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A method is derived for instantaneous source-range estimation in a horizontally stratified ocean
waveguide from passive beam-time intensity data obtained after conventional plane-wave
beamforming of acoustic array measurements. The method has advantages over existing source
localization methods, such as matched field processing or the waveguide invariant. First, no
knowledge of the environment is required except that the received field should not be dominated by
purely waterborne propagation. Second, range can be estimated in real time with little computational
effort beyond plane-wave beamforming. Third, array gain is fully exploited. The method is applied
to data from the Main Acoustic Clutter Experiment of 2003 for source ranges between 1 to 8 km,
where it is shown that simple, accurate, and computationally efficient source range estimates can be
made. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2139074�
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I. INTRODUCTION

It has long been known that multi-modal dispersion in a
shallow water waveguide degrades the performance of bear-
ing estimates by conventional plane-wave beamforming.
This is due to the advent of spurious effects unique to the
waveguide environment, such as multiple peaks and beam
spreading in the beamformer output.1–3 Attempts, on the
other hand, have been made to localize sources submerged in
ocean waveguides by exploiting multi-modal interference us-
ing methods such as matched field processing �MFP�.4–6

Apart from being computationally expensive, MFP tech-
niques require accurate knowledge of the wave propagation
environment. They are susceptible to large systematic errors
from mismatch when adequate environmental information is
not available.7,8

The range of a source in a horizontally stratified ocean
waveguide can sometimes also be estimated by the much
simpler waveguide invariant method,9–11 which employs
only incoherent processing of acoustic intensity data as a
function of range and bandwidth. The waveguide invariant
method, however, requires knowledge of certain “invariant”
parameters, which unfortunately often vary significantly with
ocean sound speed structure. It also requires a sufficiently
large number of waveguide modes to significantly contribute
to the measured field because these cause the interference
structure necessary to produce a unique solution. Sufficiently
dense sampling of the intensity data in source-receiver range
is also necessary to provide an unambiguous solution. When
the application involves single-sensor measurements, joint
ambiguity in source-receiver range and velocity is an inher-
ent limitation of the waveguide invariant method. This am-
biguity can disappear when spatial sensor arrays of sufficient
horizontal aperture are used. None of the usual benefits of
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increased signal-to-noise ratio at the array output appear,
however, because only incoherent processing of the spatial
samples can be performed.

Here we show that instantaneous source range estima-
tion is possible in a horizontally stratified ocean waveguide
by a computationally inexpensive method that has significant
advantages over the waveguide invariant because it requires
neither a priori knowledge of environmental parameters nor
multiple modes in the received field, and fully exploits the
coherent gain possible with receivers of finite spatial
aperture.12 Since the new approach takes advantage of in-
variant properties of passive beam-time intensity data ob-
tained after conventional plane-wave beamforming of under-
water acoustic array measurements, we call it the array
invariant method. We show that maximum beam-time inten-
sity migrates along an angle that is invariant to environmen-
tal parameters but follows a known and unique dependence
on source-receiver range. Horizontal source localization is
also achieved when the receiving array has sufficient hori-
zontal aperture to resolve source bearing. The formulation
introduced here is specifically for broadband transient source
signatures. A more general but involved formulation that can
treat continuous broadband noise signatures is possible.13

The array invariant method is derived in Sec. II. Illus-
trative examples are presented in Sec. III. In Sec. IV, source
localization by the array invariant method is experimentally
demonstrated using data from the Main Acoustic Clutter
2003 Experiment �MAE�. Comparisons between the array
invariant method and other acoustic techniques for source
range estimation in the ocean, such as the waveguide invari-
ant method and MFP, are presented in Sec. V.

II. DERIVATION OF THE ARRAY INVARIANT

Analytic expressions are derived for the migration of
peak intensity through a beam-time intensity image gener-
ated from acoustic array measurements made in an ideal

waveguide. It is then shown that the expressions are approxi-
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mately valid for typical horizontally stratified ocean
waveguides, where they can be used for instantaneous source
localization.

