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Spectral and normal mode formulations for the three-dimensional field scattered by an object
moving in a stratified medium are derived using full-field wave theory. The derivations are based on
Green’s theorem for the time-domain scalar wave equation and account for Doppler effects induced
by target motion as well as source and receiver motion. The formulations are valid when multiple
scattering between the object and waveguide boundaries can be neglected, and the scattered field
can be expressed as a linear function of the object’s plane wave scattering function. The advantage
of the spectral formulation is that it incorporates the entire wave number spectrum, including
evanescent waves, and therefore can potentially be used at much closer ranges to the target than the
modal formulation. The normal mode formulation is more computationally efficient but is limited to
longer ranges. For a monochromatic source that excitesN incident modes in the waveguide, there
will be roughly N2 distinct harmonic components in the scattered field. The Doppler shifts in the
scattered field are highly dependent upon the waveguide environment, target shape, and
measurement geometry. The Doppler effects are illustrated through a number of canonical examples.
© 2003 Acoustical Society of America.@DOI: 10.1121/1.1499135#
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I. INTRODUCTION

Standard active sonar and radar systems estimate
instantaneous velocity of a moving target in free space
resolving Doppler shifts in the frequency spectrum of sc
tered waves. To obtain all components of the velocity vec
a multistatic measurement geometry may be necessary.
type of active scenario is well suited to the velocity estim
tion of a distant body because the frequency spectrum of
source is known and controllable and so can be tailored
the resolution constraints of the problem at hand. In pas
sonar and radar, however, velocity estimation by Dopp
shift analysis is often less reliable because the distant ob
must itself radiate enough power to be detected. Additiona
the frequency spectrum of this radiation must be known,
have sufficiently narrow bandwidth and stability for Doppl
shifts to be extracted robustly.

The problem of using active sonar to estimate the vel
ity of an underwater target moving in an ocean wavegu
has complications not found in the free-space analogue.
is because propagation and scattering effects in a waveg
are typically not separable as they are in the far field fr
space scenario. Also, multiple frequency components
typically present in the field scattered from an object mov
in an ocean waveguide even if the active source of radia
is harmonic. An accurate physical model for the field sc
tered from an object moving in a stratified ocean wavegu
must then be derived before techniques can be develope
estimate the submerged object’s velocity. It is the goal of t
paper to derive such a model and to investigate the Dop
effects induced by motion of a source, target, and receive
a stratified ocean waveguide. Inclusion of source and

a!Electronic mail: makris@mit.edu
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ceiver motion is also necessary because the source an
ceivers are typically mounted on research vessels that m
with speeds similar to that of the target, and so induce th
own Doppler effects that must be differentiated from tho
induced by the target.

Doppler effects induced by the motion of a radiatin
source that is passively measured at a moving receiver in
space have been extensively studied in acoustics.1,2 Doppler
effects for the corresponding passive problem of a mov
source and a moving receiver submerged in a stratified oc
waveguide have also been studied in the literature.3,4 Multi-
modal propagation and dispersion make the Doppler effe
far more complicated in a waveguide than in free space.
example, the field radiated by a time harmonic source m
ing in an ocean waveguide can be received with multi
frequency components because of multimodal propagatio

A number of models exist for three-dimensional scatt
ing from targets submerged in a stratified medium, as
scribed in Ref. 5. A particularly convenient and widely us
approach is the single-scatter theorey developed in R
5–8. The major advantage of this approach is that the s
tered field is expressed in terms of the target’s free-sp
plane wave scattering function. This theory is valid when~1!
the propagation medium is horizontally stratified and ran
independent;~2! the object is contained within an iso
velocity layer;~3! multiple scattering between the object an
waveguide boundaries make negligible contribution at
receiver; and~4! the range from the object to source an
receiver is sufficiently large that the scattered field can
expressed as a linear function of the object’s plane w
scattering function. This theory, however, assumes that
source, receiver, and target are not moving so that Dop
effects must be negligible.

In this paper, the single scatter theory is generalized
22323/22/$19.00 © 2003 Acoustical Society of America
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include the effects of source, receiver, and target mot
Analytical expressions are obtained for the field scattere
a moving receiver from a moving target in a stratified oce
waveguide by a moving source. The formulations are fu
bistatic, and all the motions are assumed to be horizo
with constant velocities. Both the expressions for a sim
harmonic source and a source with arbitrary time depende
are derived in this paper. Spectral and modal representa
of the scattered field are derived from first principles us
the time-domain formulation of Green’s theorem. The sp
tral representation makes fewer assumptions and is more
curate than the normal mode representation at closer ran
but the normal mode formulation provides a compelli
physical interpretation and can be used at longer ranges w
out significant loss of accuracy. The single scatter theory
Refs. 6 and 7 then becomes a special case of the pre
more general theory when the source, receiver, and targe
at rest. The four listed restrictions of the stationary sin
scatter theory also apply to the generalized theory develo
in this paper.

It is noteworthy that when the target, source, or recei
are moving, the scattered field no longer obeys reciprocity
is evident in our present formulation. The concept of a tim
reversal mirror9–11 therefore is not directly applicable unde
motion of the target, source, or receiver. This is true in b
free space and in a stratified medium.

A simple and intuitive technique for deriving the fie
radiated from a moving source measured at a moving
ceiver using delta functions is also presented for both sp
tral and modal formulations. The spectral representatio
identical to the result of Ref. 4. The normal mode repres
tation makes more accurate approximations than those
in Ref. 3. The resulting expressions are used in the scatte
problem to describe the incident field from the movi
source at the moving target.

II. ANALYTIC FORMULATION

Analytical expressions for the field scattered from
moving source by a moving object measured at a mov
receiver are derived from first principles using the tim
domain scalar wave equation and the corresponding ti
domain formulation of Green’s theorem.

Some of the basic approximations and techniques u
in Refs. 6 and 7 to solve the stationary scattering problem
also applied here. The major difference, however, is that
must solve the problem with the time-domain scalar wa
equation instead of the Helmholtz equation to account
motion of the source, receiver, and target.

The time-domain scalar wave equation for the total fi
FT with a source functionq(r0 ,t0) is

¹0
2FT~r0 ,t0!2

1

c2

]2FT~r0 ,t0!

]t0
2 52q~r0 ,t0!. ~1!

The Green function for the time-domain scalar wave eq
tion satisfies

¹0
2G~r ,tur0 ,t0!2

1

c2

]2G~r ,tur0 ,t0!

]t0
2 52d~r2r0!d~ t2t0!.

~2!
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By applying Green’s theorem, the total fieldFT can be ex-
pressed as12

FT~r ,t !5E
0

t1

dt0E dV0G~r ,tur0 ,t0!q~r0 ,t0!

1E
0

t1

dt0 R dS0"SG~r ,tur0 ,t0!¹0FT

2FT¹0G~r ,tur0 ,t0! D
2

1

c2 E dV0F]G~r ,tur0 ,t0!

]t0
FT

2G~r ,tur0 ,t0!
]FT

]t0
G t050 , ~3!

which differs from Eq.~7.3.5! of Ref. 12 only by a 4p factor
due to differing choices for the delta function normalizatio
The first integral represents the incident fieldF i induced by
the source, and the second integral represents the scat
field Fs . The third integral accounts for the transient r
sponse. For example, given a time harmonic source tur
on at t050, this integral vanishes after the source has b
operating for a time durationt1 large compared to the sourc
period. The first two integrals then represent the steady s
response, and the total field is the summation of the first
integrals

FT~r ,t !5F i~r ,t !1Fs~r ,t ! ~4!

with incident field

F i~r ,t !5E
0

t1

dt0E dV0G~r ,tur0 ,t0!q~r0 ,t0! ~5!

and scattered field

Fs~r ,t !5E
0

t1

dt0 R dS0"SG~r ,tur0 ,t0!¹0FT

2FT¹0G~r ,tur0 ,t0! D . ~6!

Following the type of abbreviating convention adopt
in Refs. 6 and 7, we will drop the first term in Eq.~6! in the
derivation to avoid cumbersome and uninformative algeb
The derivation with both terms proceeds in exactly the sa
manner and leads to exactly the same expression for the
tered field. This expression is in terms of the object’s pla
wave scattering function for an object with arbitrary boun
ary conditions.5–7

The scattered field from a rigid surface with unspecifi
shape is

Fs(r ,t)52E
0

t1

dt0 R dS0"SFT(r0 ,t0)¹0G(r ,tur0 ,t0) D
52E

0

t1

dt0 R dS0"S @F i~r0 ,t0!

1Fs~r0 ,t0!#¹0G~r ,tur0 ,t0! D . ~7!

For a steady wave problem, this leads to Eq.~37! of Ref. 6
directly.
Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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For economy, the notation of Ref. 7 is used here and
the remainder of this article. Figure 2 of Ref. 7 shows
geometry of spatial and wave number coordinates. For
ample, the object centroidat the initial location of the object
is at the center of all coordinate systems, as shown in Fig
Source coordinates are denoted by (x0 ,y0 ,z0), receiver co-
ordinates by (x,y,z), and coordinates on the surface of t
target by (xs ,ys ,zs) where the positivez axis points down-
ward and is normal to the interfaces between horizon
strata. Spatial cylindrical (r,u,z) and spherical (r ,u,f) sys-
tems are defined byx5r sinu cosf, y5r sinu sinf, z
5r cosu, andr25x21y2. Wave number coordinates for th
incident (j ix ,j iy ,g i) and scattered field (jx ,jy ,g) also
originate at the target center and are related to polar
azimuthal propagation angles byj25jx

21jy
2, where

jx5k sina cosb, ~8!

jy5k sina sinb, ~9!

jz5k cosa, ~10!

k25S v

c D 2

5g21j2. ~11!

The superscript 0 is used to denote the initial positions of
source, target, and receiver, for example,x(t)u t505x0.

A. Spectral representation of the Doppler-shifted field
scattered from a moving target by a
simple-harmonic source in a stratified waveguide

A spectral representation for the field from a movi
source, scattered by a moving target at a moving receive
now derived. The source is taken to be a simple-harmo
one with frequencyV, and the motions of the source, targe
and receiver are all horizontal with constant velocity.

