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An analytical expression is derived for the temporal coherence of an acoustic field after multiple
forward scattering through random three-dimensional (3D) inhomogeneities in an ocean waveguide.
This expression makes it possible to predict the coherence time scale of field fluctuations in
ocean-acoustic measurements from knowledge of the oceanography. It is used to explain the time
scale of acoustic field fluctuations observed at megameter ranges in various deep ocean-acoustic
transmission experiments. It is shown that this time scale is nonlinearly related to the much longer
coherence time scale of deep ocean internal waves through a multiple forward scattering process. It
is also shown that 3D scattering effects become pronounced when the acoustic Fresnel width
exceeds the cross-range coherence length of the deep ocean internal waves, which lead to frequency
and range-dependent power losses in the forward field that may help to explain historic long range

measurements. © 2008 Acoustical Society of America. [DOI: 10.1121/1.2967475]

PACS number(s): 43.30.Re [RCG]

I. INTRODUCTION

Internal waves cause random compressibility and den-
sity fluctuations that can have a pronounced accumulated
effect on acoustic signals propagating over long ranges in the
deep ocean. The resulting random multiple forward scatter-
ing causes significant fluctuations in the acoustic field,"®
leads to degradation in the temporal coherence of acoustic
signalsg"11 and significant signal-dependent noise.'? Under-
standing the properties of this signal-dependent noise is often
critical to effectively employ acoustics to ocean remote sens-
ing and communication,> " as well as in the Acoustic Ther-
mometry of Ocean Climate (ATOC).'® Knowledge of the co-
herence time scale of a received signal is essential in (1)
reducing the error of any measurement or estimate obtained
from fluctuating acoustic field data by stationary averaging
and (2) applying the fundamental coherent processing tech-
niques of ocean acoustics, such as matched filtering, beam-
forming, matched-field and synthetic aperture processing.
The coherence time scale, for example, is needed to deter-
mine the number of statistically independent samples of the
received acoustic signal during a given measurement time,
which can then be averaged to reduce estimation error and
signal-dependent noise.'>* Since coherent processing must
typically be restricted to within the coherence time scale of
field fluctuations, a good estimate of the coherence time
scale is usually necessary to design an effective experiment.
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In this paper, we derive a general analytical expression
for the temporal correlation function, which can be used to
predict the coherence time scale of the acoustic power and
field propagated through two-dimensional (2D) and three-
dimensional (3D) random inhomogeneities, such as internal
waves, bubbles, fish schools, eddies, and surface waves.
From this expression, the coherence time scale is calculated
for acoustic waves propagating through random internal
wave inhomogeneities. It is shown that the coherence time
scale of the acoustic field fluctuations observed at megameter
ranges in various deep ocean-acoustic transmission
experimentslo’21 can be explained by multiple forward scat-
tering through linear internal waves in the deep ocean. The
roughly 10 min acoustic coherence time scale measured' !
is shown to be nonlinearly related to the much longer 4 h
coherence time scale of the internal waves. The latter is de-
rived from the Garret-Munk (GM) spectrum.’>** Analysis of
the temporal coherence function at zero time lag, which cor-
responds to the expected intensity of the fluctuating signal,
shows that 3D scattering from internal waves can lead to
power loss in the low frequency long range propagation in
the deep ocean. For a given receiver range, these losses begin
to become pronounced as the frequency decreases to the
point where the Fresnel length24 of the acoustic measure-
ments exceeds the cross-range coherence length24 of the in-
ternal waves. This leads to out-of-plane scattering that re-
moves energy from the forward direction. After reaching a
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maximum, power losses in the forward direction begin to
decrease due to weakening Rayleigh—Born scattering as the
acoustic frequency decreases. This may explain the unex-
pected attenuation observed in some historic long range
(megameter) low frequency (5—-75 Hz) measurements. >

Much related work in the 1970s and 1980s focused on
using ray theory to work toward an estimate of temporal
coherence by accumulating random phase fluctuations along
isolated water-borne ray paths in the deep ocean.*® Due to
perceived oversimplifications, many moved away from ray
theory and began performing numerical Monte Carlo simu-
lations with the 2D parabolic wave equation. For example, in
Ref. 27, a 2D Monte Carlo approach based on a parabolic
approximation for a specific deep ocean environment was
used to estimate the temporal coherence function. Some dis-
advantages of the Monte Carlo approach, however, are that
(1) it does not provide a general analytical expression for the
temporal coherence function but, instead, requires intensive
numerical calculations for each specific case and (2) it is
restricted to 2D propagation and scattering scenarios.

In Sec. II, analytical expressions for the temporal corre-
lation functions of the acoustic power and field forward
propagated through a slowly time-varying random medium
are derived. In Sec. III, the mean and temporal coherence of
the scatter function are derived for internal wave inhomoge-
neities in the deep ocean. This is required to determine the
temporal coherence function of the acoustic power and field.
Differences between 2D and 3D scattering processes are re-
viewed in Sec. I'V. Illustrative examples are provided in Sec.
V.