A. Beam-time migration for horizontal arrays in
stratified waveguides

The measurement and coordinate geometry of Fig. 1�a�
shows a horizontal line array parallel to the y axis, with array
center at �0,0 ,z�, and source at �xo ,yo ,zo�. We define r
=xîx+yîy, and r= �r�, where îx and îy are unit vectors in the x
and y directions, respectively. The wavenumber vector k is
decomposed into kx=−k sin � cos �, ky =−k sin � sin �, and
kz=−k cos �, where k= �k�, and elevation angle � and bear-
ing � are shown in Fig. 2.

The pressure P at frequency f due to a source at �ro ,zo�
can be expressed using normal mode theory as

P�r,z, f� = 4�Q�f�
i

�8���zo�
e−i�/4

� �
n

un�zo�un�z�
eikrn�r−ro�

�krn�r − ro�
, �1�

where Q�f� is the source spectrum, � is the density, krn is
the horizontal wavenumber of the nth mode, and un is the
mode shape of the nth mode which satisfies
�0

�um�z�un
*�z� /��z�dz=�mn. Using the far-field approxima-

tion �r−ro�	ro−y sin �o, where �o is source bearing, the
beamformed pressure PB can be expressed as a function of
array scan angle �,

FIG. 2. Definition of the elevation angle � and the bearing � of plane

waves. The angles are defined in the “coming from” direction.
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PB�s, f� = 

−�

�

T�v�P�v,z, f�ei2�v sin �dv

= 4�Q�f�
i

�8���zo�
e−i�/4

� �
n

un�zo�un�z�
eikrnro

�krnro

B�s − sn� , �2�

where s=sin �, v=ky /2�, sn=sin �n sin �o, and sin �n

=krn /k. For evanescent modes, �n=� /2− i�n� where �n�
=ln�krn /k+ ��krn /k�2−1��1/2��. The beam pattern B�s� is the
spatial Fourier transform of the array taper function
T�v�.14 This far-field formulation is valid when the source-
receiver range exceeds the square of the aperture divided
by the wavelength.

The time-domain expression for the beamformed pres-
sure PB�s , t� is obtained by taking the inverse Fourier trans-
form of Eq. �2�,

PB�s,t� = 2 Re

0

�

PB�s, f�e−i2�ftdf� = 2 Re�PB+�s,t�� ,

�3�

where Re�·� represents the real part. The complex beam-
formed pressure PB+�s , t� can then be approximated using
the method of stationary phase3,15–17 when krnro�1, as
given in Eq. �A6� in Appendix A. The stationary phase
approximation for Eq. �3� simplifies to Eq. �A8� if the
relative phase shifts between the different frequency com-
ponents of the source spectrum are negligible, which oc-
curs when Q�f�= �Q�f��, such as in an impulsive or Gauss-
ian signal. This is the simplifying approximation that
limits the present formulation to the domain of transient
signals, which is clearest for introducing the concepts. A
more general formulation for continuous broadband noise
is possible,13 as noted in Sec. I. The complex beamformed
pressure in Eq. �3� can then be approximated as

PB+�s,t� 	
4�i

�8���zo�
e−i�/4

� �
n

�Q� f̃��ũn�zo�ũn�z�
B̃�s − s̃n�
�k̃rnro

Fn� f̃� , �4�

where f̃ is the frequency component within the source band

FIG. 1. The geometry of the coordi-
nate system for a horizontal line array
�a�, or a vertical line array �b�. The
horizontal line array is aligned parallel
to the y-axis. The vertical line array is
located along the z-axis. A source is
located at �xo ,yo ,zo�.
that satisfies
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˜

˜

˜

t =
ro

vgn� f̃�
, �5�

vgn is the group velocity of the nth mode, and

un , k̃rn , B̃ , s̃n , ṽgn , �̃n are the corresponding values of

un ,krn ,B ,sn ,vgn ,�n at f = f̃ . The function Fn� f̃� in Eq. �4� is
given in Eq. �A9� of Appendix A. The bearing of peak
beamformed pressure for the nth mode at time t is speci-
fied by

s̃n�t� = sin �̃n�t�sin �o, �6�

which is the zero of the argument of the beam pattern B̃�s
− s̃n� in Eq. �4�. Equations �5� and �6� enable the temporal
migration of the maximum beamformer output angle to be
determined in any horizontally stratified ocean waveguide.
These equations are significant because they lead directly to
source localization in an ocean waveguide by the new array
invariant method.