In order to calculate the scattered field, Eq.~7! is applied
where the incident field at a pointrs on the surface of the
target depends on timets . The scattered field at the receiv
location r at time t can then be calculated by

FIG. 1. Measurement geometry for a submerged object in a horizon
stratified waveguide ensonified by a point source. The coordinate syste
centered at the centroid of the object with positivez pointing down. Each
layer i is characterized by sound speedci , densityr i , and attenuationai .
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Fs~r ,t !52E
0

t1

dts R dSs"S @F i~rs ,ts!

1Fs~rs ,ts!#¹sG~r ,turs ,ts! D , ~12!

where the surface integral is carried out on the surface of
scatterer.

The incident field induced by a simple-harmonic sour
at frequencyV moving with horizontal velocityv0 and re-
ceived at a pointrs on the surface of an object moving wit
horizontal velocityvs is obtained from Eq.~A10! as

F i~rs ,t !5
1

2p E
2`

`

d2jig~zs ,z0 ;V1ji "v0!

3ei ji "~rs
0

2r0
0
!e2 i ~V1ji "~v02vs!!t. ~13!

With the decomposition proposed in Eq.~6! of Ref. 7, the
depth-dependent Green function defined in Eq.~A7! be-
comes

g~zs ,z0 ;v i !5A~z0 ;v i !e
ig i ~v i !zs1B~z0 ;v i !e

2 ig i ~v i !zs

~14!

with the shifted frequency of the incident field

v i5V1ji "v0 . ~15!

The location of a point on the surface of the target is

rs5rs
01vsts ~16!

with rs
0 as its initial location atts50 andvs as its horizontal

velocity. The incident field in Eq.~13! then becomes

F i~rs ,ts!5
1

2p E
2`

`

d2jie
2 i ji "r0

0
e2 i ~V1ji "~v02vs!!ts

3@A~z0 ;v i !e
i ~ji "rs

0
1g i ~v i !zs!

1B~z0 ;v i !e
i ~ji "rs

0
2g i ~v i !zs!#. ~17!

The spectral representation of Green’s function for the He
holtz equation in a stratified waveguide is

G~r urs;v!5
1

2p E
2`

`

d2jg~z,zs ;v!ei j"~r2rs!. ~18!

Similarly, the depth-dependent Green function in Eq.~18! is
decomposed as

g~z,zs ;v!5C~z;v!eig i ~v!zs1D~z;v!e2 ig i ~v!zs. ~19!

The motion of the receiver is expressed as

r5r01vt, ~20!

wherer0 is its initial location at timet50 andv is its hori-
zontal velocity. The Green function for the time-domain sc
lar wave equation from the surface of the targetrs at timets

to the receiver locationr at time t then becomes

ly
is
225Y.-s. Lai and N. C. Makris: Dopper field scattered by an object



G~r ,turs ,ts!5
1

2p E
2`

`

dv e2 iv~ t2ts!
1

2p E
2`

`

d2jei j"r0
ei j"vte2 i j"vsts

3@C~z;v!ei ~2j"rs
0

1g i ~v!zs!1D~z;v!ei ~2j"rs
0

2g i ~v!zs!#. ~21!

Inserting Eqs.~17! and ~21! into Eq. ~12! leads to the scattered field

Fs~r ,t !52
1

2p E
0

t1

dts R dSs"H F 1

2p E
2`

`

d2jie
2 i ji "r0

0
e2 i ~V1ji "~v02vs!!ts

3@A~z0 ;v i !e
i ~ji "rs

0
1g i ~v i !zs!1B~z0 ;v i !e

i ~ji "rs
0

2g i ~v i !zs!#1Fs~rs ,ts!G
3¹sS E

2`

`

dv e2 iv~ t2ts!
1

2p E
2`

`

d2jei j"r0
ei j"vte2 i j"vsts

3@C~z;v!ei ~2j"rs
0

1g i ~v!zs!1D~z;v!ei ~2j"rs
0

2g i ~v!zs!# D J , ~22!

wherej"r1gz5krh(a,b;u,f) and

h~a,b;u,f!5cosa cosu1sina sinu cos~b2f! ~23!

is the cosine of the angle between the propagation direction~a, b! and field coordinate direction~u, f! where the anglesa, b
may be complex. Substituting this angular representation into Eq.~22! yields

Fs~r ,t !52
1

2p E
0

t1

dts R dSs"H F 1

2p E
2`

`

d2jie
2 i ji "r0

0
e2 i ~V1ji "~v02vs!!ts

3@A~z0 ;v i !e
ik~v i !r s

0h~a i ~v i !,b i ;us
0 ,fs

0
!1B~z0 ;v i !e

ik~v i !r s
0h~p2a i ~v i !,b i ;us

0 ,fs
0

!#1Fs~rs ,ts!G
3¹sS E

2`

`

dv e2 iv~ t2ts!
1

2p E
2`

`

d2jei j"r0
ei j"vte2 i j"vsts

3@C~z;v!e2 ik~v!r s
0h~p2a~v!,b;us

0 ,fs
0

!1D~z;v!e2 ik~v!r s
0h~a~v!,b;us

0 ,fs
0

!# D J , ~24!
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where (a i ,b i) is the propagation direction of the incide
plane waves and (us

0,fs
0) is the direction ofrs

0, the initial
location of a point on the target with respect to the init
position of the target centroid which is the origin of all c
ordinates.

For low Mach number motion, the scattered field on t
surface of the object in Eq.~24! is approximately

F̂s~rs,ts!'F̂s~rs;v i !e
2 iv i ts ~25!

for a given incident plane wave. The wave number vect
for the downgoing and upgoing waves are defined as

k i
15ji1g i îz , ~26!

k i
25ji2g i îz . ~27!
226 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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When the Mach number of the target motion is sma
the scattered fields on the surface of the moving tar

F̂s(rs ,k i
1 ;v i) and F̂s(rs ,k i

2 ;v i), which are induced by
downgoing and upgoing incident plane waves with unit a
plitudes, can be approximated as the scattered fields a
initial locations of the target multiplied by a phase shift fa
tor ei ji "vsts that accounts for therigid body translation of the
centroid. The scattered field on the object then becomes

Fs~rs ,ts!5
1

2p E
2`

`

d2jie
2 i ji "r0

0
e2 i ~V1ji "~v02vs!!ts

3@A~z0 ;v i !F̂s~rs
0 ,k i

1 ;v i !

1B~z0 ;v i !F̂s~rs
0 ,k i

2 ;v i !#. ~28!

Introducing Eq.~28! into Eq.~24!, then leads to the scattere
field
Y.-s. Lai and N. C. Makris: Dopper field scattered by an object



Fs~r ,t !52
1

2p E
0

t1

dts R dSs"H F 1

2p E
2`

`

d2jie
2 i ji "r0

0
e2 i ~V1ji "~v02vs!!ts

3~A~z0 ;v i !$e
ik~v i !r s

0h~a i ~v i !,b i ;us
0 ,fs

0
!1F̂s~rs

0,k i
1 ;v i !%

1B~z0 ;v i !$e
ik~v i !r s

0h~p2a i ~v i !,b i ;us
0 ,fs

0
!1F̂s~rs

0 ,k i
2 ;v i !%!G

3¹sS E
2`

`

dv e2 iv~ t2ts!
1

2p E
2`

`

d2jei j"r0
ei j"vte2 i j"vsts

3@C~z;v!e2 ik~v!r s
0h~p2a~v!,b;us

0 ,fs
0

!1D~z;v!e2 ik~v!r s
0h~a~v!,b,us

0 ,fs
0

!# D J . ~29!

For sufficiently long time durationt, the integral overts introduces the delta functiond(v2V2ji "(v02vs)2j"vs) to the
integrand. Integrating overv then leads to

Fs~r ,t !52
1

2p E
2`

`

d2jiE
2`

`

d2jei @j"r02ji "r0
0
#e2 i @V1ji "~v02vs!1j"~vs2v!#t

3 R dSs• H @A~z0 ;v i !$e
ik~v i !r s

0h~a i ~v i !,b i ;us
0 ,fs

0
!1F̂s~rs

0 ,k i
1 ;v i !%

1B~z0 ;v i !$e
ik~v i !r s

0h~p2a i ~v i !,b i ;us
0 ,fs

0
!1F̂s~rs

0 ,k i
2 ;v i !%#

3¹sSC~z;vs!e
2 ik~vs!r s

0h~p2a~vs!,b;us
0 ,fs

0
!1D~z;vs!e

2 ik~vs!r s
0h~a~vs!,b;us

0fs
0

!D J , ~30!
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where the Doppler shifted frequency of the scattered fiel

vs5V1ji "~v02vs!1j"vs . ~31!

It is important to note that the time dependence has b
factored from the surface integral in going from Eq.~29! to
Eq. ~30! following our approximation for the assumed lo
Mach number motion. This means, for example, that the
ject’s orientation with respect to the incoming and outgo
waves is not significantly altered for a time period lar
enough compared to the source period for the source to
considered harmonic. This is discussed in more detail,
example, in Sec. II C and Appendix B.

We can then express the scattered field in the waveg
in terms of the plane-wave scattering functio
S(a,b;a i ,b i ;v) of the object. With the aid of Eq.~C19!,
Eq. ~30! becomes

Fs~r ,t !5
1

p E
2`

` E
2`

`

d2jd2ji

1

k~vs!

3ei @j"r02ji "r0
0
#e2 i @V1ji "~v02vs!1j"~vs2v!#t

3F~z,z0 ;j,j i ;vs ,v i !, ~32!

which is an expression for the field scattered by a mov
target with arbitrary shape, where
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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F~z,z0 ;j,j i ;vs ,v i !

5$A~z0 ;v i !C~z;vs!S~p2a~vs!,b;a i~v i !,b i ;vs!

1A~z0 ;v i !D~z;vs!S~a~vs!,b;a i~v i !,b i ;vs!

1B~z0 ;v i !C~z;vs!S~p2a~vs!,b;p2a i~v i !,b i ;vs!

1B~z0 ;v i !D~z;vs!S~a~vs!,b;p2a i~v i !,b i ;vs!%.

~33!

The formulation is fully bistatic and incorporates horizon
velocities of the source, target, and receiver. The sourc
assumed to be a simple-harmonic one radiating at freque
V, but the received time series will contain multiple fr
quency components due to Doppler effects. The Doppler
quency shifts are indicated in the argument of the comp
exponential function of Eq.~32!.