Before closing the Introduction, it is useful to first
briefly review key steps in the derivation by Ratilal and
Makris** that will also be needed here. Ratilal and Makris**
combined the waveguide scattering theory and a differential
marching procedure analogous to that used in free space op-
tics by Rayleigh to derive the mean and power of the acous-
tic field forward propagated through 3D random inhomoge-
neities in terms of waveguide modes. That analysis is for the
mean, spatial covariance, and temporal variance of the field.
Since the temporal coherence function and the coherence
time scale require the temporal covariance, it must be de-
rived here, since the temporal variance and covariance are
only equal at zero time lag. To obtain the temporal covari-
ance, we follow the same marching procedure used in Ref.
24 to calculate the temporal coherence function of the acous-
tic power and forward field propagated through 3D inhomo-
geneities. We define the coherence time scale to be the
e-folding time at which the temporal coherence function falls
to 1/e of its zero time lag value. Knowledge of this time
scale is often essential for designing underwater experiments.

Since the inhomogeneities are assumed to follow a sta-
tionary random process over time, the mean field remains as
the time invariant result derived in Ref. 24. The process of
propagating through a single differential slab of random in-
homogeneities causes a change in the mean acoustic field.
For each mode, this change can be expressed as a product of
factors including the incident field, a complex modal wave-
number change induced by scattering, and the thickness of
the slab. The mean field after multiple forward scattering
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through the inhomogeneous medium, obtained by integrating
over differential slabs, takes the form of a product of the
incident field and an exponential factor that involves the ac-
cumulated modal wavenumber changes over range from
source to receiver. These wavenumber changes determine the
dispersive and attenuating effects of the inhomogeneities,
through their real and imaginary parts, respectively, and ac-
count for mode coupling in the scattering process.

Ratilal and Makris®* used a similar marching procedure
to derive the mean power of the forward field. The incremen-
tal change in acoustic power due to a single slab of inhomoe-
geneities can be expressed in terms of the depth integral of
the second moment of the scattered field, as well as cross
terms between the scattered and incident fields. This change
can then be expressed as the product of the incident power,
the difference between modal variance and attenuation coef-
ficients, and slab thickness. Modal variance coefficients, in-
troduced by depth integration of the scattered field second
moment, depend on the variance of intrinsic properties of the
inhomogeneities, such as compressibility and density. The
acoustic power at the receiver range is then obtained by
marching the power change equation from the source to the
receiver through direct integration. This power is expressed
as a product of the incident power and an exponential factor
involving the range integration of the difference between the
modal variance and attenuation coefficients.

Il. ANALYTICAL MODEL FOR TEMPORAL
COHERENCE OF THE ACOUSTIC POWER AND FIELD
FORWARD PROPAGATED THROUGH A SLOWLY
TIME-VARYING RANDOM MEDIUM

In this section, we derive an analytical expression for the
temporal correlation function of the acoustic power and field
forward propagated through a slowly time-varying random
medium based on the normal mode method. We assume that
(1) the random medium follows a stationary process and (2)
the medium in a single slab is static during the time period of
acoustic wave propagation through it. This is a valid assump-
tion since the correlation time scale of medium fluctuation is
much longer than the time it takes the acoustic wave to
propagate through a single slab. Note that the derivation of
the temporal correlation function of acoustic power (depth-
integrated temporal correlation of acoustic total field) does
not require an assumption of acoustic modal independence.24
The assumption of modal independence is only used here to
estimate the temporal correlation of the forward field at a
specified receiver location r. It is approximately valid when
the random component of the field becomes a circular com-
plex Gaussian random variable,'” since the independence of
at least a few dominant modes is then necessary by the cen-
tral limit theorem. Gaussian field fluctuations are typical in
many ocean-acoustic measurements. '

All the derivations in this section are based on a single
frequency transmission. In the Appendix, we extend our
model of the temporal correlation function to a narrow-band
signal, which can be approximately expressed in terms of the
temporal correlation function of the forward field.
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FIG. 1. The geometry of the source, receiver, and inhomogeneities.

A. Mean scattered field for a slowly time-varying
random medium

Here, we provide the expression for the mean acoustic
field scattered through slowly time-varying random inhomo-
geneities that are confined within a slab centered at p, of
thickness Ap,.

As shown in Fig. 1, the origin of the coordinate system
is placed at the air-water interface with the positive z-axis
pointing downward. The source is located at the horizontal
origin ry=(0,0,zy), receiver coordinates are given by r
=(x,y,z), and inhomogeneity centers are given by r,
=(xX, yX,zX). Here, ¢ will solely be used to denote time de-
pendence. [The notation ¢ used in Ref. 24 is not for time
dependence but denotes target coordinates ry=(x,,y,,z,).]
Spatial cylindrical (p,¢,z) and spherical systems (r, 8, ¢)

(4m)?

are defined by x=rsin #cos ¢, y=rsin €sin ¢, z=r cos 6,
and p?’=x’+y’. The horizontal and vertical wavenumber
components for the nth mode are, respectively, &,=k sin «,,
and y,=k cos «,, where «,, is the elevation angle of the mode
measured from the z-axis. Here, 0=a,=/2 so that the
down- and upgoing plane wave components of each mode
have elevation angles «, and 7— «,, respectively. The corre-
sponding vertical wavenumber of the down- and upgoing
components of the nth mode are 7y, and —v,, respectively,
where PR{y,} =0. The azimuth angle of the mode is denoted
by B. The wavenumber magnitude k equals the angular fre-
quency w divided by the sound speed c in the object layer,
where k2=§i+ yzn The geometry of spatial and wavenumber
coordinates is shown in Fig. 2 of Ref. 28.