B. Array invariant for horizontal arrays in ideal
waveguides

Here we show that the bearing of peak beamformed
pressure s̃n�t�, given in Eq. �6� for any given mode at any
time, is an observable from which source range can be esti-
mated. This is done by first noting that group velocity and
modal elevation angle are related by

�vgn�−1 =
1

2�

d

df
�k2 − kzn

2 =
1

2�

dk

df

k

krn
= �c sin �n�−1 �7�

for an ideal isovelocity waveguide with pressure-release or
rigid boundaries since the vertical wavenumber of the nth
mode kzn is not a function of f . This is illustrated in Fig. 3.

FIG. 3. Group velocity vgn and modal elevation angle sin �n as a function of
frequency in an ideal waveguide. The water depth and the sound speed are
100 m and 1500 m/s, respectively, and the boundaries are assumed to be
pressure release. The vertical lines at 30, 40, and 50 Hz will be referred to in
Fig. 5.
Then Eqs. �5� and �7� can be used to express Eq. �6� as
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s̃n�t� � s̃�t� =
ro

ct
sin �o, �8�

which shows that the s̃n�t� merge to a single beamformer
migration line s̃�t� for all mode numbers if the source band-
width is sufficiently large. For fixed source bearing, the
beamformer migration line changes only as a function of
source range as can be seen in Eq. �8� and as illustrated in
Fig. 4.

If the bandwidth of the source signal is not sufficiently
large, s̃n�t� may appear as discrete line segments along the
trajectory described by the right-hand side of Eq. �8�. This is
due to the discrete nature of the waveguide modes. An ex-
ample is shown in Fig. 5�a� for a source signal in the 30 to
40-Hz band. For a given frequency band, the length of an
sn�t� segment is greater for higher-order modes. This is be-
cause they exhibit more dispersion than lower-order modes,
as can be deduced from Fig. 3 by noting that the change in
group velocity across the band increases with mode number.

For a given mode and s̃n�t� segment, the s̃n�t� will mi-
grate to a different part of the s̃�t� curve when the frequency
band of the source signal changes. This is because both the
group velocity and elevation angle of the given mode change
as a function of frequency. This is illustrated in Fig. 5�b�,
where the source frequency is now in the 40 to 50-Hz band.
Comparison of Figs. 5�a� and 5�b� shows that the s̃n�t� for a
given mode migrates to an earlier segment with greater scan
angle because both group velocity vgn and elevation angle �n

for that mode have increased with the positive shift in the
bandwidth. This migration is constrained to occur within the
s�t� curve given by Eq. �8�, which completely determines the
peak beam-time migration in an ideal waveguide. If the
source signal occupies the entire 30 to 50-Hz band, the s̃n�t�
for individual modes overlap to form the continuous s̃�t�, as

FIG. 4. The beam-time migration lines s̃n�t� as a function of reduced travel
time t−ro /c and array scan angle � for various source ranges over the full
0 to 80-Hz frequency band shown in Fig. 3. The sound speed c is 1500 m/s
and source bearing �o is � /2. It can be seen that all the s̃n�t� merge to a
single beamformer migration line s̃�t�.
shown in Fig. 5�c�.
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We define an array invariant 	h for a horizontal linear
receiver array as

	h �
ds̃ −1�t�

dt
=

c

ro sin �o
. �9�

For fixed source bearing, Eq. �9� is independent of source
frequency band, mode number, source depth, receiver depth,
and waveguide depth. Also, Eq. �9� is valid for both pressure
release and rigid boundary ideal waveguides.

Source range can now be estimated using

r̂o =
c

	̂h sin �̂o

, �10�

based on direct measurements of the array invariant 	̂h and

source bearing �̂o obtained from beam-time intensity data.
Since Eq. �10� is a unique one-to-one mapping of r̂o from 	̂h

for fixed �̂o, range inversion using the array invariant does
not suffer from ambiguity, as is common in MFP.