When the source, target, and receiver are at rest, al
cident frequenciesv i and scattered frequenciesvs are equal
to the source frequencyV. In this case Eq.~32! reduces to
Eq. ~18! of Ref. 7 multiplied by exp(2iVt) where reciprocity
for harmonic waves

d0G~rsur0;v!5dsG~r0urs;v! ~34!

was invoked for the incident field and the medium densit
d0 andds in the layers of the source and target depth w
assumed identical.

In Eq. ~33!, all coefficients~A’s andB’s! of the incident
field are evaluated at the incident frequencyv i , and all the
coefficients of the scattered field~C’s andD ’s! are evaluated
at the scattered frequencyvs . The wave number normaliza
tion k21 and the plane-wave scatter functionSare evaluated
227Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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at the scattered frequencyvs as well. The equivalent eleva
tion anglesa i of the incident plane waves are evaluated
the incident frequencyv i , and the equivalent elevatio
anglesa of the scattered plane waves are evaluated at
scattered frequencyvs .

B. Spectral representation of the Doppler-shifted field
scattered from a moving target by a source with
arbitrary time dependence in a stratified waveguide

The Doppler-shifted scattered field induced by a sou
with arbitrary time dependenceq(t) and frequency spectrum
Q(V) can be obtained in the receiver’s frame of referen
from Eq. ~32! by Fourier synthesis as

Cs~r ,t !5
1

2p2 E
2`

`

dVQ~V!E
2`

` E
2`

`

d2jd2ji

1

k~vs!

3ei @j"r02ji "r0
0
#e2 i @V1ji "~v02vs!1j"~vs2v!#t

3F~z,z0 ;j,j i ;vs ,v i !. ~35!

A direct implementation of Eq.~35!, however, will be
inefficient because the four-dimensional wave number in
grals are coupled with time in the argument of the comp
exponential function and so need to be evaluated at e
individual time instant. Similar difficulties for the passiv
problem of modeling propagation from a moving source t
moving receiver are discussed in Ref. 4 by Schmidt and
perman. They note that by transforming the Doppler-shif
field from the ‘‘source frequency’’ to a representation
terms of the ‘‘receiver frequency,’’ the wave number a
frequency integrations can be integrated independently.4

The frequency spectrum of the scattered field in the
ceiver’s frame of reference is obtained by applying a Fou
transform to Eq.~35!,

Cs~r ,v8!5E
2`

`

dteiv8tCs~r ,t ! ~36!

wherev8 is the frequency in the receiver’s frame of refe
ence. Integrating overt introduces the delta functiond(v8
2V2ji "(v02vs)2j"(vs2v)) in the integrand. Upon inte
grating over V, the frequency spectrum of the Dopple
shifted scattered field in the receiver’s frame of referen
then becomes

Cs~r ,v8!5
1

p E
2`

` E
2`

`

d2jd2ji

1

k~vs!
ei @j"r02ji "r0

0
#

3Q~v82ji "~v02vs!2j"~vs2v!!

3F~z,z0 ;j,j i ;vs ,v i !, ~37!

where the shifted frequenciesv i andvs in terms ofv8 are
equal to

v i5v81j"~v2vs!1ji "vs ~38!

and

vs5v81j"v. ~39!

Equation ~37! can be implemented efficiently and direct
without the need for time domain processing.
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C. Normal mode representation of the Doppler-shifted
field scattered from a moving target by a
simple-harmonic source in a stratified waveguide

At sufficiently long source and receiver ranges from t
target, the scattered field can be well represented as a su
normal modes. The modal representation for the scatte
field with a simple-harmonic source is derived in this se
tion.

Green’s function for the time-domain wave equation in
waveguide can be written as an inverse Fourier transform
the modal form of Green’s function for the Helmholtz equ
tion,

G~r ,turs ,ts!5
1

2p E
2`

`

dv G~r urs;v!e2 iv~ t2ts!

5
1

2p E
2`

`

dv e2 iv~ t2ts!

3
id

4 (
m

um~z;v!um~zs ;v!

3H0
~1!~jm~v!ur2rsu!, ~40!

whereum(z;v) and jm(v) are the amplitude function an
horizontal wave number of themth mode at frequencyv. We
assumejm(v)ur2rsu@1, and the asymptotic form of the
zeroth-order Hankel function of the first kind is used

H0
~1!~jm~v!ur2rsu!

'A 2

pjm~v!ur2rsu
ei ~jm~v!ur2rsu2p/4!. ~41!

For a moving target, the horizontal position vectorrs is

rs5rs
01vsts

5~rs
0 cosfs

0 ix1rs
0 sinfs

0 iy!

1~vsts coswsix1vsts sinwsiy!, ~42!

wherers
0 is its initial position atts50 andvs is its horizon-

tal velocity. Similarly, the horizontal position vector of th
receiverr is

r5r01vt

5~r0 cosf0ix1r0 sinf0iy!1~vt cosw ix1vt sinw iy!,

~43!

wherer0 is its initial position atts50 andv is its horizontal
velocity.

For the bistatic configuration used in the scattering pr
lem, the horizontal range to a point on the target is mu
smaller than the range to the receiver so thatursu!uru. For
low Mach number motions of the target as in typical son
scenarios, the displacementsuvstsu of a target point anduvtu
of the receiver are also much smaller thanuru so that the
azimuthal angle of the vectorr01vt2rs

0 is approximately
equal to the azimuthal anglef0 of the vectorr0 even for a
time durationt so much larger than the source period that
source can be considered harmonic. An approximation
ur2rsu can then be made that
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ua

rpo-
via

.

ur2rsu5ur01vt2rs
02vstsu

'ur01vt2rs
0 u2vsts cos~f02ws!. ~44a!

Similarly, the azimuthal angle of the vectorr02rs
0 is ap-

proximated asf0 becauseursu!uru. This leads to

ur2rsu'ur02rs
0 u1vt cos~f02w!2vsts cos~f02ws!.

~44b!

Then sinceurs
0 u!ur0u we have

ur2rsu'r02rs
0 cos~f02fs

0 !1vt cos~f02w!

2vsts cos~f02ws!. ~44c!

Green’s function for the time-domain scalar wave eq
tion from a point on the surface of the targetrs at retarded
time ts to the receiver locationr at time t then can be ap-
proximated as

G~r ,turs ,ts!5
1

2p E
2`

`

dv e2 iv~ t2ts!

3
id

A8p
e2 i ~p/4!(

m

um~z;v!um~zs ;v!

Ajm~v!r0

3ei jm~v!@r02rs
0 cos~f02fs

0
!#

3ei jm~v!v cos~f02w!te2 i jm~v!vs cos~f02ws!ts.

~45!

As in Eqs.~41! and ~42! of Ref. 6, the Green function
h

in
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and the incident field are now expressed as a linear supe
sition of equivalent plane waves in the layer of the target

G~r ,turs ,ts!5
1

2p E
2`

`

dv e2 iv~ t2ts!

3(
m

@Am~r0;v!e2 ik~v!r s
0h~p2am ,f0;us

0 ,fs
0

!

2Bm~r0;v!e2 ik~v!r s
0h~am ,f0;us

0 ,fs
0

!#

3ei jm~v!v cos~f02w!te2 i jm~v!vs cos~f02ws!ts

~46!

and

F i~rs ,ts!5(
l

1

11
v0

v l
G~V!

cos~f0
02w0!

3@Al~r0
0;v l !e

ik~v l !r s
0h~a l ,p2f0

0;us
0 ,fs

0
!

2Bl~r0
0;v l !e

ik~v l !r s
0h~p2a l ,p2f0

0;us
0 ,fs

0
!#

3e2 i ~v l1j l ~v l !vs cos~f0
0
2ws!!ts, ~47!

where Eq.~47! is derived in from Eq.~B11!, andv l is the
Doppler-shifted frequency of thel th mode as defined in Eq
~B10!. Substituting Eqs.~46! and~47! into Eq. ~12! leads to
Fs~r ,t !52
1

2p E
0

t1

dts R dSs•H F(
l

1

11 @v0/v l
G~V!# cos~f0

02w0!
@Al~r0

0;v l !e
ik~v l !r s

0h~a l ,p2f0
0;us

0 ,fs
0

!

2Bl~r0
0;v l !e

ik~v l !r s
0h~p2a l ,p2f0

0;us
0 ,fs

0
!#e2 i ~v l1j l ~v l !vs cos~f0

0
2ws!!ts1Fs~rs ,ts!G

3¹sS E
2`

`

dv e2 iv~ t2ts!(
m

@Am~r0;v!e2 ik~v!r s
0h~p2am ,f0;us

0 ,fs
0

!

2Bm~r0;v!e2 ik~v!r s
0h~am ,f0;us

0 ,fs
0

!#ei jm~v!v cos~f02w!te2 i jm~v!vs cos~f02ws!tsD J . ~48!
Eq.
up-
s

For low Mach number motion, the scattered field on t
surface of the object in Eq.~48! is approximately

F̂s(rs ,ts)'F̂s(rs;v l)e
2 iv l ts for a given incident plane

wave. We define the wave number vectors for the downgo
and upgoing waves for thel th mode as

k l
15j l îr1g l îz , ~49!
e

g

k l
25j l îr2g l îz . ~50!

The scattered field on the surface of the target given in
~48! can then be represented in terms of downgoing and
going plane incident waves with unit amplitude

F̂s(rs ,k l
1 ;v l) andF̂s(rs ,k l

2 ;v l), respectively, via
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Fs~rs ,ts!5(
e2 iv l ts

@Al~r0
0;v l !F̂s~rs ,k l

1 ;v l !2Bl~r0
0;v l !F̂s~rs ,k l

2 ;v l !#. ~51!

l

11
v0

v l
G~V!

cos~f0
02w0!

Just as in the derivation for the spectral representation, in Sec. II A, approximations are made forF̂s(rs ,k l
1 ;v l) and

F̂s(rs ,k l
2 ;v l) that account for rigid body translation. Equation~51! then becomes

Fs~rs ,ts!5(
l

1

11
v0

v l
G~V!

cos~f0
02w0!

e2 i ~v l1j l ~v l !vs cos~f0
0
2ws!!ts

3@Al~r0
0;v l !F̂s~rs

0 ,k l
1 ;v l !2Bl~r0

0;v l !F̂s~rs
0 ,k l

2 ;v l !#. ~52!

