekeris profile!. Case A uses geoacoustic param
eters representative of a sand bottom, while case B uses parameters
sentative of a silt bottom. Case C uses the sand bottom, and a downw
refracting water sound–speed profile to simulate summer condition
temperature latitudes. Case D is similar, except a linear upward-refrac
profile is used to represent an arctic scenario.
1893Thode et al.: Maximum likelihood estimate bias
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is the number of hydrophones in the receiving array. Fo
source with amplitudeAj (v), the j th sample or snapshot o
the received field measured across the entire hydrophon
ray is comprised of the components of both a complex sig
vector Aj (v)g̃ and an additive CCGR noise vectorh̃j such
that

X j5FRe~Aj~v!g̃!

Im~Aj~v!g̃!G1hj ~5b!

for j 51,2,3,...,n where

g5FRe~ g̃!

Im~ g̃!G , h j5FRe~h̃j !

Im~h̃j !
G , ~5c!

andX j are real vectors of lengthN. In the deterministic sig-
nal modelAj (v) is a constantA(v), for all j. In the random
signal model theAj (v) are independent and identically di
tributed CCGR variables that describe a stationary rand
process wherêAj (v)&50 and ^uAj (v)u2&5^uA(v)u2& for
j 51,2,3,...,n.

The portion of the covariance matrix due to additi
background noise for a single samplen51, or a single snap-
shot, of data across the vertical array is assumed to be
tially white, since this is typically what is measured in co
tinental shelf environments,

C̃additive5^h̃j h̃j
1&2^h̃j&^h̃j

1&5s2I , ~6!

where I is the identity matrix,s2 is the instantaneous var
ance of the additive noise on each hydrophone and th1
superscript represents a Hermitian transpose. Computa
using the spatially correlated Kuperman and Ingenito wa
guide noise model30 for the given environments are no
shown here, but produce results similar to those derived f
Eq. ~6! since the theory predicts weak spatial correlation.

In general, for a properly defined SNR, terms in Eqs.~2!
and~3! that are of ordern2m must also be of order SNR2m.
In the matched field processing literature, the signal to ad
tive noise ratio~SANR! is typically used, which is not nec
essarily the SNR nor is it necessarily proportional to
SNR. For a single sample,n51, we define the SANR as

SANR@1#zs ,r5
(u51

N/2 ^uA~v!u2&ug̃~zu ,zs,r ,v!u2

trace ~C̃additive!
~7!

which is a function of source ranger and depthz. For mul-
tiple independent and identically distributed samples in
deterministic signal model, SANR5nSANR@1#, for a given
source range and depth. Moreover, terms in Eqs.~2! and~3!
that are of ordern2m are also of order SANR2m when the
additive noise is zero-mean Gaussian and spatiallyuncorre-
lated, in the deterministic signal model, as shown in app
dix B. This is not the case when the noise is spatiallycorre-
lated. In the correlated case, terms in Eqs.~2! and ~3! must
be expanded in powers of a more generalized quantity
cannot simply be factored into the ratio of a signal term a
a noise term. The tenant that SANR and SNR should c
form to such a factorable ratio must be abandoned in
more generalized framework.
1894 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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For a completely randomized signal in additive nois
the SANR and SNR are not equal, however, for consiste
we still define SANR5nSANR@1# in this case. Consider, fo
example, the case of a scalar measurement of a random
signal with no additive noise. Here the SNR is independ
of signal intensity because the variance of an instantane
intensity measurement equals the square of the expecte
tensity. The SNR, which is the ratio of these two quantiti
is unity for an instantaneous intensity measurement.22 The
SANR of this same signal, however, is infinite, because
additive noise is present. More generally, for finite time me
surements of intensity, the SNR for a scalar measuremen
a completely randomized signal is defined as the ratio of
square of the expected intensity to the variance of this int
sity, as has been described in detail in Refs. 22 and 19. Un
such circumstances the SNR is then approximately equa
the number of independent samplesn in a measurement time
T where asymptotic convergence ton occurs forn@1. For
measurement times much greater than the coherence timtc

for fluctuations in the received field,n is well approximated
by T/tc .19,21,22The number of fluctuationsn is also equiva-
lent to the time-bandwidth product of the received sign
where the bandwidth of the fluctuating field is 1/tc in the
limit as T@tc .

For example, if a fast-Fourier transform~FFT! is applied
to a data segment from a completely randomized signa
durationT, the effective number of independent samplesn is
T times the signal bandwidth, which is another way of stat
that the signal is expected to fluctuaten times during the
measurement. IfT is much shorter than the coherence tim
tc of the random signal, then this measurement represen
single statistical sample wheren51.

While the SANR has traditionally been the quantity
practical interest in MFP, the difference between SANR a
SNR is important because a signal with high SANR mig
still have low SNR, due to signal-dependent fluctuations d
ing measurements with low time-bandwidth products. All t
randomized signal examples in this paper are computed
an instantaneous measurement, wheren51 and the SNR is
1. Measuring the data over longer periods leads to a lin
increase in the sample sizen if the signal is deterministic or
a nearly linear increase inn which is asymptotically linear
for n@1 if the signal can be described as a CCGR proce

Since SANR is a function of both source range a
depth, for consistency, we adopt the convention of setting
SANR@1# of the field across the array to unityfor a source
located at r51 km range and any depth zfor all simulations
presented in this paper. This implies that the SANR is ma
constant over source depth for any fixed range separa
between the source and receiver array by appropriately v
ing the source amplitude with source depth.

We define the complex meanm̃ and covarianceC̃ that
are related to the real meanm and covarianceC of Eq. ~4! by
the following expressions:14

m5FRe~m̃!