The scattered field from random inhomogeneities con-
fined within the slab is found by summing contributions from
unit volumes of inhomogeneity as described in Eq. (1) of
Ref. 24. The scattered field discussed in the present paper is
different from Eq. (1) of Ref. 24, since it varies as a function
of time due to the slow fime-varying random inhomogene-
ities in the slab according to

q)s(r|r0’Apx(px),fst) = f f f @x(r|r0’r)(sf’ t)dVX’ (1)
AV

where AV, is the volume of the slab, cps(r|r0,rX, f,1) is the
scattered field per unit volume of inhomogeneities centered
atr,, and 7 is the time at the receiver r.

The scattered field from a unit volume of slowly varying
inhomogeneity, which has been derived from Green’s theo-

rem in Refs. 29 and 30, can be expressed as

(Ps(r|rO’Aps(ps)vf’ t) = E Z _[Am(r - FX)A,,(I'X - rO)SrX,z(ﬂ' - Uy, :Bs(d)’ ¢X) SO, d))()

k

m=1 n=1

- Bm(r - I'X)A,l(I'X - rO)Sr)(,t(am’ 185(¢a d))() SOy, ¢X) - Am(r - I'X)Bn(l'X - rO)
XSrX,z‘(ﬂ- - Qy, Bs(¢v ¢X) ST — s ¢X) + Bm(r - I'X)Bn(l')( - rO)SrX,t(am’ Bs(¢’ ¢X) ST — &, ¢X)] > (2)

where A,(r,~ro) and B,(r,~r,) are the amplitudes of the
down- and upgoing modal plane wave components incident
on the inhomogeneity at r, defined in Eqgs. (3) and (4) of Ref.
24, A, (r-r,) and B, (r-r,) are the amplitudes of up- and
downgoing modal components scattered from the inhomoge-
neity defined in Egs. (5) and (6) of Ref. 24, B(¢,d,)=¢
—arcsin{p,/|p—p,|sin(¢,— P)} is the receiver azimuth from
the target, and s, (a,B;e;,B;) is the scatter function
density24 of inhomo)éeneities atr,.

Assuming that the inhomogeneities obey a stationary
process in time, the mean scatter function density is time
invariant. The mean scattered field from a single inhomoge-
neous slab can then still be expressed as
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<(Ds(l'|l'0,ApS(ps),f, t)) = ((I)S(r|r0, Aps(ps)’f»
= 2 q)?(r|r0’f)ivn(ps)Aps’ (3)

n
by following Eq. (59) of Ref. 24, where v,(p,) is the time-
invariant change of the complex wavenumber due to scatter-
ing from the slab.

B. Marching temporal correlation through a slowly
varying random waveguide with difference
and integral equations

In this section, a difference equation is derived for the
depth-integrated temporal correlation of the total field scat-
tered from inhomogeneities confined within a slab centered
at p,. The depth-integrated temporal correlation of the total
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field is then marched through the random waveguide to in-
clude multiple forward scattering from all inhomogeneities
between the source and receiver.

The total field scattered from inhomogeneities within the
slab is

(D(I'|I'0,Aps(ps),f, t) = <Di(r|r0,f) + d)s(r|r0,ApS(ps),f, t)7

4)
where
U
®,(r|ry.f) = 477— _”TME u,(Du,(z0) 7= (5)
d(zo)\87 VEp

is the incident field expressed in terms of acoustic normal
modes.

The mean total field does not depend on ¢ from Eq. (3)
and, as in Eq. (83) of Ref. 24, is given by:

(D(r[ro.f.1))
= <¢T(r|r0’f)>

=4 —177/42

tfov (pv)ﬂlpY (6)
d(zo) V87

n

where the addition of an exponential term accounts for the
dispersion and attenuation induced by multiple scattering.
From Eq. (4), the depth-integrated temporal correlation of
the total field can be written as

f e )<d>(r|ro,Aps(ps) S )P (x|rg, Apy(py).fo1"))dz

— ) 2
- [ st

f e )(<‘I> (x[eo. NP (rlre, Apy(p,). f.1'))
+ <q)l (r|r09f)q)s(r|r()’Aps(ps)»f’ [)>)dZ

“ 1

f d( )<CI) (r|r09Aps(p.s) ft

XD (x|ro, Apy(py).f.1')dz. ()

The first term at the right hand side of Eq. (7) is the
incident intensity

j d()|q>(r|rof)|2dz Wilplro) =2 W (plro).  (8)

n

where

o 2Edp.