When this is inserted into Eq.~48! the scattered field takes the form

Fs~r ,t !52
1

2p E
0

t1

dts R dSs"H(
l

1

11 @v0/v l
G~V!# cos~f0

02w0!
e2 i ~v l1j l ~v l !vs cos~f0

0
2ws!!ts

3SAl~r0
0;v l !@eik~v l !r s

0h~a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

1 ;v l !#

2Bl~r0
0;v l !@eik~v l !r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

2 ;v l !# D
3¹sS E

2`

`

dv e2 iv~ t2ts!(
m

@Am~r0;v!e2 ik~v!r s
0h~p2am ,f0;us

0 ,fs
0

!2Bm~r0;v!e2 ik~v!r s
0h~am ,f0;us

0 ,fs
0

!#

3ei jm~v!v cos~f02w!te2 i jm~v!vs cos~f02ws!tsD J . ~53!
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For sufficiently long time durationt, integration overts in-
troduces the delta functiond(v2v l2j l(v l)vs cos(f0

02ws)
2jm(v)vs cos(f02ws)) to the integrand.

In order to integrate overv, we need to solve the tran
scendental equation for the argumenth(v) of thed function

h~v!5v2v l2j l~v l !vs cos~f0
02ws!

2jm~v!vs cos~f02ws!50. ~54!

Equation~54! can be solved numerically. However, a
approximation that can be evaluated analytically is desir
The derivative ofh(v) with respect tov is
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dh~v!

dv
512

djm~v!

dv
vs cos~f02ws!

512
vs

vm
G~v!

cos~f02ws!, ~55!

wherevm
G(v) is the group velocity of themth mode at fre-

quenceyv. For low Mach number motions, Eq.~55! is close
to unity, so thath(v) is nearly linear around the roots of Eq
~54!. Using the Newton–Raphson method with the frequen
v l as an initial guess, the first iteration yields a reasona
accurate solution of Eq.~54! as
h

vm,l5v l2
h~v l !

h8~v l !
5v l1

j l~v l !vs cos~f0
02ws!1jm~v l !vs cos~f02ws!

12
vs

vm
G~v l !

cos~f02ws!

, ~56!

wherevm
G(v l) is the group velocity of themth mode at frequencyv l . Herevm,l is the doubly Doppler-shifted frequency wit

respect to thel th incident mode and themth outgoing mode. Using the property of thed function for any functionsf, h @Eq.
~9.6! in Ref. 2# it must hold that
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E
2`

`

f ~v!d~h~v!!dv5F f ~v!

udh/dvuG
v5v*

, ~57!

wherev* is a zero ofh, i.e., h(v* )50. Integrating overv gives

Fs~r ,t !52(
l

(
m

R dSs•H 1

11 @v0/v l
G~V!# cos~f0

02w0!

1

12 @vs/vm
G~vm,l !# cos~f02ws!

3~Al~r0
0 ;v l !@eik~v l !r s

0h~a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

1 ;v l !#

2Bl~r0
0 ;v l !@eik~v l !r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

2 ;v l !# !

3¹sS@Am~r0;vm,l !e
2 ik~vm,l !r s

0h~p2am ,f0;us
0 ,fs

0
!2Bm~r0;v!e2 ik~vm,l !r s

0h~am ,f0,us
0 ,fs

0
!#

3e2 i ~vm,l2jm~vm,l !v cos~f02w!!t D J . ~58!

With the aid of Eq.~C19!, the scattered field can finally be written in terms of the scattering function of the target as

Fs~r ,t !54p(
l

(
m

1

11
v0

v l
G~V!

cos~f0
02w0!

1

12
vs

vm
G~vm,l !

cos~f02ws!

1

k~vm,l !

3@Al~r0
0 ;v l !Am~r0;vm,l !S~p2am~vm,l !,f

0;a l~v l !,p2f0
0;vm,l !

2Al~r0
0 ;v l !Bm~r0;vm,l !S~am~vm,l !,f

0;a l~v l !,p2f0
0;vm,l !

2Bl~r0
0 ;v l !Am~r0;vm,l !S~p2am~vm,l !,f

0;p2a l~v l !,p2f0
0;vm,l !

1Bl~r0
0 ;v l !Bm~r0;vm,l !S~am~vm,l !,f

0;p2a l~v l !,p2f0
0;vm,l !#e

2 i ~vm,l2jm~vm,l !v cos~f02w!!t. ~59!
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When there is no motion of the source, target, or
ceiver, all the incident and scattered frequencies are ev
ated at the source frequencyV, and Eq.~59! leads to the
special case Eq.~51! of Ref. 6 multiplied by exp(2 iVt).

If the number of modes that truncates the modal su
mation excited at the source frequencyV is N, this same
number can be used to truncate the incident and outg
modal summations for low Mach number motions. The to
number of discrete frequency components will then
roughly N2 due to the coupling between incident and sc
tered modes at the target.

D. Normal mode representation of the Doppler-shifted
field scattered from a moving target by a source
with arbitrary time dependence in a stratified
waveguide

For a source with arbitrary time dependenceq(t) and
frequency spectrumQ(V), the normal mode representatio
of the Doppler-shifted scattered field can be formulated
Fourier synthesis as

Cs~r ,t !5
1

2pE2`

`

dV Q~V!Fs~r ,t !, ~60!
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whereFs(r ,t) is given in Eq.~59!.

Equation ~60!, however, is computationally inefficien
because the modal summation needs to be evaluated at e
time instant. Just as in the spectral representation of the s
tered field from a source with arbitrary time dependen
transformation to the frequency spectrum in the receive
frame of reference can speed up the computation sig
cantly.

Applying a Fourier transform to Eq.~60! is not de-
sired because both shifted frequenciesv l and vm,l of the
incident and scattered field are approximations obtai
by the Newton–Raphson method in terms of the sou
frequency V. A derivation for the shifted frequencies i
terms of the receiving frequencyv8 based on those ap
proximated values will give inaccurate and complicat
results. Therefore, the frequency spectrum in the receiv
frame of reference needs to be derived from intermed
expressions for the incident field and scattered field bef
the approximations by the Newton–Raphson method
made. The derivation is lengthy and is given in Appendix
With the aid of Eq.~C19!, the scattered field of Eq.~D14!
is expressed in terms of the scattering function of the tar
as
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Q~V lm! 1 1
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12
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cos~f0
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0 ;v l ,m8 !Am~r0;vm8 !S~p2am~vm8 !,f0;a l~v l ,m8 !,p2f0

0;vm8 !
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0 ;v l ,m8 !Bm~r0;vm8 !S~am~vm8 !,f0;a l~v l ,m8 !,p2f0
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2Bl~r0
0 ;v l ,m8 !Am~r0;vm8 !S~p2am~vm8 !,f0;p2a l~v l ,m8 !,p2f0

0;vm8 !

1Bl~r0
0 ;v l ,m8 !Bm~r0,vm8 !S~am~vm8 !,f0;p2a l~v l ,m8 !,p2f0
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where the frequency of the source spectrum is

V lm5v l ,m8 1j l~v l ,m8 !v0 cos~f0
02w0!. ~62!

Equation ~61! can be implemented efficiently and d
rectly without the need for time domain processing.

III. ILLUSTRATIVE EXAMPLES

Equation~61! is implemented with a modified version o
the normal mode codeKRAKENC.13 The formulation is fully
bistatic and incorporates the motion of source, target,
receiver. For simplicity, only monostatic configurations a
illustrated. These have the strongest Doppler frequency s
when only the target is in motion and the source and rece
are at rest.

The source function to be used in all examples is
Gaussian modulated wave form

q~ t !5
1

A2ps
e2~ t2to!2/2s2

e2 i2p f c~ t2to! ~63!

FIG. 2. Plot~a! and ~b! show the amplitude and phase of the source fu
tion, demodulated by the 200 Hz carrier frequency, versus time. Plot~c!
shows the magnitude of the frequency spectrum of the source.
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with carrier frequencyf c5200 Hz, t051s ands50.1 s. Its
frequency spectrum is

Q~ f !5e2~1/2!s2@2p~ f 2 f c!#2
ei2p f t0. ~64!

The amplitude and phase of the time series of the sou
demodulated by the carrier frequencyf c5200 Hz is shown
in Figs. 2~a! and 2~b!. The frequency spectrum of the sourc
is shown in Fig. 2~c!.

-

FIG. 3. The magnitude of the free space plane-wave scattering func
S(u590°,b5f;a i590°,b i50°) for ~a! a pressure-release sphere wi
ka512 at 200 Hz and~b! a pressure-release circular disk withka512 at
200 Hz. The incident wave is parallel to the disk’s surface normal, i.e.
broadside to the disk.
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All time series illustrations in this paper follow the sam
convention used in Figs. 2~a! and 2~b!. They show the mag-
nitude and phase of the signals demodulated by the ca
frequency at 200 Hz. The phase is only shown at times w
the signal amplitude is not negligibly small. All horizont
axes of time series plots in this section are labeled with ‘‘
duced time,’’ which is the actual time minus the round-tr
horizontal range divided by the sound speed.

Two types of targets are used as to illustrate scatte
characteristics, including a pressure-release sphere and a
fectly reflecting circular disk which both haveka512 at 200

FIG. 4. Measurement geometry for object scattering in a Pekeris waveg
The source and receiver are collocated at a depth of 20 m, and the cen
of the target is at a depth of 50 m.

FIG. 5. The scattered field and its scaled phase rate for the Gaussian m
lated source in free space. The object is a pressure-release sphe
ka5 12 at 200 Hz. The dashed curves are for a stationary target. The
curves are for a target moving toward the source at 10 m/s. Plots~a! and~b!
show the amplitude and phase of the time series demodulated by the 20
carrier frequency. Plot~c! shows the scaled phase rate of the demodula
time series from Eq.~65!. Plot ~d! shows the frequency spectra.
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Hz, wherea is the radius of the sphere and disk. The fr
space plane wave scattering function of the sphere is give
Eq. ~A2! of Ref. 7. The scatter function of the disk is give
in Ref. 14. Figures 3~a! and ~b! show the magnitude of the
scatter functions versus scattering angle for the sphere
the disk, respectively. The incident wave is parallel to t
disk’s surface normal, i.e., at broadside to the disk.

Before illustrating the problem in a waveguide, e
amples of object scattering in free space are shown for c
parison. The measurement geometry is the same as
shown in Fig. 4 but without the waveguide boundaries.