Im~m̃!G , C5
1

2 FRe~C̃! 2Im~C̃!

Im~C̃! Re~C̃!
G ~8!
Thode et al.: Maximum likelihood estimate bias
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which are valid under the assumption that the complex d
measured at each hydrophone follow a circularly comp
Gaussian random density21 when the mean is subtracted.

When modeling deterministic signals, the complex me
vector becomesm̃5A(v)g̃, and the complex covariance ma
trix C̃ is taken to beC̃additive, for a single samplen51.

When modeling randomized signals due to rand
source amplitudeAj (v), m̃ is set to zero, andC̃ is defined
for a single samplen51 as

C̃5^uA~v!u2&g̃g̃11C̃additive. ~9!

It is noteworthy thatC̃21 becomes singular when the add
tive noise vanishes in the random signal model given by
~9! when g̃ is not a scalar. For sufficiently high SANR, th
error in estimating range and depth fromnonscalarmeasure-
ments of a randomized signal then approaches zero as
additive noise approaches zero, as is shown in Appendi
If the signal randomness is due to fluctuations in the wa
guide rather than at the source, Eq.~9! is not an appropriate
model. A more appropriate model would replaceg̃g̃1 in Eq.
~9! with a diagonal matrix that has the same diagonal e
ments asg̃g̃1, as might arise from equipartion of modes in
fully saturated waveguide.19,22This random signal model du
to waveguide fluctuations would be well defined even in
absence of additive noise.

Note that the definition presented in Eq.~7! does not
account for potential improvements in the SANR from arr
gain, which is 10 log(N/2) for the ideal case of a plane wav
signal embedded in spatially uncorrelated white noise. T
10-element array modeled here could then have an ‘‘ar
gain-augmented SANR’’ that is up to 10 dB greater than t
indicated by Eq.~7! for the given array. For this reason,
will sometimes be necessary to distinguish the SANR of
~7! as ‘‘input SANR’’ as opposed to ‘‘array-gain-augmente
SANR.’’

In the given signal models, evaluation of Eqs.~2! and
~3! requires knowledge of the higher-order derivatives og
with respect to parametersr andz. The normal-mode depth
derivatives must be computed to obtain the Green func
depth derivatives. Since numerical differentiation of t
modes can lead to instabilities, the modes at a given so
depth are decomposed instead into upward and downw
propagating plane waves, so that depth derivatives can
derived by analytic differentiation. This procedure is d
cussed in detail in Appendix A.

If source amplitude is sought as well as source positi
a three-dimensional parameter estimation problem mus
solved. However, as shown in Appendix B, the addition
uncertainties introduced by estimating the source amplit
do not noticeably affect the localization performance of
ther deterministic or randomized signals. One reason be
this is that the source amplitude parameterA(v) for the stan-
dard monopole source assumed in MFP3,5,28 is linearly re-
lated to the measured data, which in this case is the com
pressure field across the array. Because the second-orde
rivative of the measurement with respect to amplitude
zero, many of the higher-order joint moments that appea
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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Eq. ~2! and Eq.~3! are zero, and those that remain do n
noticeably alter the localization estimates, as illustrated
the Appendix B figures.

IV. ILLUSTRATIVE EXAMPLES

The asymptotic biases and variances depend on
source signal characteristics, measurement geometry, SA
and SNR, and surrounding propagation environment. To
late and illustrate these contributions, a number of simu
tions are performed. First, the source level and source d
are held fixed, and the first-order bias and second-order v
ance are computed as a function of source-receiver rang
various waveguide environments, using both determini
and randomized signals. Localization estimates are show
degrade rapidly as~10 log of! the array-gain augmente
SANR descends below 0 dB.~When SANR or SNR are dis
cussed in decibels, 10 log of SANR is assumed.! Next, the
minimum sample size necessary for the MLE to attain
CRLB is computed. A fundamental difference between
sample size requirements for randomized and determin

FIG. 2. Deterministic ocean acoustic localization MLE performance for~a!
range estimation and~b! depth estimation versus source range, for a 100
source placed at 50 m depth in the case A environment, a Pekeris wave
with a sand bottom. The first-order bias magnitude~solid line!, the square
root of the Cramer–Rao lower bound~circles!, the square root of the
second-order variance~crosses!, and the average input signal-to-additiv
noise ratio~SANR, dashed–dotted line! into the array are shown. Note tha
the input SANR plotted here does not incorporate array gain effects.
quantities are expressed in units of meters, except for the SANR, whic
plotted in dB units. The background noise level has been scaled so tha
input SANR is 0 dB at 1 km source range. Whenever the second-o
variance attains roughly 10% of the CRLB, the total variance of the estim
will not attain the CRLB.
1895Thode et al.: Maximum likelihood estimate bias
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signals is demonstrated. Finally, the spatial structures of
asymptotic bias and variance are investigated. It is sho
that range and depth estimates tend to be biased toward
tain waveguide locations as the array-gain augmented SA
falls below 0 dB.

In all cases where the deterministic signal model is us
the bias and variance terms are plotted as a function
SANR5nSANR@1#, since these terms are all proportional
SANR2m, as shown in Appendix B, wherem is the integer
order of the term, i.e.,m is either 1 or 2 in the illustrative
examples. In all cases where the random signal mode
used, the bias and variance terms are plotted as a functio
SANR@1#, since these terms depend onn and SANR@1# in
different ways, as discussed in Appendix B. Since in both
deterministic and random signal models, the bias and v
ance terms always depend onn2m, wherem is the integer
order of the term, all one must do to obtain a result
arbitraryn in any of these figures is to shift the curve acco
ing to the powerm of the term involved and the value ofn
desired for a given SANR@1#.