W (plr) =

|
2
d’(z 0)| “lzol| plél

The second term of Eq. (7) is the depth-integrated cross
term arising from the interference between the incident and
the scattered field. By inserting the mean scattered field of
Eq. (3) into the second term of Eq. (7) and by invoking
modal orthogonality
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dz=95,,, 9
J a0 n(@u,(2)dz =6, )
integration leads to

f L] e 89,00,
(0 (2lr0), (Flro. Apy (py) ) dz
j e L VAP NA R

X(D,(r|r, Apy(py), fo1))]dz
= 2 W(plr)23{v,(p)}Ap;. (10)

The last term of Eq. (7) is the depth-integrated temporal
correlation of the field scattered from the slab. The temporal
correlation of the scattered field (®,(r|ry,Ap,(p,).f,1)
XD (r[rg,Apy(py).f>1'))=corte o (Apy(p,).f, 7=1=1")  de-
pends on the temporal and spatial correlation of the scatter
function  density <srX,[(a,ﬁ, a,-,,Bl-)s;k ’ t,(a’ Bali B,

e

which will be discussed in Sec. IIC. When r=¢',
corrg o (Ap(py).f,7) becomes the second moment of the
scattered field (|@y(r|ry,Aps(py).f)?) of Eq. (61), Ref. 24.
From Sec. III B of Ref. 24, the depth-integrated second mo-
ment of the scattered field is

1
f @<|¢S(r|r0’Aps(ps),f)|2>dz

0

= 2 W(plrg) s, (pg D molpss (11)

n=1

where w,(p,,0) is the variance coefficient that contains a
modal sum to account for modal coupling due to the random
scattering process. When ¢t #t', we can apply the procedure
used in the derivation of Eq. (11) to calculate the last term in

Eq. (7),

f <(I)s(r|r0’ AP;(P;)JC’ t)q)Y (r|r0’ Aps(ps)7f7t,)>dz
0 d(Z)

o0

=2 W (plrg)p,(p, 7=1—1")Ap,, (12)

n=1

where w,(p;,7) is the temporal variance coefficient, which
accounts for modal coupling and quantifies the modal energy
transferred from the mean field to the covariance field. It also
describes how the forward field decorrelates as the time lag
T=t—1t" increases after propagating through a slowly time-
varying medium. The dependence of w,(p,,7) on time lag 7
is a consequence of its dependence on the temporal covari-
ance of the scatter function density cov,(p;,zy,2,/,7), which
will be discussed in Sec. II C.

Inserting Egs. (8), (10), and (12) into Eq. (7), the depth-
integrated temporal correlation of the total field is found to
be

2815
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f d( )<q)(r|r0’Aps(p.s) f t)q)*(r|r0’Aps(ps) ft )>dZ

= (Wy(plre, M)
= > W(plro) (1 + p,(pys ) = 23 (2,(p)) Apy. (13)

This can be rewritten as a difference equation

AWo(plrg,r=1-1")) = 2 AW (plro, 7))

—E “(plre) (pa(pe ) = 23 (1,(p)) Apsy.
(14)

Following the marching process described in Sec. III B of
Ref. 24, we have

(Wrlplro, D) = > (WP (p|ro, D)
_ 2 W(")(p| )ef (1 (pg7)— 23{V,l(;0v)})dpY (15)

Assuming independence between acoustic modes and fol-
lowing the derivation for the second moment of the forward
field in Sec III C of Ref. 24, the temporal correlation of the
forward field at receiver r can be expressed as

<CI>(r|rO,f,t)(D*(r|r0,f,t')>

= COrTpg«(r|ro. f,7)

p
=2 [ (x]ry)|? eXP( f [n(ps> ) = Zj{yn(ps)}]dps>,
n 0

(16)

where |¢>E")|2 is the incident intensity of acoustic mode 7 in a
static ocean waveguide. Since both u,(p,,7) and v,(p,) de-
pend on the position of inhomogeneities along the acoustic
propagation path, range dependence in the scattering process
can be taken into account.

C. Complex wavenumber change and temporal
covariance coefficient

As explained in Sec. I A, the complex wavenumber
change v,(p,) is time independent. The expression for v,(p,)
is given in Eq. (60a) of Ref. 24 as

2 1
vlp) = f /js el
><<SrX,t(’7T_ ay, ¢;an’ ¢)> - N;,Z)N,(ql)
X<er,t(an’ i, $)) - NLI)N,(,Z)

a,, d); m— Oy, ¢)>
+ (NP P0is, (o i = ap@DIdz. (17

X <SrX,t(7T -

At zero time lag, the temporal covariance coefficient
m,(ps, 7) becomes the variance coefficient w,(p,,7=0). The
variance coefficients for 2D and 3D scattering processes, re-
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spectively, are explicitly expressed in Egs. (74) and (77) of
Ref. 24. The variance coefficient contains a term
C;(py-2y,2y7,m,n) found in Eq. (72) of Ref. 24, which is a
function of spatial correlation of the scatter function density

COV”(SP 2y Sp, 2y )=(s¢ (a B; a,,B,)s (a B a,’ﬂ ).

For nonzero time lag, the time dependence in w,(ps,7) is

introduced by the time lag dependent term
C4(ps.2y,2y7,m,n,7), which is obtained by replacing
covss(spyzx, spyZX,) with COVy (D5, 2y 2y > T) in

C;4(ps.2y,2,7,m,n). The temporal covariance of the scatter
function density cov,(p;.z,.z,, 7) is derived for 2D and 3D
scenarios, respectively, in the following section. Then, we
give the expressions of the w,(p,,7) by following the deri-
vation of wu(p,,7=0) in Sec. III B of Ref. 24.