The array invariant method differs significantly from the
waveguide invariant method in that the array invariant does
not rely on modal interference. Application of the waveguide
invariant is not possible, for example, if there is only one
mode propagating in a waveguide. The array invariant, how-
ever, is still applicable if the solitary mode causes sufficient
dispersion in the source band, as can be seen in Eq. �8� and
Fig. 4. In most practical applications, the combined disper-
sion of multiple modes is needed for robust source localiza-

FIG. 5. �a� The beam-time migration lines s̃n�t� for modes in the 30 to 40-Hz
angle � for a source at ro=5 km and �o=� /2. The beam-time migration li
segment is marked by mode number n. �b� The same as �a�, but for modes
changes, s̃n�t� for that mode migrates to a different location in the beam-tim
�8�. �c� The same as �a�, but for modes in the 30 to 50-Hz band. As the frequ
the continuous s̃�t�.
tion as will be shown in Sec. III.
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C. Array invariant for horizontal arrays in stratified
waveguides

For general horizontally stratified waveguides, the rela-
tionship between group velocity and horizontal wavenumber
is

�vgn�−1 =
1

2�

d

df
�k2�z� − kzn

2 �z� ,

which leads to the relation

vgn =
c�z�sin �n�z�

1 +
c�z�
2�

cos �n�z�
dkzn�z�

df

�11�

between group velocity and modal elevation angle. By sub-
stituting Eq. �11� into Eq. �6�, the peak beam-time migration
line s̃n�t� for a given mode can be written explicitly as

s̃n�z,t� = sin �̃n�z,t�sin �o

=
ro

c�z�t
sin �o1 +

c�z�
2�

cos �̃n�z��dkzn�z�
df

�
f= f̃
� .

�12�

The second term in the bracket in Eq. �12� is the correction
term for the beamformer migration when there is variation in
sound speed structure versus depth. This correction term for
the nth mode is negligible when

� 1

2�
�dkzn�z�

df
�

f= f̃
� 
 �c�z�cos �̃n�z��−1, �13�

as can be seen in Eq. �12�. It will be shown in Sec. III that
most of the modes propagating in shallow-water waveguides

shown in Fig. 3 as a function of reduced travel time t−ro /c and array scan

n�t� appear as discrete line segments. The beginning and end of each s̃n�t�
40 to 50-Hz band. As group velocity and elevation angle of a given mode

t. This migration is constrained to occur within the s̃�t� curve given by Eq.
band of the source increases, s̃n�t� for the individual modes overlap to form
band
nes s̃
in the
e plo
ency
satisfy Eq. �13�, since change of the vertical wavenumber
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versus frequency is typically negligible for frequencies not
near modal cut-off. We refer to modes that do not satisfy Eq.
�13� as waterborne modes. This terminology for waterborne
modes is similar to that used by Ref. 18. While Eq. �13� is
not satisfied near modal cut-off frequencies, modal contribu-
tions near cut-off are negligible since the corresponding
modal amplitudes decay rapidly as ro increases.19

Equation �12� is then independent of mode number, and
can be approximated as

s̃�z,t� 	
ro

c�z�t
sin �o, �14�

where the departure from Eq. �8� is that sound speed at the
receiver depends on receiver depth.

An array invariant for a general horizontally stratified
waveguide is then defined as

	h �
ds̃ −1�z,t�

dt
	

c�z�
ro sin �o

, �15�

where source range can again be estimated from Eq. �10� but
with c�z� substituted for c. The sound speed dependence of
Eq. �15� is not an impediment since the sound speed at re-
ceiver depth can be readily measured by expendable
bathythermographs �XBT�. If such measurements are not
available, c�z�=1490 m/s can be used for range estimation,
which leads to only 3% error for the typical range of
sound speeds, roughly 1440 to 1540 m/s, encountered in
continental shelf waveguides.20

An array invariant can also be defined in another way. In
practical shallow-water waveguides, the maximum extent of
the exact beam-time migration line s̃n�z , t� along the beam-
time migration line for non-waterborne modes s̃�z , t� is lim-
ited by the time of the latest modal arrival, which is bounded
by the minimum group velocity at the Airy phase. This maxi-
mum extent is typically sufficiently small that ds̃�z , t� /dt can
be expanded around t=ro /c�z�, and only the zeroth-order
term

	l �
ds̃�z,t�

dt
	 −

c�z�
ro

sin �o �16�

need be retained. Equation �16� defines an array invariant 	l

that is more convenient for practical use, and is a good ap-
proximation unless the seafloor is impenetrable. It will be
used for source range estimation in Secs. III and IV.