A. Localization performance versus range and
waveguide environment

The magnitude of the first-order bias, the CRLB, a
second-order variance typically follow an increasing tre
as a function of source range in Figs. 2–11, where the so
depth is fixed at 50 m, the frequency is 100 Hz, and
sample size is unity,n51. The input SANR for the deter
ministic signal examples and SANR@1# for the random sig-
nal examples, computed from Eq.~7!, are shown as a

FIG. 3. Same as Fig. 2, recomputed for a single sample (n51) of a com-
pletely randomized signal.
1896 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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FIG. 4. Same as Fig. 2, except the deterministic source signal now rad
at 200 Hz.

FIG. 5. Same as Fig. 3, except the randomized source signal now radia
200 Hz center frequency.
Thode et al.: Maximum likelihood estimate bias
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FIG. 6. Deterministic ocean acoustic localization MLE performance for~a!
range estimation and~b! depth estimation versus source range, for a 100
signal placed at 50 m depth in the case B environment, a Pekeris wave
with a silt bottom. See Fig. 2 caption for plot descriptions.

FIG. 7. Same as Fig. 6, recomputed for a single sample of a comple
randomized signal.
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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FIG. 8. Deterministic ocean acoustic localization MLE performance for~a!
range estimation and~b! depth estimation versus source range, for a 100
signal placed at 50 m depth in the case C environment, which consists
downward-refracting profile over a sand bottom. See Fig. 2 caption for
descriptions.

FIG. 9. Same as Fig. 8, recomputed for a single sample of a comple
randomized signal.
1897Thode et al.: Maximum likelihood estimate bias
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dashed–dotted line plotted relative to the right vertical ax
In all figures the source level has been adjusted so
SANR or SANR@1# at 1 km is 0 dB. Note that it is the squar
root of the CRLB and the second-order variance that
been plotted in the figures.

Figures 2 and 3 show the results of propagation thro
the case A environment, which consists of an isoveloc
sound speed profile over a sandy bottom. The random
signal MLE biases are much larger than those from
equivalent deterministic signal and the degradation in
range estimation performance is especially notable. H
dreds to thousands of data samples are required to reduc
randomized bias to less than 10 m at 20 km range. At ran
less than 6 km, when the input SANR is greater than210
dB, the range biases are negligible for deterministic sign
less than 1 m, but roughly 10 times more significant, 10
for randomized signals with SANR@1# greater than210 dB
at ranges of 6 km or less. For deterministic signals, as
input SANR descends below210 dB, the bias magnitude
increases by an order of magnitude, so that at 20 km ra
where the input SANR drops to219 dB, the asymptotic
range and depth biases reach maxima of 1 and 30 m, res
tively. The corresponding maxima for the randomized sig
biases are 8000 m and 800 m, for a 20 km range sou
Even at a typical operational range of 6 km, where the arr
gain augmented SANR@1# is roughly 0 dB, the randomized
signal localization biases are greater than 10 m.

A similar pattern is evident for the second-order va

FIG. 10. Deterministic single-sample ocean acoustic localization MLE p
formance for~a! range estimation and~b! depth estimation versus sourc
range, for a 100 Hz signal placed at 50 m depth in the case D environm
which consists of an upward-refracting profile over a sand bottom. See
2 caption for plot descriptions.
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ance. As the input SANR descends below210 dB, the
second-order variance magnitude grows much more rap
than the CRLB magnitude, for both signal types. Beyond
km range the second-order localization variances of the
terministic signal equal or exceed those of the CRLB. F
randomized signals, the second-order localization varian
are even greater, exceeding the CRLB by nearly two ord
of magnitude at 6 km range. In both cases the CRLB und
estimates the true parameter variance, and tens to thous
of data samples are required to make the second to first-o
variance ratio~SFOVR! negligible, and so have the MLE
asymptotically attain minimum variance.

Figures 4 and 5 show the results of using a 200
signal to estimate source position in the case A environm
One might expect the greater number of available propa
ing modes to improve the MLE localization performanc
Indeed, the localization bias magnitude for both signal typ
decreases slightly. Doubling the frequency also reduces
range and depth second-order variance terms by factors
for both signal types. However, the deterministic CRLB
also reduced by a similar factor. Therefore, while the loc
ization variance decreases with increasing frequency,
SFOVR remains unaffected, so there is no reduction in
number of deterministic data samples required to attain
CRLB. In contrast, the randomized signal SFOVR does
crease with increasing frequency.

Figures 6 and 7 show the effects of a different botto
composition, in this case, silt, on the localization perfo
mance, using the original 100 Hz source. The localizat
performance has worsened noticeably relative to that of
sand bottom, due to the absence of higher-order modes.

r-

nt,
ig.

FIG. 11. Same as Fig. 10, recomputed for a single sample of a comple
randomized signal.
Thode et al.: Maximum likelihood estimate bias
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example, the deterministic depth bias exceeds the 10
waveguide depth beyond 9 km range, whereas for a sig
propagating over a sand bottom, the bias is less than 10
out to 20 km range. The randomized depth bias exceeds
waveguide depth beyond 5 km range in the silt environme
compared with 12–14 km for the sand environment. Even
typical operational ranges of a few kilometers, randomiz
signals received with an array-gain augmented SANR@1# of 0
dB will have range and depth biases on the order of ten
meters.

Figures 8–11 illustrate the effects of including the mo
complex sound speed profiles of cases C and D. A comp
son between these figures and Figs. 2 and 3 suggests th
variations in the sound speed profile illustrated in Fig. 1 ha
relatively minor effects on localization performance, as co
pared with changes in bottom composition.