A monostatic sonar with collocated point source and
ceiver senses a pressure-release sphere withka512 at f c

5200 Hz. The sonar and target are in water with a sou
speed of 1500 m/s, and they are initially separated by 2
m in the horizontal and 30 m in the vertical. Equation~C18!
is used to perform the simulations. The dashed curves
Figs. 5~a! and 5~b! show the amplitude and phase of th
demodulated time series of the scattered signals from a
tionary target. The dashed curve in Fig. 5~d! shows its fre-
quency spectrum. Since free space is nondispersive, and
scatter function is nearly constant over the frequency ban
the source, the received wave form appears effectively a

e.
oid

du-
of

lid

Hz
d

FIG. 6. The scattered field and its scaled phase rate for the Gaussian m
lated source. The bottom type is silt. Source and receiver are colocat
20-m depth with 50-m target depth. The horizontal range of the targe
2000 m from the source. The object is a pressure-release sphere ofka512 at
200 Hz. The dashed curves are for a stationary target. The solid curve
for a target moving toward the source at 10 m/s. Plots~a! and~b! show the
amplitude and phase of the time series demodulated by the 200 Hz ca
frequency. Plot~c! shows the scaled phase rate of the demodulated t
series Eq.~65!. Plot ~d! shows the frequency spectra.
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scaled and time-shifted version of the transmitted sign
with negligible spectral distortion. The time series after d
modulation and the spectrum of the field scattered from
sphere moving at 10 m/s toward the source are shown as
solid curves in Figs. 5~a!, 5~b! and 5~d!. It can be seen tha
the free space Doppler-shifted spectrum can be very clo
approximated by a translated version of the stationary sp
trum since negligible distortion is introduced by the Dopp
shift, dynamical factors described in Appendix C, and sca
function over the frequency band of the source. The ph
angle versus time in Fig. 5~b! shows that the phase is near
a constant versus time for a stationary object. For the mov
target, the phase angle is decreasing with respect to time
constant rate, which represents a single frequency shift
duced by the target motion.

The frequency shift is linearly porportional to the rad
component of target velocity in free space when the sca
ing funcion of the target does not vary significantly vers
frequency within the band of the source. Active sonar a
radar systems in free space typically take the scaled p
rate

m~ t !52
c

4p f c

dU~ t !

dt
~65!

as an estimate of the target’s radial velocity whereU(t) is
the phase angle of the sonar return after demodulation by
carrier frequency. The dashed curve and the solid curv
Fig. 5~c! show that the scaled phase ratem(t) matches the

FIG. 7. Same as Fig. 6 except bottom type is sand.
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true value of the radial velocity of the targets, 0 m/s and
m/s for the examples shown.

In all illustrative examples of this section, a water co
umn of 100 m depth is used to simulate a typical continen
shelf environment. The density of the water is 1000 kg/m3,
the sound speed is 1500 m/s, and the attenuation is
31025 dB/l. The simulations are performed over differe
seabed types to illustrate the dependence of the Dopple
fects on bottom properties. All seabeds are modeled as h
spaces. The source and the receiver are collocated at a d
of 20 m without motion, and the centroid of the target is a
depth of 50 m.

First, we show how different bottom types affect th
Doppler shifts. Sand, silt, and limestone are used as the
mogeneous material of the bottom half-space. The den
sound speed, and attenuation are taken to be 1900 kg3,
1700 m/s, and 0.8 dB/l for sand, 1400 kg/m3, 1520 m/s, and
0.3 dB/l for silt. The density, compressional speed and sh
speed of limestone are 2200 kg/m3, 2500 m/s, and 800 m/s
respectively. The attenuation coefficients are 0.1 and
dB/l for compression and shear, respectively.

A silt bottom is used for the simulations in Fig. 6.
pressure-release sphere withka512 at 200 Hz is used as th
target. The dashed curves in Figs. 6~a! and 6~b! show the
amplitude and phase of the demodulated time series of
scattered signals from a stationary target, and the das
curve in Fig. 6~d! shows its frequency spectrum. Both th
amplitude of the time series and frequency spectrum app
to be Gaussian, which indicates that the dispersion due
multipath effects in the waveguide is weak for this type

FIG. 8. Same as Fig. 6 except bottom type is limestone.
Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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bottom. The scattered field is dominated by the lowest or
mode. The solid curves in Figs. 6~a! and 6~b! show the re-
ceived time series scattered by a sphere moving toward
source at 10 m/s, and the solid curve in Fig. 6~d! shows its
frequency spectrum. The shape of the time series still lo
Gaussian, and the arrival time is slightly earlier than
stationary case due to the shortening of the horizontal
tance. The frequency shifts due to Doppler effects can
observed in the solid curve in Fig. 6~d!. The spectrum also
looks Gaussian but is shifted with the frequency shift of
first mode, which is close to the frequency shift of the sc
tered field in free space. Similar to the examples for f
space, the phase versus time shown in Fig. 6~b! is nearly a
constant for the stationary target, and the phase is chan
at nearly a constant rate for the moving target. Applying E
~65!, the scaled phase ratem(t) is calculated for both the
stationary and the moving targets and is plotted as the da
and the solid curves in Fig. 6~c!, respectively. Because th
sonar return is not significantly distorted by the multimod
dispersion and Doppler effects, the scaled phase rate is c
to the target’s true radial velocity for both the stationary a
the moving target. This indicates that the scaled phase
m(t) in Eq. ~65! can be used to estimate the radial velocity
targets for this particular scenario of a weakly dispers
waveguide.

Figure 7 shows demodulated time series and freque
spectra for a sand bottom. The same spherical scatter
used as in Fig. 6. The dashed curves in Fig. 7~a! and 7~b!
show the amplitude and phase of the demodulated time s

FIG. 9. Same as Fig. 6 except the bottom type is sand and target veloc
changed. The target is moving toward the source at 5 m/s.
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when the sphere is stationary. We see that the time series
not only the arrival from the first mode but also the la
arrivals from the higher order modes with slower group v
locities. This indicates that the dispersion is much stron
for a sand bottom than a silt bottom. The received sign
from a moving sphere@solid curves in Fig. 7~a!# show that
not only the first arrival is earlier than in the stationary ca
but the contributions of the higher order modes are also
ferent. From Fig. 7~d!, we can see that the spectrum of th
stationary case~dashed curve! is distorted due to multimoda
effects. The shifted spectrum~solid curve! is also distorted
and is not simply a translated version of the stationary sp
trum ~dashed curve!. This is because the lower order mod
have larger frequency shifts than the higher order mode
that energy is nonuniformly shifted across frequency. T
phase of the demodulated time series in Fig. 7~b! shows that
the phase angle versus time for the stationary target~dashed
curve! varies slowly but is no longer nearly a constant like
free space and for a silt bottom. This is because of the hig
order modes introduce different phase changes. The p
change versus time~solid curve! is not changing at a con
stant rate as in free space or for a silt bottom. The hig
order modes introduce multiple Doppler shifts and alter
rate of phase change. Figure 7~c! shows the scaled phase ra
m(t) of the demodulated time series calculated by Eq.~65!.
The dashed curve is for the stationary target and the s
curve is for the moving target. The strong late arrivals in t
received field shown in Fig. 7~a! introduce significant distor-
tion of the phase angle in Fig. 7~b! and make the scaled

isFIG. 10. Same as Fig. 6 except the bottom type is sand and target m
away from source at 10 m/s.
235Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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phase rates in Fig. 7~c! inconsistent with the target’s tru
radial velocities. Even if the target is not moving at all,
rapid change occurs in the scaled phase rate when a s
late arrival corresponding to a higher order mode with slow
group velocity arrives. The difference between the sca
phase ratem(t) and the target’s true radial velocity can b
greater than 10 m/s when a strong late arrival is receiv
This example shows that when the sonar return is sign
cantly distorted by multimodal effects, the scaled phase
m(t) in Eq. ~65! cannot be used to reliably estimate the t
get’s radial component velocity.

Limestone bottoms typically have relatively low atten
ation, support many higher order modes and so lead to hig
dispersive shallow water propagation. As shown in the
ceived field scattered by a stationary sphere~dashed curves!
and by a sphere moving at 10 m/s toward the source~solid
curves! in Fig. 8~a!, several late arrivals are present with lon
time delays induced by the higher order modes. The hig
distorted spectra for a stationary sphere and a sphere mo
toward the source at 10 m/s are shown in Fig. 8~d!. Again,
the Doppler-shifted frequency spectrum~solid curve! is not
simply a translated version of the stationary spectr
~dashed curve!. Figure 8~b! shows that the phase chang
significantly versus time due to the multimodal effects ev
if the target is not moving. While the target is moving, t
phase change is complicated due to the multiple Dop
shifts. The scaled phase ratem(t) of the demodulated time
series in Eq.~65! for both the stationary and moving targ
are shown as the dashed curve and the solid curve in

FIG. 11. Same as Fig. 6 except the bottom type is sand and the target
3000 m horizontal range from source/receiver.
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8~c!. As in the waveguide with a sand bottom, rapid chang
of scaled phase rate occur making it differ by more than
m/s from the true value of the target’s radial velocity. A
these results indicate that the Doppler shifts in the scatte
field are highly dependent on the ocean environment.

Since Doppler effects are a function of target veloci
target velocity may be estimated by measurements of D
pler shifted fields given a known source function and wa
guide environment. The sensitivity of the Doppler shift
field to variations in target velocity then becomes an imp
tant factor. To investigate this issue, consider again the c
of a sand bottom with a spherical target as in Fig. 7, but n
with the target moving toward the source at 5 m/s rather t
10 m/s. Figure 9 shows the time series and spectrum of
resulting scattered field, where the solid curve in Fig. 9~d! is
the Doppler shifted spectrum. As expected, the dispers
effect in the time series and the frequency shift in the sp
trum is smaller for reduced target speed. The phase of
demodulated time series for the target moving at 5 m/s a
changes slower than when the target is moving at 10 m/
shown in Fig. 9~b!. These effects are significant since th
reduction in time spread of the higher order modes is on
order of tenths of a second and the frequency spectrum
significantly altered over the entire bandwidth of the sign
When the target is moving away from the source, the D
pler frequency shifts are negative. To illustrate this, Fig.
shows the time series and spectra for the scattered field f
a sphere moving away from the source at 10 m/s, where
bottom type is sand as in Fig. 7. The first arrival for t

atFIG. 12. Same as Fig. 6 except the bottom type is sand and the targe
perfectly reflective disk withka512 at 200 Hz.
Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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moving target in Fig. 10~a! arrives slightly later than in the
stationary case because the target is moving away from
source. The negative frequency shift is significant, and on
order of the signal bandwidth, as is evident in the spectr
in Fig. 10~d!. The negative frequency shift is also shown
the positive rate of phase change of the solid curve in F
10~b!. On the other hand, the rate of phase change is nega
for a target moving toward the source and receiver.