1. Inhomogeneities fully correlated within the Fresnel
width (2D)

Here, the cross-range coherence length ¢, of the random
inhomogeneity is greater than the Fresnel width** Y, which
corresponds to an effective 2D scattering process for forward
scatter. The spatio-temporal correlation of the scatter func-
tion density is given by

%
<srx,t(a/’B’ ai’Bi)sr , tr(a,’B,9a1{’Bl")>
¥

= ex(ps’z)(’zx’)[<sps,zX,t(a’:87a’i’ﬁi)s t’(a ﬁ » uﬁ )>
= (s e @B BN, (/B af BB, = )
+(opy e @0 B B, (o Bl )

= €X(PssZXsZX’)COVS.Y(I)SsZXsZX’, T) 5(-x)( - x)(’)

Hsp e daBoaB)s, (o' B alB)), (18)

where €, is the coherence length24 of the random inhomoge-
neity in the direction of the acoustic propagation. The tem-
poral covariance of the scatter function density

COVy (P> 2y 2y, T=1—1')
%k
= (5p eyl B B,
%
- <sp_Y,ZX,t( a, ﬁ» a;, Bi)><sps’z)(

X,J!(a,’ﬂl’al{’ﬁl{)>
e B a). B)) (19)

depends only on the time lag 7=f—1" not on the absolute time
t and t' as a consequence of the temporal stationarity as-
sumption for inhomogeneities in the slab.

The temporal variance coefficient only depends on €,
under the 2D scattering scenario

1 * * ex(ps’z < ’)
() =2 —f dzxf Az
m |§m| 0 0 gm

» 4
k(zx)k(zx’)d(zx)d(zx’)

CS,S(ps7 Z)(? Z)(’ ,m,n, T) .
(20)
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2. Inhomogeneities uncorrelated within the Fresnel
width

Here, € y<Ypso that inhomogeneities contained within
the Fresnel width lead to a 3D scattering process and are
uncorrelated. This leads to

(sr e B, @.B)s, (a'.Ba].B))

rl’

~A (ps’ZX?ZX [<S 2y a:B a’taﬁz)s t’(a :8 s 173 )>
@B a,,ﬁ»]&(pX py)

+ <SPS>ZX,t(a’ ﬂ’ ainBi))(spSr’

- <SPS’ZX’l(a’ B’ ai9:8i)><s
z 'J,(a,’ﬂ ’a[ ’ﬂ[»

:AC(pS’ZX’ZX,)COV”(pS’ZX’ZX” T) 5(p)( - pX/)
* ! ’ ! !

+ <Sps,zX,l(a,ﬂ7 ai»ﬁi)><spr z !t,(a 7B ’ai’Bi)>’ (21)
57X

where A.(ps.zy,2,/) is the coherence area of the

inhomogeneities.
The temporal covariance is a function of A (p;,z,.2,/)
under the 3D scattering scenario

3D / p (" :
My (ps’ T) = E _J dZ f dZ ’
m 27T§mp (p - pv) |§m| 0 X 0 X

472
k(z)k(z,)d(z))d(z,)
X Cs,s(p.wz)(’zx"m’n"r)' (22)

XAc(ps, ZX’ Z)(’)

In summary, the spatio-temporal correlation of the

scatter function density (e a,Bra;, B)
r t,(a Bl Bl)) is expressed as a function of the tem-
poral covariance of the scatter function density

coV,(py»2y52y7» T), Which accounts for slow time variations
of inhomogeneities via time lag 7.

lll. STATISTICS OF THE SCATTER FUNCTION
DENSITY OF INTERNAL WAVE INHOMOGENEITIES IN
A DEEP OCEAN ENVIRONMENT

In this section, we derive expressions for the mean and
temporal correlation of the scatter function density when the
random inhomogeneities are internal waves in a deep ocean
environment. The scatter function density for a coherent vol-
ume of internal wave inhomogeneity centered at the horizon-
tal location p, is expressed in terms of the compressibility
fraction I', and the density fraction I', by applying the
Rayleigh-Born approximation to Green’s theorem, as shown
in Sec. B of Ref. 31,

1 K
”[9i=— _FK 9-’t
oyl B s ) Ac(px,zx)f Lﬂ4w[ (Pro2pet)
+ 7](k,k,-)Fd(pX,zX,t)]ei(gi_g)'“xdzu)(
(23)

where  p,=p+u, and 7k k;)=Kk;-k/k*=cos a; cos a
+sin q; sin a cos(B;,—B) is the cosine of the angle between
the incident and scattered plane wave directions.
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The mean scatter function density is

1 K
<pr,zX,f(a,,3,ai,ﬁi)>=m f f E(ﬂ(ﬂxlx,l)

+ 9k, K)T 4Pz, 1))e 68 Mdu,
18
A (px’z)()4

+ ”(k,ki)rd(PXsZXat»ff ei<§i_§>'“xd2ux
AC

(24)

—(Lpyzy1)

and the temporal correlation of the scatter function is

(SpycyilaBB)s, (ol Bl )

_ 1 f f f f P& H-(uyuy)
Ac(ps’zx)Ac(ps’Z)(') A, AL',

><covff(px,pX,,zX,zX,,t,t’)dqudqu,, (25)

where

COV Py P> 2y 2y 15 151")
k3 2

X[Fk(p)(’3z)(’9t,) + ﬂ(k9ki)rd(p)(’3z)(’9t,)]> (26)

is the spatio-temporal correlation of intrinsic scattering prop-
erties. To calculate Eqs. (24) and (25), the statistical mo-
ments of fractional changes in compressibility I', and density
I'; are required.