B. Minimum sample size necessary to attain CRLB

Figures 12–15 show the minimum sample sizes nec
sary for the second-to-first-order variance ratio~SFOVR! to
be less than 0.1. We take this as a necessary condition fo
MLE estimate to approximately attain the CRLB in th
asymptotic regime. For convenience a necessary minim

FIG. 12. Minimum independent data sample size~MSS! necessary for a
deterministic ocean acoustic MLE to effectively attain the CRLB. The M
is defined in Eq.~13! as the minimum sample size necessary for the seco
order variance to be reduced to 10% of the CRLB. The MSS is plotted
~a! range estimation and~b! depth estimation versus source range and sou
level, for the case A environment. The 100 Hz source is located at 5
depth. Values less than 1 indicate that a single data sample is sufficie
attain the CRLB.
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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sample size~MSS! is defined here as 10 times the ratio of t
second-to-first order variance for a single sample. In ot
words, if var1(n) represents the first-order variance term
Eq. ~3!, derived fromn samples, and var2(n) represents the
sum of all the second-order terms, also derived fromn
samples, then our necessary criterion becomes

var2~n!

var1~n!
5

var2~1!

n var1~1!
<0.1, ~10a!

where

MSS510
var2~1!

var1~1!
. ~10b!

A single sample is sufficient to achieve the CRLB, for MS
values less than or equal to unity. The required MSS
been plotted as a function of range for the case A envir
ment in Figs. 12 and 13, for both deterministic and rando
ized signals. For a deterministic signal with an input SAN
of 0 dB at 1 km, as modeled in Fig. 2, an MSS of 20
necessary to attain the CRLB at a range of 10 km and a d
of 50 m. If the input SANR increases by a factor of 10~10
dB!, only two samples would be required to attain the det
ministic CRLB, since MSS is inversely related to SNR@1#
and SANR@1# for deterministic signals, as discussed in A
pendix B.

The randomized signal results in Fig. 13 display so
fundamental differences from their deterministic count

-
r
e
m
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FIG. 13. Same as Fig. 12, recomputed for a completely randomized sig
1899Thode et al.: Maximum likelihood estimate bias



ha
le
L

pu
n

e
1
o
e
ro
el
n

n
en
al
fo
nd
a
te
l

ce
LB

stic
III,
a 1
res
zed

for
ith
hly
to
rce
nd-
17
en-
und-
nal
d to

t lo-
nd
bi-

th,
Hz
ign
km.
the
e

rm
B

nal.
parts. First, the randomized MSS is always much larger t
those required for deterministic signals. For examp
roughly 1000 data samples are required to attain the CR
at 10 km range and 50 m depth, for a signal with an in
SANR@1# of 0 dB at 1 km range. The randomized MSS eve
tually plateaus to approximately 10 as the SANR@1# in-
creases. Indeed, the MSS uniformly converges to a valu
10 at all ranges, as the SANR@1# increases past 20 dB at
km range. In other words, the second-order variance c
verges to the same magnitude as the first-order varianc
large SANR@1# values. When the additive noise term is ze
and N/2.1, however, the random signal model is not w
defined as is discussed in Appendix B since the covaria
given in Eq.~9! is no longer invertible.

Figures 14 and 15 show the MSS for deterministic a
randomized signals, respectively, in the case B environm
a Pekeris waveguide with a silt bottom. While the MSS v
ues are generally much greater than the values obtained
signal propagating over a sand bottom, the overall tre
visible in the MSS are the same as observed for the s
bottom. The deterministic signal MSS follows the expec
inverse relationship with SNR@1#, and the randomized signa
MSS asymptotically approaches 10 as the input SANR@1#
becomes large, converging SNR@1# to 0 dB.

C. Effect of source depth on localization performance

Another factor that influences localization performan
is the source depth. Figures 16 and 17 illustrate the CR

FIG. 14. Minimum independent data sample size necessary for a dete
istic ocean acoustic MLE to effectively attain the CRLB for the case
environment. All other parameters remain unchanged from Fig. 12.
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bias magnitude, bias sign, and the MSS for a determini
signal in the case A environment. As discussed in Sec.
the noise matrix has been rescaled so that SANR from
km range source will be 0 dB for every source depth. Figu
18 and 19 show the corresponding results for randomi
signals in terms of SANR@1#.

The general features of the contour plots are similar
both signal types. As SANR follows a decreasing trend w
range, both the CRLB and MSS increase together in a hig
correlated fashion. Locations with a large CRLB also tend
require a large MSS to attain the bound. For a given sou
range in this environment, the waveguide center and bou
aries tend to produce the lowest CRLB and MSS. In Fig.
only the depth bias displays any significant depth dep
dence, where it increases sharply near the waveguide bo
aries. An examination of the depth bias sign of both sig
types reveals that the large biases at the boundaries ten
shift the estimates toward the waveguide center, so tha
calizations near the surface will be positively biased, a
localizations near the ocean bottom will be negatively
ased.

The depth bias shows other sign reversals with dep
for both deterministic and randomized signals. The 100
signal in the case A environment generates 11 distinct s
reversals over the waveguide depth, out to ranges of 5
Beyond this range the bias sign structure dissipates as
input SANR falls below210 dB. The consequence of thes

in-FIG. 15. Same as Fig. 14, recomputed for a completely randomized sig
Thode et al.: Maximum likelihood estimate bias
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FIG. 16. Contour plots of~a! deter-
ministic range CRLB,~b! determinis-
tic depth CRLB,~c! minimum sample
size required for a deterministic rang
estimate to attain the CRLB, and~d!
minimum sample size required for a
deterministic depth estimate to attai
the CRLB. The 100 Hz acoustic
source has been placed in the case
environment, and the received SANR
at 1 km source range is 0 dB at a
source depths, as described in Sec. I
All quantities are expressed in term
of dB units, and the contour interval is
5 dB re 1 m.
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depth patterns is that MLE depth estimates will have a t
dency to converge toward depths where the bias s
switches from positive to negative, with increasing depth.
terms of the contour plot, these regions lie wherever a bl
~positive bias! layer overlies a white~negative bias! layer.
The range bias sign also shows alternating patterns indica
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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of range convergence, particularly at the waveguide m
depth.