The next example illustrates Doppler effects at grea
target ranges. Using sand as the bottom type and the sp
at 3000 m initial range from the source, the time ser
@dashed curves in Fig. 11~a!# is dispersed less than th
dashed curves in Fig. 7~a! where the horizontal range is 200
m. The scattered field from a target moving toward t
source at 10 m/s@solid curves in Fig. 11~a!# is also dispersed
less than those in Fig. 7~a!. This indicates that Doppler ef
fects are highly dependent on the measured geometry.

A perfectly reflecting circular disk facing the sourc
with the same radius as the sphere ofka512 at 200 Hz is
used to illustrate variations in the scattered field for flat v
sus rounded targets. A sand bottom as used in Fig. 7 is
used in Fig. 12. Figures 12~a!, 12~b!, and 12~d! show the
scattered field from a stationary disk and a disk moving
ward the source at 10 m/s. With the same measuremen
ometry and 2000 m as the initial horizontal distance, the ti
series in Fig. 12~a! appear to be dispersed far less than
time series in Fig. 7~a!. The unshifted and shifted frequenc
spectra of Fig. 12~d! also exhibit this phenomenon. The sam
measurement geometry and scatterer is used in Fig. 13
with a limestone bottom. Figures 13~a! and 13~b! show the

FIG. 13. Same as Fig. 12 except the bottom type is limestone.
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scattered field from a stationary disk and a disk moving
ward the source at 10 m/s. These time series are also m
less dispersive than the scattered field from a spherical s
terer. The unshifted and shifted frequency spectra in F
13~d! are both less distorted than the spectra with a spher
scatterer in Fig. 8~d!. This is because scattering from the di
is much stronger in the specular direction than the other
rections. Figure 3~b! shows the magnitude of the free-spa
plane-wave scattering function of the circular disk. Comp
ing Figs. 3~a! and~b!, we can see that the scattering functio
of the sphere does not vary too much near the specula
flection direction. This leads to relatively uniform couplin
between different modes of the incident and scattered fi
On the other hand, the disk is highly directional near t
specular reflection direction and gives strongest coupling
tween a given mode of the incident field and the same m
of the scattered field, i.e., diagonal terms of a coupling m
trix. Since higher order modes attenuate more than lo
order modes and the coupling term between a lower or
mode and a higher order mode is weaker, the received si
is dominated by the lower order modes of both the incid
and scattered field from the disk. Time-frequency spread
is also significantly weaker than for a spherical scatterer.

It is not always true that the scattered field is strong
when the target is moving toward the source than at rest
waveguide. For a moving source in free space, the so
field in the forward direction is always more intense than t
in the back direction because of the factor@12M cosu#21 in
pressure, which accounts for free-space dynamics, wherM
is the Mach number andu is the angle between the directio
of motion and the direction of the field point.2 In a wave-
guide, although there are similar dynamical factors

F11
v0

v l
G~V!

cos~f0
02w0!G21

,

F12
vs

vm
G~vm,l !

cos~f02ws!G21

in the modal expression of Eq.~59!, they are so close to
unity for low Mach number motions of the source and targ
respectively, and are not the dominant factors for the chan
of signal amplitudes. In a waveguide the field magnitude c
fluctuate rapidly as a function of position, frequency, a
waveguide environment due to modal interference. The
served fluctuations in field magnitude of the various e
amples given are dominated by such changes in modal in
ference as a function of frequency due to Doppler shiftin
For example, Fig. 6~d! shows that with a silt bottom and
target moving toward the source, the scattered field is a
ally weaker than the scattered field from a stationary tar
because the modal interference with Doppler shifting is m
destructive than without.

IV. CONCLUSION

Analytical expressions for the three-dimensional fie
scattered by a moving target from a moving source to a m
ing receiver in a general horizontally stratified ocean wa
guide are derived from first principles using the time-dom
237Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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the
formulation of Green’s theorem. Spectral and modal rep
sentations of the Doppler-shifted scattered field for a sim
harmonic source and a source with arbitrary time depende
are obtained. The expressions are valid when the source
receiver are sufficiently far from the target that multiple sc
tering between the target and waveguide boundaries ca
neglected and the scattered field can be expressed as a
function of the target’s plane wave scattering function. T
source, target, and receiver are assumed to move horizon
with low Mach numbers, as is typical in many active son
scenarios.

The modal representation has a compelling physical
terpretation exhibited by the fact that a simple harmo
source that excitesN modes in the waveguide, for exampl
will excite roughlyN2 distinct harmonic components in th
scattered field due to coupling between the incident mo
and the scattered modes. The spectral representation,
ever, is more general and can be used at closer ranges t
target.

Simulations show that Doppler shifts induced in t
scattered field by target motion are highly dependent on
waveguide environment, target shape, and measuremen
ometry. For a highly dispersive waveguide that suppo
many trapped modes, the frequency spectrum of the fi
scattered by a moving target typically exhibits significa
distortion compared to that of a stationary target or the sa
target moving in free space. Rounded scatterers with r
tively omnidirectional scattering functions, such as spher
scatterers, have greater coupling between incident modes
scattered modes than flat objects that scatter strongest i
specular direction. The scattered field from an object in
multimodal waveguide tends to suffer greater dispersion
the target becomes more rounded and the scattering bec
more omnidirectional.

It is noteworthy that when the target, source, or recei
are moving, the scattered field no longer obeys reciprocity
is evident in our present formulation. The concept of a tim
reversal mirror9–11 therefore is not directly applicable unde
motion of the target, source, or receiver. This is true in b
free space and in a stratified medium.

A new derivation for the Doppler shifted field radiated
a moving receiver from a moving source in a stratified m
dium that proved advantageous in the present work is
presented. The new modal formulation is more accurate t
previous formulations, since for example, it accounts
variation in mode shape due to Doppler shift.

APPENDIX A: SPECTRAL REPRESENTATION
OF THE DOPPLER-SHIFTED FIELD RADIATED
BY A MOVING SOURCE TO A MOVING RECEIVER
IN A STRATIFIED WAVEGUIDE

A spectral representation for the wave field induced b
moving source and measured at a moving receiver has
presented in Ref. 4. An alternative derivation utilizing E
~5! is presented here to represent incident fields in the s
tering problem. The result is consistent with prior resea
but is better suited to the problem at hand.

The location of a moving source is denoted by
238 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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r05r0
01v0t0 , ~A1!

wherer0
0 is the initial location of the source att050 andv0

is its horizontal velocity. For simple-harmonic radiation
frequencyV, the source functionq(r s,t0) is

q~r s,t0!5e2 iVt0d~r s2r0
02v0t0!. ~A2!

The location of a moving receiver is denoted by

r5r01vt, ~A3!

wherer0 is the initial location of the receiver att50 andv is
its horizontal velocity. After changing the variables of int
gration in Eq.~5! from r0 to r s andV0 to Vs, and applying
Eq. ~A2!, Eq. ~5! becomes

F i~r ,t !5E
0

t1

dt0G~~r01vt !,tu~r0
01v0t0!,t0!e2 iVt0.

~A4!

Green’s function for the time-domain scalar wave equat
of the waveguide can be obtained by applying an inve
Fourier transform to Green’s function for the Helmhol
equation at frequencyv,

G~r ,tur0 ,t0!5
1

2p E
2`

`

G~r ur0;v!e2 iv~ t2t0!dv, ~A5!

where the spectral representation of Green’s function for
Helmholtz equation of a stratified waveguide is given by

G~r ur0;v!5
1

2p E
2`

`

d2jig~z,z0 ;v!ei ji "~r2r0!. ~A6!

The depth dependent Green functiong(z,z0 ;v) in Eq. ~A6!
is defined as

g~z,z0 ;v!5
1

2p E
2`

`

d2r8G~r ur0;v!e2 i ji "r8, ~A7!

wherer85r2r0 . With this Eq.~A5! can be expressed as

G~r ,tur0 ,t0!5
1

2p E
2`

`

dv e2 iv~ t2t0!

3
1

2p E
2`

`

d2jig~z,z0 ;v!ei ji "~r2r0!. ~A8!

After inserting Eq.~A8! into Eq. ~A4!, the incident field
becomes

F i~r ,t !5
1

2p E
0

t1

dt0
1

2p E
2`

`

dve2 ivtei ~v2V!t0

3E
2`

`

d2jig~z,z0 ;v!ei ji "~r01vt2r0
0
2v0t0!. ~A9!

For sufficiently long durationt, integration overt0 leads to
Y.-s. Lai and N. C. Makris: Dopper field scattered by an object
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F i~r ,t !5
1

2p E
2`

`

dve2 ivtE
2`

`

d2jid~v2V2ji "v0!

3g~z,z0 ;v!ei ji "~r01vt2r0
0
!

5
1

2p E
2`

`

d2jig~z,z0 ;V1ji "v0!

3ei ji "@r02r0
0
#e2 i ~V1ji "~v02v!!t, ~A10!

which is consistent with Eq.~14! of Ref. 4.

APPENDIX B: NORMAL MODE REPRESENTATION
OF THE DOPPLER-SHIFTED FIELD RADIATED
BY A MOVING SOURCE TO A MOVING RECEIVER
IN A STRATIFIED WAVEGUIDE

The incident field from a moving source at a movin
receiver is derived with an alternative modal method a
compared with prior results of Ref. 3.

Green’s function for the Helmholtz equation of th
waveguide can be expressed in terms of normal modes

G~rsur0;v!5
id

4 (
l

ul~zs ;v!ul~z0;v!H0
~1!~j l~v!urs2r0u!

'
id

A8p
e2 i ~p/4!(

l

ul~zs ;v!ul~z0 ;v!

Aj l~v!urs2r0u

3ei j l ~v!ur02rsu. ~B1!

We take the receiverrs to be a point on the target for con
sistency with the derivation of the target scattering proble
For a moving target, the horizontal position vectorrs of a
point on the target is

rs5rs
01vsts

5~rs
0 cosfs

0 ix1rs
0 sinfs

0 iy!