Since the fluctuations of the sound speed (Ac) and den-
sity (Ad) arising from random internal waves are much
smaller than the unperturbed or local equilibrium sound
speed and density, the fractional change of compressibility
I', and density I'; can be expanded up to second order in
Taylor series

[ 2Ac Ad} [(M) (Ad) AcAd}
i=|-—=——1[+|3|— +2 ,
Co dy Co dy cody

Ad [Ad\?
Fd ==\ . (27)
dy dy

Fluctuations of the sound speed and density, for practical
purposes, are linearly dependent on the displacement of the
internal wave>>> &(py,zy.1) via

A0t g 0.

Ad(p,,z,.1)

s = &Pz 0g ' (z,). (28)
where G(ZX) is a function of the potential temperature and
sahmty, g is the gravitational constant, and n(z,) is the
buoyancy frequency or Brunt—Viiisdld frequency
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n(z,) = - gd’ ‘9—‘1(52’(—122 (29)
"X

where d,(z,) is the potential density.

The displacement & of internal waves at location (p,,z,)
and time ¢ is taken to be a zero-mean Gaussian random
variable”

f(PX,ZXJ) = 2 f H(O-a])Wj(o-sz)()eXp(l[o- ' p)(
J

- Q(o,))1])d%0, (30)

where H(o,j) is a zero-mean Gaussian random variable that
specifies the jth modal amplitude of internal waves at wave
number o and Wj(a,zx) is the jth modal shape of internal
waves at depth z,. Internal wave angular frequency () is
related to the magnitude of the internal wave wavenumber o
via the dispersion relation given in Ref. 2.

Assuming that the internal wave field follows a station-
ary random process in the horizontal space and in time, the
spatio-temporal covariance of internal wave displacements at
two measurement points r,(p,,z,) and r)’((pX:,er) and two
times ¢ and ¢’ can be expressed as a function of the horizontal

separation R= pX—p)’( and time lag r=t—1";""*% we have

C0V§§(R’ T’ZX’Z)(’) = <§(stZX9t)§(p)("Z)(”t,)>
- <§(p)(7z)(st))(g(p)(’7z)(”t,)>

= E fFj(o)Wj(U,zX)W;(U,ZXr)

xexp(i[o - R - w(o,j)7])d*e, (31)

where F;(0)=(|H(o,j)|*) is the GM spectrum of internal
waves, whose expressions and parameters can be found in p.
56 of Ref. 2.

After inserting Eq. (28) into Eq. (27), and Eq. (27) into
Eq. (26), the spatio-temporal covariance of intrinsic scatter-
ing properties becomes

OV rH(Pys Py 2y Zyrs 1t
6
= G G K Epe 2 DE @2t
6

k
= _(4W)2h(ZX)(ZX’)COV§§(R’ T’ZX’ZX’)’ (32)

where h(z,)=[2G(z,) +(1-7)/gIn*(z,).

We approximate the displacements of internal waves at
two horizontal positions p, and p,, within the coherence

3¢

area A, as being fully correlated®" such that
Covff(pX’p;/aZX,Zx’7t7t/)
6
~ (47T)2h(zx)h(zxr)COVg.g(0, .22y (33)

The mean scatter function density is found to be propor-
tional to the second moment of the internal wave displace-
ment from Egs. (24), (27), and (30), such that Eq. (19) be-
comes
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Cov.ys(ps’ ZX’ Z)(’ s T)

=~ <SPXVZX,t(a3B3 «;, Bi)szs,zxr,t’(a,’ﬁl’a;’B;)>' (34)

This is because the square of the mean scatter function den-

sity proportional to the fourth power of internal wave dis-

placement, is much smaller than (sp . ts:: . l/), which is on
X g X/,

the order of the second moment of internal wave displace-
ment.
Equation (34) can be expressed as

kSh(z,)h(z,)
(4m)°A(2,)A(z,)

Xf f f f ,ei(g’_g)'(“X‘“x')dzuxdzu)/(
A, Al

(35)

COVy(P5s 2y 2yrs T) = covg0,7,2,,2,1)

by substituting Eq. (31) into Eq. (33), then Eq. (33) into Eq.
(25). By replacing covm(spyzx,sps,zx,) with covy(ps,2y.2,7,7)
in Eq. (72) of Ref. 24, we have

Cys(py2yozym,n, 7)
= un(Z)()u:: (ZX’)”m(ZX)uZ(ZX’)COVss(PS, szz;(’ T) ) (36)

which leads to u,(p,,7) by inserting Eq. (36) into Eq. (20).