These spatial effects are more dramatic when an e
ronment with fewer propagating modes is analyzed. Figu
20–23 illustrate the results of applying the same asympt
bias and variance computations to the case B environm
e
6.

s
e

FIG. 17. Contour plots of~a! deter-
ministic range bias magnitude,~b! de-
terministic depth bias magnitude,~c!
deterministic range bias sign, and~d!
deterministic depth bias sign, for th
same scenario described in Fig. 1
The top row is in dB units, with a con-
tour interval of 10 dBre 1 m. The bot-
tom row displays positive values a
black, negative values as white. Not
the horizontal layers of alternating
sign in the depth bias sign plot.
1901Thode et al.: Maximum likelihood estimate bias
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FIG. 18. Same as Fig. 16, recompute
for a completely randomized sourc
signal. The contour interval is 10 dB.
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characterized by a silt bottom. In both propagation envir
ments depth localizations near the waveguide bounda
lead to the best performance, in terms of both the CRLB
MSS. For the silt case, the CRLB and MSS reach th
maxima at the waveguide midpoint. The localization bia
clearly display strong tendencies to converge at cer
1902 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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ranges and depths. For example, deterministic signal lo
izations will tend to converge toward the waveguide m
depth and toward range cells evenly separated 2.5 km a
which is the modal interference length between the t
propagating modes in the system. The randomized signa
calizations display similar features.
d
e

,

FIG. 19. Same as Fig. 17, recompute
for a completely randomized sourc
signal. The contour interval for the top
row is 10 dBre 1 m, and the bottom
row displays positive values as black
negative values as white.
Thode et al.: Maximum likelihood estimate bias
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FIG. 20. Same as Fig. 16, but recom
puted for a deterministic signal propa
gating through the case B environ
ment. The contour interval is 5 dB.
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V. DISCUSSION

It is convenient to frame the discussion in terms
SANR, starting in the high SANR regime. The results p
sented in Figs. 2–23 have been computed using a 10 ele
array. As indicated above, an increase in the number of a
elements used to perform the inversion is expected to lea
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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a reduction in the biases and variances presented here, d
the effects of array gain. In the presence of spatially unc
related white noise, anN/2-element array increases the arra
gain augmented SANR by 10 log(N/2) over the input SANR
defined in Eq.~7!. Since the bias and variance have be
shown to be primarily functions of the signal SNR, the
-
-
-

,

FIG. 21. Same as Fig. 17, but recom
puted for a deterministic signal propa
gating through the case B environ
ment. The contour interval for the top
row is 10 dBre 1 m, and the bottom
row displays positive values as black
negative values as white.
1903Thode et al.: Maximum likelihood estimate bias
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FIG. 22. Same as Fig. 16, but recom
puted for a completely randomized
signal propagating through the case
environment. The contour interval is
10 dB.
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quantities decrease with increasing array gain. For exam
a 10-fold increase in the number of hydrophone element
expected to generate a 10-fold decrease in the determin
bias and MSS, provided that the background noise cov
ance has similar characteristics to uncorrelated white no

Estimates extracted from deterministic signals can at
1904 J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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the CRLB with a single sample or snapshot of the fie
across the array, for sufficiently high SANR values, as Fi
12 and 14 attest. In other words, at high SANR levels
second-order variance computed from Eq.~3! is negligible
relative to the first-order variance, even whenn51. How-
ever, Figs. 13 and 15 illustrate how the situation for ra
-

B
r

s

FIG. 23. Same as Fig. 17, but recom
puted for a completely randomized
signal propagating through the case
environment. The contour interval fo
the top row is 10 dBre 1 m, and the
bottom row displays positive values a
black, negative values as white.
Thode et al.: Maximum likelihood estimate bias
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domly fluctuating signals is more complex, in that estima
derived from these signals do not attain minimum varian
unless at least 10 data samples are used to construc
estimate. The reason behind this limitation is outlined in S
III, where the difference between the SANR, SANR@1# and
the SNR of a measurement is discussed.

For example, Figs. 12 and 14 show that as the in
SANR of a deterministic signal descends below210 dB, the
magnitude of the second-order variance begins to exceed
CRLB, so a deterministic estimate derived from a single d
sample fails to attain the CRLB. As stated earlier, a210 dB
input SANR across a 10-element array yields an approxim
array-gain augmented SANR of 0 dB.

For every 10 dB decrease in SANR, the determinis
SFOVR increases by an order of magnitude, resulting i
10-fold increase in the MSS. This inverse relationship
tween the MSS and SANR@1# is a consequence of the fa
that given spatially white noise in the deterministic sign
model SNR5SANR5nSANR@1#, as discussed in Sec. III
The MSS itself is relatively insensitive to changes in sou
frequency, sound–speed profile, and even bottom comp
tion, for the cases investigated. For example, a 6 kmrange
source in a sandy environment yields the same input SA
~210 dB! as a 4 kmrange source in a silt environmen
Examination of Figs. 12 and 14 show that the MSS is
same for both situations, suggesting that the determin
signal results presented here can be used to guide analy
other propagation environments and array geometries, if
transmission loss curves are known.