1~vsts coswsix1vsts sinwsiy!, ~B2!

wherers
0 is the initial horizontal position atts50 andvs is

the horizontal velocity of the target point. Similarly, the ho
zontal position vector of the moving sourcer0 is

r05r0
01v0t0

5~r0
0 cosf0

0ix1r0
0 sinf0

0iy!

1~v0t0 cosw0ix1v0t0 sinw0iy!, ~B3!

wherer0 is the initial horizontal position att050 andv0 is
its horizontal velocity of the source.

We assume the horizontal ranger0 of the source is much
larger than the range to the target pointrs . In the present
formulation, the displacements due to motion are assume
be much smaller thanr0 . This is typically a good assump
tion for low Mach number motions of the source and tar
even after they have been operating after many periods o
simple-harmonic source, i.e.,t0 , ts@2p/V. Therefore, the
azimuthal angles of the vectorsr0

01v0t02rs
0 andr0

02rs
0 are

approximately the same. An approximation can then be m
J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
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ur02rsu'r0
02rs

0 cos~f0
02fs

0 !1v0t0 cos~f0
02w0!

2vsts cos~f0
02ws!, ~B4!

as in Eq.~44c!. After substituting these expressions in E
~A5!, Green’s function for the time domain wave equation
the waveguide becomes

G~rs ,tsur0 ,t0!

5
1

2p
E

2`

`

dv e2 iv~ ts2t0!
id

A8p
e2 i ~p/4!

3(
l

ul~zs ;v!ul~z0 ;v!

Aj l~v!r0
0

3ei j l ~v!@r0
0
2rs

0 cos~f0
0
2fs

0
!#ei j l ~v!v0 cos~f0

0
2w0!t0

3e2 i j l ~v!vs cos~f0
0
2ws!ts. ~B5!

Similarly, the incident field in Eq.~A4! becomes

F i~rs ,ts!5
1

2p
E

0

ts
1

dt0E
2`

`

dv e2 ivtsei ~v2V!t0

3
id

A8p
e2 i ~p/4!(

l

ul~zs ;v!ul~z0 ;v!

Aj l~v!r0
0

3ei j l ~v!@r0
0
2rs

0 cos~f0
0
2fs

0
!#

3ei j l ~v!v0 cos~f0
0
2w0!t0

3e2 i j l ~v!vs cos~f0
0
2ws!ts. ~B6!

For sufficiently long time durationts , the integral overt0

can be approximated as

F i~rs ,ts!5E
2`

`

dv e2 ivts
id

A8p
e2 i ~p/4!

3(
l

d~v2V1j l~v!v0 cos~f0
02w0!!

3
ul~zs ;v!ul~z0 ;v!

Aj l~v!r0
0

3ei j l ~v!@r0
0
2rs

0 cos~f0
0
2fs

0
!#

3e2 i j l ~v!vs cos~f0
0
2ws!ts. ~B7!

In order to integrate overv, we need to find the value ofv
that makes the argument of thed function zero. It is a tran-
scendental equation inv that cannot be solved analytically

h~v!5v2V1j l~v!v0 cos~f0
02w0!50. ~B8!

Taking the derivative ofh(v) with respect tov yields

dh~v!

dv
511

dj l~v!

dv
v0 cos~f0

02w0!

511
v0

v l
G~v!

cos~f0
02w0!, ~B9!
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wherev l
G(v) is the group velocity of thel th mode at fre-

quencyv. For low Mach number motion of the source, th
term

v0

v l
G~v!

cos~f0
02w0!

is much smaller than unity. Therefore, the change of slop
h(v) is small for a small change ofv and the Newton–
Raphson method with only a single iteration gives a reas
ably accurate solution for Eq.~B8!. Using the source fre-
quencyV as the initial guess, the first iteration of Newton
Raphson method yields

v l5V2
h~V!

h8~V!
5V2

j l~V!v0 cos~f0
02w0!

11
v0

v l
G~V!

cos~f0
02w0!

. ~B10!

The horizontal wave numberj l and the group velocityv l
G of

the l th mode are both easily evaluated at the source
quencyV. With the property of thed function in Eq.~57!,
the incident field in Eq.~B7! becomes

F i~rs ,ts!5
id

A8p
e2 i ~p/4!(

l

1

11
v0

v l
G~V!

cos~f0
02w0!

3
ul~zs ;v l !ul~z0 ;v l !

Aj l~v l !r0
0

3ei j l ~v l !@r0
0
2rs

0 cos~f0
0
2fs

0
!#

3e2 i @v l1j l ~v l !vs cos~f0
0
2ws!#ts. ~B11!

This expression accounts for the changes in mode shape
to Doppler shifts in frequency that were not considered
Ref. 3. An additional amplification factor

F11
v0

v l
G~V!

cos~f0
02w0!G21

arises that is similar to the@12(v0 /c)cosu#21 factor for the
field induced by a moving source in free space as discus
in Refs. 1 and 2 and shown in Eq.~C18!.

Our result is consistent with Eq.~35! of Ref. 3 to first
order. The major difference is that all terms in the formu
tion of Ref. 3 are evaluated at the source frequencyV, but
several terms in our formulation are evaluated at the Dop
shifted frequencies. For example, changes in mode shape
to Doppler shifts in frequency are taken into account in o
formulation but not in that of Ref. 3. The additional accura
of the current formulation requires computation of norm
modes at shifted frequency components.

APPENDIX C: DERIVATION OF THE PLANE-WAVE
SCATTERING FUNCTION FOR A MOVING SCATTERER
IN FREE SPACE FROM GREEN’S THEOREM

The purpose here is to derive a surface-integral exp
sion for the plane-wave scattering function of an object m
ing in free space at low Mach number.
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The scattering of plane incident waves from a targ
moving in free space can be formulated using Green’s th
rem for the time-domain scalar wave equation, described
Eq. ~12!.

The location of a point on the surface of the target
denoted by

rs5r c1rs
0, ~C1!

wherer c is the centroid of the object with elevation angleuc

and azimuthal anglefc . The surface pointrs relative tor c is
denoted by the relative position vectorrs

0 with elevation
angleus

0 and azimuthal anglefs
0 with respect to the object’s

centroid. Since the shape of the object does not change
the motion is assumed to be irrotational,rs

0, us
0, andfs

0 are
all independent of time. By defining the cosine between
rections~a,b! and ~u,f! as

h~a,b;u,f!5cosa cosu1sina sinu cos~b2f! ~C2!

an incident plane wave with unit amplitude and frequencyv i

can be expressed as

F̂ i~rs ,ts!5ei @ki "rs2v i ts#

5ei @ki "~rc1rs
0

!2v i ts#

5eiki "rceiki r s
0h~a i ,b i ;us

0 ,fs
0

!e2 iv i ts, ~C3!

whereki5v i /c. Green’s function in free space can be re
resented by an inverse Fourier transform of Green’s func
for the Helmholtz equation via

G~r ,turs ,ts!5
1

2p E
2`

`

G~r urs;v!e2 iv~ t2ts!dv, ~C4!

where Green’s function for the Helmholtz equation is

G~r urs;v!5
1

4p

eikur2rsu

ur2rsu
5

1

4p

eikur2rc2rs
0 u

ur2r c2rs
0 u

with k5v/c. In the far field wherer @r c andr @r s
0, Green’s

function for the Helmholtz equation can be approximated

G~r urs;v!'
1

4pr
eikre2 ikr ch~u,f;uc ,fc!

3e2 ikr s
0h~u,f;us

0 ,fs
0

!. ~C5!

Inserting Eq.~C5! into Eq. ~C4! yields

G~r ,turs ,ts!5
1

2p

1

4pr E2`

`

eikre2 ikr ch~u,f;uc ,fc!

3e2 ikr s
0h~u,f;us

0 ,fs
0

!e2 iv~ t2ts!dv. ~C6!

Substituting Eq.~C6! into Eq. ~12!, the scattered field be
comes
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F̂s~r ,t !52
1

4p E
0

t1

dts
1

2p E
2`

`

dv
eikr

r
e2 iv~ t2ts!

3 R dSs"S[eiki "rceiki r s
0h(a i ,b i ;us

0 ,fs
0)

3e2 iv i ts1F̂s(rs , ts)]

3¹s[e2 ikr ch(u,f;uc ,fc)e2 ikr s
0h(u,f;us

0 ,fs
0)] D ,

~C7!

whereF̂s(rs , ts) is the scattered field on the surface of t
object induced by an incident plane wave with the wa
number vectork i and unit amplitude. For low Mach numbe
motions of the target, approximations can be made for

scattered field on the target such thatF̂s(rs ,ts) is approxi-
mated as the scattered field at the initial location of the s
face, with a phase shift factoreiki "rc due to rigid translation
of the centroid, modulated by exp(2ivits) so that

F̂s~rs ,ts!'F̂s~rs
0,k i ;v i !e

2 iv i tseiki•rc. ~C8!

If the centroid of the scatterer is moving with constant v
locity vs then

r c5vsts , ~C9!

where the initial location ofr c at ts50 is the coordinate
system’s origin. Substituting Eqs.~C8! and ~C9! into Eq.
~C7! yields

F̂s~r ,t !52
1

4p E
0

t1

dts
1

2p E
2`

`

dv
eikr

r
e2 iv~ t2ts!

3 R dSs"S[eiki r s
0h(a i ,b i ;us

0 ,fs
0)

3e2 i (v i2ki "vs)ts1F̂s(rs
0,k i ;v i)e

2 i (v i2ki "vs)ts]

3¹s[e2 ikvstsh(u,f;uc ,fc)e2 ikr s
0h(u,f;us

0 ,fs
0)] D .

~C10!

For sufficiently long time durationt, the integral over
ts introduces the delta function d(v(12(vs /c)
3h(u,f;uc ,fc))2v i1k i "vs) to the integrand. The prop
erty of thed function described in Eq.~57! in this case leads
to

v* 5
v i2k i "vs

12
vs

c
h~u,f;uc ,fc!

, ~C11!

wherev* is the Doppler shifted frequency in the direction
propagation~u, f!. Integrating overv then yields
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F̂s~r ,t !52
1

4p

1

12
vs

c
h~u,f;uc ,fc!

eiv* ~~r /c!2t !

r

3 R dSs•S[eiki r s
0h(a i ,b i ;us

0 ,fs
0)1F̂s(rs

0,k i ;v i)]

3¹s[e2 i (v* /c)r s
0h(u,f;us

0 ,fs
0)] D . ~C12!