A purely real modal horizontal wavenumber change
v,(p,) is obtained by substituting the mean scatter function
density of Eq. (24) into Eq. (60a) cf. Ref. 24. This only
accounts for dispersion but not for attenuation in the mean
forward field. Assuming no power loss within the Fresnel
region or in the forward direction for a 2D scattering process,
the depth-integrated intensity at zero time lag (W (p|r,, 7
=0)) must equal the depth-integrated incident intensity
E,,WE") of Eq. (15). This requires

37°(py) = 32 (pyy 7=0).. (37)

Out-of-plane scattering becomes important in 3D scenarios
and leads to power loss in the forward direction, which re-
quires an imaginary part in v,(p,). We apply the waveguide
extinction theorem®>** to calculate J(v,(p,) in Eq. (36) of
Ref. 28.

IV. 2D AND 3D SCATTERING PROCESSES

The Fresnel width in cross range24 is defined to be
where the incident and forward scattered fields are highly
coherent and have a phase difference of less than /4. The
Fresnel width, Yz(p,p,)=\[N(p—p,)p,)/p, depends on the
range of the source, receiver, and scatterer,” ! Where \ is the
acoustic wavelength. The maximum Fresnel width®**!
Yr_ (p,p)=VAp/4 occurs at the midpoint between the
source and the receiver. When Y<{,, an internal wave in-
homogeneity is correlated within the Fresnel width, which
leads to an effective 2D scattering process.

As the receiver range increases, Y exceeds €,, 3D scat-
tering initiates, and uncorrelated internal-wave inﬁomogene-
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FIG. 2. Representative sound speed profile for the Pacific ocean region
between latitudes 20°N and 31°N and longitudes 123°W and 154°W. The
depth of the sound-channel axis is roughly 700 m.

ities appear within the Fresnel region. This leads to out-of-
plane scattering that causes additional power loss in the
forward direction.

V. ILLUSTRATIVE EXAMPLES

Here, a water column of H=4000 m depth is used to
simulate the geometry of a deep ocean waveguide. The bot-
tom sediment half-space is composed of sand with density
d,=1.9 g/cm® and sound speed c¢,=1700 m/s. The attenua-
tion coefficients in the water column and bottom are a=6
X 107 dB/\ and a;,=0.8 dB/\, respectively. A point source
transmits acoustic waves at a frequency of 75 Hz. Both the
source and the point receiver are located at a depth of
1000 m. We use a sound speed profile calculated from the
historical temperature and salinity data'® corresponding to
the Pacific ocean region between latitudes 20 °N and 31 °N
and longitudes 123 °W and 154 °W, as shown in Fig. 2.

The temporal correlation function of internal wave dis-
placements at the depth of the sound channel axis is shown
in Fig. 3 following Eq. (31). The e-folding correlation time
scale of the internal wave field is seen to be approximately
4 h at that depth. As the water depth increases, the coherence
time scale of internal waves also increases because internal
wave displacements decrease. The temporal correlation of
the depth-integrated intensity and the acoustic forward field
are shown in Fig. 4 following Egs. (15) and (16), respec-
tively. Uncertainty in the internal wave energy level leads to
variations in the e-folding correlation time scale of the depth-
integrated intensity and the forward scattered acoustic field.
At three typical GM internal wave energy levels, for ex-
ample, the e-folding correlation time scales vary between 7
and 14 min, as also shown in Fig. 4. These time scales are
more than an order of magnitude smaller than that of the
internal waves. Scattering from a single slab containing in-
ternal waves causes only a small change in the temporal
correlation of the depth-integrated intensity. This is due to
the weak scattering from a single slab and the very long time
scale of the internal waves with respect to acoustic travel
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FIG. 3. Temporal correlation function of the internal-wave displacement at
700 m as a function of time lag. The temporal correlation is the normalized
spatio—temporal covariance of Eq. (28) at zero horizontal separation. The
e-folding coherence time is approximately 4 h. The solid horizontal line is
plotted at the correlation function value 1/e.

time through the slab. As acoustic power, or the depth-
integrated intensity, is propagated through a series of uncor-
related slabs of inhomogeneities over range, accumulated
multiple scattering dramatically degrades temporal correla-
tion. This leads to coherence time scales for the acoustic
power and forward field that are much shorter than that of
the internal wave field. An assumption of modal indepen-
dence is not required to obtain the temporal correlation and
the time scale of the acoustic power.
Acoustic power loss due to scattering is

PL(p|ro) = 10 log{ Wr(p|ry, 7= 0)) — 10 log Wi(p|ro),
(38)
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FIG. 4. Temporal correlation function of acoustic power and forward field
for 3250 km source-receiver separation as a function of time lag for various
possible GM energy levels. The temporal correlations of acoustic power and
forward field are the normalized temporal covariances of Egs. (17) and (18),
respectively. The e-folding coherence time varies between 7 and 14 min
depending on the internal wave energy level. The temporal correlation func-
tions of the acoustic power and forward field are plotted with dashed and
solid lines, respectively. The solid horizontal line is plotted at the correlation
function value 1/e.
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FIG. 5. (Color online) Total acoustic power loss in forward propagation through deep ocean random internal waves as a function of frequency and the
source-receiver separation from Eq. (38). The 2D scattering region, €,> Y, is above the black line and the 3D scattering region, £, <Y, is below the black

line.