No simple relationship between SANR@1# and MSS ex-
ists for randomized signals, because the SANR is not pro
tional to SNR in this case. As Figs. 13 and 15 demonstr
the SFOVR, and thus the MSS, are nonlinearly related
SANR@1# and are very sensitive to propagation effects. E
vironments dominated by only a few propagating modes
particular, seem to create situations where the SFOVR
MSS can change by an order of magnitude with only a sm
change in source range. However, at high SANR@1# levels
the MSS asymptotically approaches a value of 10 at
ranges and for all environments investigated, which seem
imply that for n51 the CRLB cannot be attained for larg
SANR@1#. Our analysis indicates that this is only the ca
when N

251 because for more than one receiver the er
tends to zero for large SANR@1# as is discussed in Appendi
B. This asymptote is due to the fact that with our definiti
of SANR@1#, in the random signal model terms in Eqs.~2!
and~3! that are of ordern2m are not necessarily also of orde
SANR@1#2m. Both 1st and 2nd order terms may then a
praoch zero with the same power law in SANR@1#.

As the array-gain augmented SANR descends belo
dB the localization biases are no longer negligible for eit
signal type. The spatial distribution of the bias sign reve
that the maximum-likelihood localization estimates tend
converge toward particular ranges and depths at low SA
The exact convergence locations depend on the propag
environment; however, the localizations are generally bia
away from the waveguide boundaries.
J. Acoust. Soc. Am., Vol. 112, No. 5, Pt. 1, Nov. 2002
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In some sense, the results provided here are still optim
tic, as the ocean environment has been assumed perf
characterized. In most practical situations, the waveguide
rameters are insufficiently known, and this environmen
uncertainty will further degrade the localization perfo
mance. The effects of this environmental uncertainty can
incorporated into Eqs.~2! and~3! by adding geoacoustic pa
rameters to the parameter vectoru, and then computing de
rivatives of Eq.~5! with respect to these parameters. Th
differentiation may be accomplished either via numeri
methods or by perturbation theory.31

VI. CONCLUSION

Asymptotic expressions for the first-order bias a
second-order variance of a MLE have been applied to
problem of localizing an acoustic source in an ocean wa
guide, for the cases of deterministic and randomized sign
received with independent and additive background no
The results suggest that as the array-gain augmented si
to-additive noise ratio~SANR! at the array output descend
below 0 dB, the MLE exhibits significant biases and va
ances that can exceed the CRLB by orders of magnitude.
localization biases tend to concentrate the estimates aro
particular source ranges and depths for moderate SANR
ues.

In principle, if enough data samples are available, un
ased estimates can be derived from low SANR signals. H
ever, if the acoustic source is changing position with time,
is usually the case, the number of independent data sam
available to construct a localization estimate is limited, b
cause the estimation parameters themselves are chan
with time. Therefore, under many practical operational s
narios, localization estimates are expected to be significa
biased, and the CRLB will underestimate the true varian
by orders of magnitude.
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APPENDIX A: ANALYTICAL DERIVATIVES OF MODES
USING PLANE-WAVE DECOMPOSITION

The moments presented in Appendixes B and C in pa
I12 require expressions for multiple-order depth derivativ
of the waveguide normal modes. These are achieved by
composing an individual mode into an upward and dow
ward propagating plane wave at the desired source de
Suppose that the values of modeCm at depthsz and z1H
are known, whereH is a small depth increment. Assumin
that the sound–speed is constant between the two depths
coefficients of the upgoing and downgoing plane waves c
necting the two points are obtained by a matrix equation

F Cm~z!

Cm~z1H !G5F 1 1

eikm,zH e2 ikm,zHG FA1

A2G , ~A1!

wherekm,z5Ak22kr ,m
2 is the vertical modal wave numbe

The above matrix is easily inverted to solve for the coe
1905Thode et al.: Maximum likelihood estimate bias
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cient vectorA. The modal derivatives with respect to dep
can then be written in terms ofA:

Uz5F Cm8 ~z!

Cm8 ~z1H !G
5F ikm,z 2 ikm,z

ikm,ze
ikm,zH 2 ikm,ze

2 ikm,zHG FA1

A2G
[D1A. ~A2!

Second and third-order derivatives can be computed by
fining matricesD2 andD3 :

Uzz5D2A, Di j ,25@Di j ,1#
2,

~A3!Uzzz5D3A, Di j ,35@Di j ,1#
3.

Use of Eqs.~A1!–~A3! allows computation of the moda
derivatives using only the values of the modes at fix
points, without having to recourse to numerical different
tion.

APPENDIX B: THE EFFECT OF THE SANR AND
SOURCE AMPLITUDE ESTIMATION ON
LOCALIZATION PERFORMANCE

It is demonstrated here that the addition of the modu
of source amplitudea5uA(v)u for the deterministic signa

FIG. 24. Deterministic signal single-sample (n51) ocean acoustic MLE
performance for~a! amplitudeA, ~b! range, and~c! depth estimation versus
source range, for a 100 Hz signal placed at 50 m depth in the cas
environment, a Pekeris waveguide with a sand bottom. The true so
amplitudeA is 1. A comparison of these results with Fig. 2 shows that
addition of amplitude as an estimation parameter has negligible effect o
MLE localization performance.
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model and source powerI a5^uA(v)u2& for the randomized
signal model as a third estimation parameter in addition
source range and depth, has only a minor effect on local
tion performance. The bias and the variance terms are in
pendent ofa for the deterministic case andI a for the ran-
domized case, provided that the SANR@1# remains fixed.
Variations between two-parameter and three-parameter-
estimates of range and depth are negligible in our local
tion scenarios, as we show in the simulations presented in
Figs. 24 and 25. No new derivatives are required to ap
Eqs. ~2! and ~3! to the three-parameter estimation proble
since the source amplitude is linearly related to the data

We first present analysis for the deterministic scena
and then we discuss the completely randomized case.