In the far field, the scattered field can be approxima
as a point source radiating with an angular weighting facto15

given by the object’s plane-wave scattering function via

Cs~r ur c;v!'
eikur2rcu

kur2r cu
S~u,f;a i ,b i ;v!, ~C13!

which for r @r c reduces to

Cs~r ur c;v!'
1

kr
eikre2 ikr ch~u,f;uc ,fc!

3S~u,f;a i ,b i ;v!. ~C14!

The field induced by a moving point source can be expres
as

F̂s~r ,t !5E
0

t1

dtsE dVcCs~r ,tur c,ts!q~r c ,ts! ~C15!

with source function

q~r c ,ts!5e2 iv i tsd~r c2vsts!. ~C16!

Equation~C15! then becomes

F̂s~r ,t !5E
0

t1

dts
1

2p E
2`

`

dv e2 iv~ t2ts!Cs~r uvsts;v!e2 iv i ts

'E
0

t1

dts
1

2p E
2`

`

dv
eikr

r
e2 iv~ t2ts!

3
1

k
S~u,f;a i ,b i ;v!e2 i ~v i2ki "vs!ts

3e2 ikvstsh~u,f;ucwc!. ~C17!
Using similar techniques as before to integrate overts andv,
the scattered field becomes

F̂s~r ,t !5
1

12
vs

c
h~u,f;uc ,fc!

eiv* ~~r /c!2t !

v*

c
r

3S~u,f;a i ,b i ;v* !, ~C18!

where @12(vs /c)h(u,f;uc ,fc)#21 is a dynamical factor
due to the motion.2 By equating Eq.~C12! with Eq. ~C18!,
the plane-wave scattering functionS(u,f;a i ,b i ;v* ) for an
object moving at low Mach number in free space can
written in terms of a surface integral over the object by

S~u,f;a i ,b i ;v* !

'2
v*

4pc R dSs"~@eiki r s
0h~a i ,b i ;us

0 ,fs
0

!

1F̂s~rs
0,k i ;v i !#¹s@e2 i ~v* /c!r s

0h~u,f;us
0 ,fs

0
!# !. ~C19!
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If the object is not moving, Eq.~C19! leads to the specia
case Eq.~C9! of Ref. 6 directly.

APPENDIX D: DERIVATION OF THE NORMAL MODE
REPRESENTATION OF THE DOPPLER-SHIFTED
FIELD SCATTERED FROM A MOVING TARGET
BY A SOURCE WITH ARBITRARY TIME
DEPENDENCE IN A STRATIFIED WAVEGUIDE

Using the incident field described in Eq.~B7! and de-
composing the field into upgoing and downgoing pla
waves yields

F i~rs ,ts!

5E
2`

`

dv0(
l

d~v02V1j l~v0!v0cos~f0
02w0!!

3@Al~r0
0;v0!eik~v0!r s

0h~a l ,p2f0
0;us

0 ,fs
0

!

2Bl~r0
0;v0!eik~v0!r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!#

3e2 i ~v01j l ~v0!vs cos~f0
0
2ws!!ts. ~D1!

As in Sec. II C the total scattered field on the surface
the target can be represented as

Fs~rs ,ts!

5E
2`

`

dv0(
l

d~v02V1j l~v0!v0cos~f0
02w0!!

3@Al~r0
0;v0!F̂s~rs ,k l

1 ;v0!
re

ei

242 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003
f

2Bl~r0
0;v0!F̂s~rs ,k l

2 ;v0!#e2 iv0ts. ~D2!

For low Mach number motion,F̂s(rs ,k l
1 ;v0) and

F̂s(rs ,k l
2 ;v0) are approximated as the scattered fields

the initial location of the surfaceF̂s(rs
0,k l

1 ;v0) and

F̂s(rs
0,k l

2 ;v0) multiplied by the phase shif

e2 i j l (v0)vs cos(f0
0
2ws)ts

Equation~D2! the becomes

Fs~rs ,t !

5E
2`

`

dv0(
l

d~v02V1j l~v0!v0 cos~f0
02w0!!

3@Al~r0
0;v0!F̂s~rs

0,k l
1 ;v0!

2Bl~r0
0;v0!F̂s~rs

0,k l
2 ;v0!#

3e2 i ~v01j l ~v0!vs cos~f0
0
2ws!!ts. ~D3!

Substituting Eqs.~46!, ~D1! and~D3! into Eq.~12!, the scat-
tered field induced by a simple-harmonic source with sou
frequencyV is expressed as
Fs~r ,t !'2
1

2p E
0

t1

dts R dSs"H E
2`

`

dv0(
l

d~v02V1j l~v0!v0 cos~f0
02w0!!e2 i ~v01j l ~v0!vs cos~f0

0
2ws!!ts

3SAl~r0
0;v0!@eik~v0!r s

0h~a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

1;v0!#

2Bl~r0
0;v0!@eik~v0!r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

2 ;v0!# D
3¹sS E

2`

`

dv e2 iv~ t2ts!(
m

@Am~r0;v!e2 ik~v!r s
0h~p2am ,f0;us

0 ,fs
0

!2Bm~r0;v!e2 ik~v!r s
0h~am ,f0;us

0 ,fs
0

!#

3ei jm~v!v cos~f02w!te2 i jm~v!vs cos~f02ws!tsD J . ~D4!
ier

e.
For an arbitrary source with frequency spectrumQ(V), the
normal mode representation of the Doppler-shifted scatte
field is formulated by Fourier synthesis

Cs~r ,t !5
1

2p E
2`

`

dV Q~V!Fs~r ,t !. ~D5!

The frequency spectrum of the scattered field in the rec
d

v-

er’s frame of reference is obtained by applying a Four
transform to Eq.~D5!,

Cs~r ,v8!5E
2`

`

dt eiv8tCs~r ,t !, ~D6!

wherev8 is the frequency in the receiver frame of referenc
Integrating overt leads to
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Cs~r ,v8!'2
1

2p E
2`

`

dV Q~V!E
0

t1

dts R dSs"H E
2`

`

dv0(
l

d~v02V1j l~v0!v0 cos~f0
02w0!!

3e2 i ~v01j l ~v0!vs cos~f0
0
2ws!!ts

3SAl~r0
0;v0!@eik~v0!r s

0h~a l ,p2f0
0;us

0 ,ss
0

!1F̂s~rs
0 ,k l

1 ;v0!#

2Bl~r0
0;v0!@eik~v0!r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

2 ;v0!# D
3¹sS E

2`

`

dv eivts(
m

@Am~r0;v!e2 ik~v!r s
0h~p2am ,f0;us

0 ,fs
0

!2Bm~r0;v!e2 ik~v!r s
0h~am ,f0;us

0 ,fs
0

!#

3e2 i jm~v!vs cos~f02ws!tsd~v2v82jm~v!v cos~f02w!! D J . ~D7!

In order to integrate overv, the roots of the transcendental equation ofv need to be computed

h~v!5v2v82jm~v!v cos~f02w!50. ~D8!

Newton–Raphson method is used to find the approximated solutions of Eq.~D8!. First iteration withv8 as the initial guess
gives

vm8 5v82
2jm~v8!v cos~f02w!

12
v

vm
G~v8!

cos~f02w!

, ~D9!

wherevm
G(v8) is the group velocity of themth mode at frequencyv8.

Integrating overv yields ad function of v0 . Performing integration overV yields

Cs~r ,v8!'2
1

2p E
0

t1

dts R dSs"H E
2`

`

dv0(
l

Q~v01j l~v0!v0 cos~f0
02w0!!e2 i ~v01j l ~v0!vs cos~f0

0
2ws!!ts

3SAl~r0
0;v0!@eik~v0!r s

0h~a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

1 ;v0!#

2Bl~r0
0;v0!@eik~v0!r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

2 ;v0!# D
3¹sS (

m

1

12 @v/vm
G~vm8 !# cos~f02w!

@Am~r0;vm8 !e2 ik~vm8 !r s
0h~p2am ,f0;us

0 ,fs
0

!

2Bm~r0;vm8 !e2 ik~vm8 !r s
0h~am ,f0;us

0 ,fs
0

!#ei @vm8 2jm~vm8 !vs cos~f02ws!#tsD J . ~D10!

For sufficiently long time durationt, the integration overts introduces the delta functiond(v02vm8 1j l(v0)vs cos(f0
02ws)

1jm(vm8 )vs cos(f02ws)) to the integrand. Once again, a transcendental equation inv0 for the argument of the delta functio
needs to be solved by means of Newton–Raphson method

h~v0!5v02vm8 1j l~v0!vs cos~f0
02ws!1jm~vm8 !vs cos~f02ws!50. ~D11!

The derivative ofh(v) with respect tov0 is

dh~v0!

dv0
511

vs

v l
G~v0!

cos~f0
02ws!. ~D12!

First iteration of Newton–Raphson method withvm8 as the initial guess is
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v l ,m8 5vm8 2
h~vm8 !

h8~vm8 !

5vm8 2
j l~vm8 !vs cos~f0

02ws!1jm~vm8 !vs cos~f02ws!

11
vs

v l
G~vm8 !

cos~f0
02ws!

. ~D13!

Integrating overv0 finally yields

Cs~r ,v8!'2 R dSs"H(
l

(
m

Q~v l ,m8 1j l~v l ,m8 !v0 cos~f0
02w0!!

3
1

12 @v/vm
G~vm8 !# cos~f02w!

1

11 @vs/v l
G~v l ,m8 !# cos~f0

02ws!

3~Al~r0
0;v l ,m8 !@eik~v l ,m8 !r s

0h~a l ,p2f0
0;us

0 ,fs
0

!1F̂s~rs
0 ,k l

1 ;v l ,m8 !#

2Bl~r0
0;v l ,m8 !@eik~v l ,m8 !r s

0h~p2a l ,p2f0
0;us

0 ,fs
0

!!1F̂s~rs
0 ,k l

2 ;v l ,m8 !#)

3¹s~Am~r0;vm8 !e2 ik~vm8 !r s
0h~p2am ,f0;us

0 ,fs
0

!2Bm~r0;vm8 !e2 ik~vm8 !r s
0h~am ,f0;us

0 ,fs
0

!!J . ~D14!
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