where (Wx(p|ry,7=0)) is the total acoustic power of Eq.
(15) at zero time lag and W,(p|r,) is the incident acoustic
power of Eq. (8). We plot the acoustic power loss as a func-
tion of receiver range and acoustic frequency in Fig. 5. The
2D and 3D scattering regions are separated by a black line
showing where (Yp)p.=€,. In the 2D region, there is no
power loss in the forward direction, as assumed in Sec. IV. In
the 3D region, power loss monotonically increases with
source-receiver separation for fixed frequencies. At a given
source-receiver separation, however, power loss reaches a
maximum in the low frequency regime. This is because two
competing factors determine the total power loss: Y and
,u,le(pS,O). As frequency decreases, Y becomes larger lead-
ing to more uncorrelated internal wave inhomogeneities in
the Fresnel region. This leads to more out-of-plane scattering
and power loss. However, the f~° Rayleigh—Born scattering
roll-off for any individual inhomogeneity results in an f~2
roll-off in variance coefficient w,(p,0) at zero time lag, as
seen in Eq. (15). This leads to less power loss.

VI. CONCLUSIONS

We have derived an analytical expression for the tempo-
ral covariance of the depth-integrated intensity or the acous-
tic power propagated through 3D random inhomogeneities,
from which the coherence time scale of field or power fluc-
tuations can be determined. Knowledge of the coherence
time scale is typically essential in ocean-acoustic remote
sensing. This is because it determines (1) the number of fluc-
tuations in a given measurement period, which determines
the amount of error reduction possible by stationary averag-
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ing in any ocean-acoustic remote sensing measurement, and
(2) the time window within which the coherent processing
essential to ocean-acoustic remote sensing, such as matched
filtering, beamforming, matched field processing, and syn-
thetic aperture processing, can be conducted. We have pro-
vided a general and rapid way of estimating the coherence
time scale to aid in the design of ocean-acoustic experiments
and the interpretation of experimental measurements. We
show by analysis that the time scale of acoustic power fluc-
tuations after megameter range propagation through internal
waves in the deep ocean is roughly 10 min, which matches
experimental measurements, and is more than an order of
magnitude smaller than the 240 min correlation time scale of
the internal wave field. This discrepancy between the acous-
tic and internal wave time scales is explained by the present
theory as the accumulated effect of multiple forward scatter-
ing through internal waves on acoustic waves.

We find that power loss due to 3D scattering from inter-
nal wave inhomogeneities becomes pronounced when the
Fresnel width exceeds the cross-range correlation length of
internal waves. As source-receiver separation increases, the
Fresnel width increases and contains more uncorrelated in-
ternal wave inhomogeneities, which leads to a monotonic
increase in power loss. For a given source-receiver separa-
tion and decreasing frequency, power loss first increases as
the internal wave incoherence accumulates within the
Fresnel width, and then decreases due to weakening
Rayleigh—-Born scattering for any individual inhomogeneity.
This may explain the unexpectedly high attenuations histori-
cally observed below 100 Hz."?
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APPENDIX: TEMPORAL COHERENCE OF NARROW-
BAND ACOUSTIC SIGNALS

Here we discuss extension of the single-frequency trans-
mission of the main text to narrow-band signals. Let the
acoustic signal measured at a receiver be

W(r|ro.t) = W (r|ro.t) + W (r|ro,t), (A1)

where W ,(r|ro,1) =70 )®,(r|ry.f)e ?™df is the incident
field, W (r|ry.0)=[".0()®(r|ry.f.1)e”>™df is the scat-
tered field, and Q(f) is the source spectrum. The temporal
coherence or autocorrelation function of the acoustic signal
is

(W (rlro,)W*(rlro,t") = J 2(HO(")

—o0 o —o0

><(CID(r|r0,f,t)q)(r|r0,f’,t'))
X e~ g f (A2)

In order to evaluate Eq. (A2), we need to calculate the tem-

poral correlation of the total field
(D(r|rg,f.t)D*(r|ry.f',t')) at two different frequencies f
and f’.

Derivations for the depth-integrated second moment of
the scattered field in Sec. IV B of Ref. 24 and the second
term of Eq. (7) in Sec. II B of the present paper rely on
modal orthogonality

f (.2 = Sy (A3)

o d(2)
It can be shown by the numerical simulations that modal
orthogonality is still approximately valid for the acoustic
modes at two different frequencies f and f via

J L“m(f,z)un(f’,z)dz ~ Oum>» (A4)

0 d(z)

if the difference between f and f’ is smaller than a few Hertz.
Consequently, (P (r|ry,f,t)O*(r|ry,f ,t')) can be approxi-
mated as (D(r|ry,f,0)®*(r|ry.f,t')) of Eq. (16) for suffi-
cient narrow-band signals satisfying Eq. (A4). Equation (A2)
is then approximately

(P (r|ro, ) W*(r|ro,t"))
= |Q(]_C)Af|2<q)(r|r0’f7t)q)*(rlro’f’t,)>€_i27r?(t_l/)’

where f and Af are the central frequency and bandwidth of
the narrow-band signal, respectively.
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