1. Deterministic signal model

In the deterministic signal model, according to Eqs.~5a!,
~5b!, and ~8!, the expected complex vector field can be e
pressed as a real vector

m5aFcos~f!I 2sin~f!I

sin~f!I cos~f!I G FRe~ g̃~r ,z!!

Im~ g̃~r ,z!!G
5aVg~r ,z!, ~B1!

A
ce

he

FIG. 25. Random signal single-sample (n51) ocean acoustic MLE perfor-
mance for~a! amplitudeA, ~b! range, and~c! depth estimation versus sourc
range, for a 100 Hz signal placed at 50 m depth in the case A environm
a Pekeris waveguide with a sand bottom. The true source amplitudeA is 1.
A comparison of these results with Fig. 3 shows that the addition of am
tude as an estimation parameter has negligible effect on the MLE loca
tion performance.
Thode et al.: Maximum likelihood estimate bias
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where f is the phase ofA(v), V is a rotation matrix of
dimensionN, I is the identity matrix of dimensionN/2 and
g(r ,z) is formed with the real part and the imaginary part
g̃(r ,z). In our complex representation the source phase c
veniently scales out of the problem since the matrixV is
orthogonal (VTV51). It follows that mr5aVgr(r ,z), mz

5aVgz(r ,z), ma5Vg(r ,z), andmaa50, where in this Ap-
pendix only the subscriptsr, z, anda represent derivatives
with respect to range, depth, and source amplitude, res
tively. The noise covariance, according to Eqs.~6! and~8! is
a diagonal matrix whose trace is given by tr(Cadditive)
5s2(N/2). From Eqs.~2! and ~3!, Eqs. ~B6!–~B15!, and
Eqs. ~B18!–~B21!, we then observe that the first-order bi
and the CRLB are proportional to 1/SANR, where SAN
5SANR@n#5n(2mTm/Ns2)5n SANR@1#, while the
second-order variance is proportional to 1/SANR2. This
property explains the dependence of the curves in Figs
and 14 on SANR.

We first consider the problem of estimating two para
eters, amplitude and range, to illustrate the issues. We
extend the results to the three-parameter case of amplit
range, and depth.

From the Appendix of Ref. 12 and the definition abo
for the meanm, the Fisher information becomes

i 5SANR
N

2 F 1

a2

gTgr

agTg

gTgr

agTg

gr
Tgr

gTg

G ~B2!

from which the Cramer–Rao bound becomes

~B3!

While the CRLB for the source amplitude scales witha2, the
CRLB for range is independent ofa, for fixed SANR. For
range estimation, the square root of the CRLB, which rep
sents a first approximation to the error, becomes

ACRLB~r !5
1

AN

2
SANRUgr ,'

g U , ~B4!

where

ugr ,'u25gTggr
Tgr2~gr

Tg!2. ~B5!

As expected, the error decreases for increasing SANR. H
ever, in Eq.~B4! there is also a geometrical interpretatio
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the error is not controlled directly bygr
Tgr , but by the com-

ponent ofgr orthogonal tog.
A similar analysis is performed for the components

the bias when the tensors

vaaa50, ~B6!

vaar522n
gTgr

s2 , ~B7!

varr 52naS grr
T g

s2 12
gr

Tgr

s2 D , ~B8!

v rrr 523na2
grr

T gr

s2 , ~B9!

va,rr 5na
grr

T g

s2 , ~B10!

va,ra5n
gTgr

s2 , ~B11!

va,aa50, ~B12!

v r ,aa50, ~B13!

v r ,ra5na
gr

Tgr

s2 , ~B14!

v r ,rr 5n
grr

T gr

s2 , ~B15!

are substituted in~B2!. The first-order bias then becomes

Fba~1!

br~1! G5 1

SANRj
N

2

F Fagr
Tgr

gTgr
G S grr

T g22
~gr

Tg!2

gTg D

1FagTgr

gTg G S grr
T gr22

gr
Tggr

Tgr

gTg D G , ~B16!

wherej5gr
Tgr2@(gTgr)

2/gTg#. For fixed SANR, the range
bias br(1) is independent ofa while the amplitude bias is
proportional toa.

The analysis of the second-order covariance is simple
we express the terms of orderOp(n22) in Eq. ~3! as
1907Thode et al.: Maximum likelihood estimate bias



cov2~ i , j !52 i i j 2 i imi jni pq~vnq,m,p1vmq,n,p1vnmpq13vnq,pm12vnmp,q1 1
2vmpq,n1 1

2vnpq,m!

1 i imi jni pzi qt~ 1
2vnptvm,q,z1

1
2vmptvn,q,z1vnpmvqzt1

5
2vnpqvmzt

1vn,qzvmtp1vm,qzvntp12vnmtvqp,z13vnt,zvmpq13vnpqvmt,z1
1
2vn,mtvpqz

1 1
2vnt,mvpqz1vnq,zvpt,m1vmq,zvpt,n1vnq,mvpt,z1vmq,nvpt,z1vnq,pvmt,z!, ~B17!
e

e

n
o
e
w

a
s
ls
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on

tr

ar-
s.

e

be
wherei,j 5r , z or a and we use the explicit expression of th
tensors in~B3!–~B12! as well as the tensors

vmnpq5
n

s2 ~mmnp
T mq1mmnq

T mp1mnpq
T mm

1mmpq
T mn1mmn

T mpq1mmp
T mnq1mmq

T mnp!,

~B18!

vmnp,q5
n

s2 mmnp
T mq , ~B19!

vmn,pq5 i mni pq2
n

s2 mmn
T mpq , ~B20!

vmn,p,q52 i mni pq , ~B21!

where m, n, p, q are equal toa or r. We find that
cov2(a,a)}a2/SANR2 and cov2(r ,r )}1/SANR2, where}
meanslinearly proportional to. The second-order covarianc
for the range MLE is then independent ofa, while the
second-order amplitude variance scales witha2.

If we include depth as a third parameter, the bias a
variances of both range and depth will still only depend
SANR and not ona alone. For example, if we consider th
Fisher information matrix for the three-parameter case,
have

i 5SANR
N

2 3
1

a2

gTgr

agTg

gTgz

agTg

gTgr

agTg

gr
Tgr

gTg

gr
Tgz

gTg

gTgz

agTg

gr
Tgz

gTg

gz
Tgz

gTg

4 ~B22!

from which it can be inferred that CRLB(a,a)
}a2/SANR, CRLB(r ,r )}1/SANR, and CRLB(z,z)
}1/SANR.

The functional dependencies of these biases and v
ances on SANR, clearly differs from the two-parameter ca
A comparison of Fig. 2 and Fig. 24 for deterministic signa
and Fig. 3 with Fig. 25 for randomized signals, howev
shows that this difference is negligible for our estimati
scenarios.

2. Random signal model

For a randomized signal, the complex covariance ma
is given by

C̃5 s2K , ~B23!
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where

K5
I a

s2 g̃g̃11I ~B24!

and tr(I )5N/2. We define SANR@1#52I agTg/Ns2

5I ag̃1g̃/Ns2. Let us consider the properties ofC̃ and C̃21

as the additive noise vanishes. Note thatg̃g̃1 is a matrix that
projectsN/2-dimensional real vectors onto the subspace p
allel to g̃, annihilating the components in all other direction
If we introduce a unitary matrixQ that rotatesg̃ in the first
component of anN/2-dimensional complex vector space, w
can then writeC̃ as

C̃5QDQ1, ~B25!

where

D5I aug̃u2F 1 0

0

•

•

0 0

G1 s2F 1 0

1

•

•

0 1

G
5F I aug̃u21 s2 0

s2

•

•

0 s2

G , ~B26!

where ug̃u25g̃1g̃. From this expression the inverse can
written asC215QD21Q1, where

D2153
1

I augu21 s2 0

1

s2

•

•

0
1

s2

4 . ~B27!

Since the determinant ofC̃ is equal to the determinant ofD
which tends to zero in proportion tos2@(N/2)21# ass→0, the
rank of C̃ approaches unity ass→0. From~B26! and~B27!
Thode et al.: Maximum likelihood estimate bias
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we observe that fors50, in the scalar case, where one r
ceiver only is employed, the model remains well defin
because the data vector is one dimensional, butC̃21 does not
exist for N>2 because the determinant ofC̃ vanishes.

With the present definition of SANR in the random si
nal model, terms in Eqs.~2! and ~3! of order n2m are gen-
erally not of order in SANR2m, in contrast to the situation
found for a deterministic signal.

For randomized signals, however, the first order bias,
CRLB, and the second-order variance for range and de
still depend only on the SANR@1# and not on signal ampli-
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tude alone. This can be seen, from the definition of the Fis
information matrix for the randomized casei nm

5tr(C̃21C̃mC̃21C̃n), where m5a, r and n5a, r, C̃a

5]C̃/]I a5g̃g̃1 and C̃r5]C̃/]r 5I a(g̃r g̃
11ggr

1), and

C215
1

s2F I 2

I a

s2 g̃g̃1

11
I a

s2 ugu2
G . ~B28!

The Fisher information matrix becomes
i 5nS N

2
SANR@1#

11
N

2
SANR@1#

D 2 F 1

I a
2

1

I a

~ g̃r
1g̃1g̃1g̃r !

ug̃u2

1

I a

~ g̃r
1g̃1g̃1g̃r !

ug̃u2

1

ug̃u4S ~ g̃1g̃1g̃1g̃!212S 11
N

2
SANR@1# D ~ ug̃r u2ug̃u22g̃r

1g̃g̃1g̃r ! D G
~B29!

with CRLB,

CRLB5
D

nS N

2
SANR@1# D 2 F I a

2 1

ug̃u4S ~ g̃1g̃1g̃1g̃!212S 11
N

2
SANR@1# D ~ ug̃r u2ug̃u22g̃r

1g̃g̃1g̃r ! D 22I a

g̃r
1g̃1g̃1g̃r

ug̃u2

22I a

g̃r
1g̃1g̃1g̃r

ug̃u2 1
G ,

~B30!
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where

D5
1

2S 11
N

2
SANR@1# D Ug̃r ,'

g̃ U22

.

This explicitly shows that the range CRLB is independent
I a , while the intensity CRLB scales asI a

2 for fixed
SANR@1#.

As in the deterministic signal model, the moments of t
asymptotic expansion can be expressed as a product
function depending on SANR@1# and a function depending
on the geometric properties of the received signal vector.
instance from Eq.~B30! we find that

CRLB~r !5
1

2n

11
N

2
SANR@1#

S N

2
SANR@1# Ug̃r ,'

g̃ U D 2. ~B31!

Equation~B31! is only valid for N/2.1, and SANR@1# not
equal to infinity, so that it does not apply to scalar parame
estimates from scalar data.

After similar analysis, too detailed to present for the f
three-parameter randomized signal case, we find that the
order bias, the CRLB, and the second-order variance
range and depth depend only on the SANR@1# and not onI a

alone as expected.
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