D. Array invariant for vertical arrays in stratified
waveguides

The array invariant method can also be used to instanta-
neously estimate source range from vertical line array mea-
surements. The sound speed across the aperture of the array
is taken to be approximately constant. The geometry is
shown in Fig. 1�b�. The beamformed pressure of the vertical

array as a function of array scan angle � is
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PB,v�sv, f� = 4�Q�f�
i

�8���zo�
e−i�/4�

n

un�zo�
eikrnro

�krnro

� �Nn
+B�sv − sv,n� + Nn

−B�sv + sv,n�� , �17�

where sv=cos �, sv,n=cos �n. Here, Nn
+ and Nn

− are the
plane-wave amplitudes of the nth mode that satisfy un�z�
=Nn

+eikznz+Nn
−e−ikznz at the receiver depths z spanned by the

array. For evanescent modes, sv,n does not lie in real space
since cos �n= i sinh �n�. The time-domain complex beam-
formed pressure is approximated as

P̃B,v+�sv,t� 	
4�i

�8���zo�
e−i�/4�

n

�Q� f̃��ũn�zo�
eik̃rnro

�k̃rnro

��Ñn
+B̃�sv − s̃v,n� + Ñn

−B̃�sv + s̃v,n��Fn� f̃�

by the stationary phase method, where Ñn
+ , Ñn

− , s̃v,n are the

corresponding values of Nn
+ ,Nn

− ,sv,n at the frequencies f̃ that
satisfy Eq. �5�.

For an ideal waveguide, group velocity and elevation
angle are related by vgn=c�1−cos2 �n, which can be ob-
tained from Eq. �7�. The beam-time migration line for a ver-
tical array in an ideal waveguide then obeys

± s̃v,n�t� � ± s̃v�t� = ±�1 − � ro

ct
�2

, �18�

and the migration lines s̃v,n�t� for all the modes merge to a
single line s̃v�t�. The signs specify whether the migration is
vertically up or down. This is due to the symmetry of up and
down-going plane-wave components of the modes when the
sound speed across the array aperture is constant.

An array invariant 	v for vertical arrays can be defined
as

	v �
d

dt
�1 − s̃ v

2�t��−1/2 =
c

ro
, �19�

using Eq. �18�. Source range can then be estimated as r̂o

=c / 	̂v, after measuring 	̂v from the migration of s̃v�t� in the
given beam-time intensity data set. Linearization of ds̃v�t� /dt
using a Taylor series expansion is not appropriate for vertical
arrays since the zeroth-order term of ds̃v�t� /dt at t=ro /c is
not finite.

The array invariant approach for vertical arrays can be
applied in a general horizontally stratified waveguide when
the sound speed c�z� is constant across the aperture of the
array. Using Eq. �11� and relation �13�, the beam-time migra-
tion line in this scenario is

± s̃v,n�z,t� � ± s̃v�z,t� 	 ±�1 − � ro

c�z�t
�2

, �20�

from which the array invariant becomes

	v �
d

dt
�1 − s̃ v

2�z,t��−1/2 	
c�z�
ro

, �21�

so that source range can be estimated as r̂o=c�z� / 	̂v.
Equations �20� and �21� are also good approximations if
the sound speed is not constant along the array aperture in
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general horizontally stratified waveguides so long as the
variation of kzn�z� along the aperture of an array satisfies

�kzn�z��z − zc� − kzn�zc��z − zc�� �
�

4
, �22�

where zc is the center depth of an array. The worst case
would then occur at either end of the array for waves propa-
gating parallel to the z-axis. Equation �22�, with the approxi-
mation 1/c�z�=1/ �c�zc�+�c�z��	c−1�zc��1−�c�z� /c�zc��
where �c�z� is the sound speed difference at zc and depths z
spanned by the array, leads to a more practical condition

��c�z�� �
c�zc�

2L/��zc�/2�
�23�

for the sound speed variation along the array aperture for
source range estimation using Eq. �21�, where �zc�
=k�zc� /2� and L is the array aperture. For a typical vertical
array aperture of L=64�zc� /2 and c�zc�=1490 m/s, Eq.
�23� requires that the relatively benign condition ��c�z��
�11 m/s must be satisfied for Eqs. �20� and �21� to be
good approximations.

III. ILLUSTRATIVE EXAMPLES BY SIMULATION

A. Horizontal array

Instantaneous source range estimation by the array in-
variant method is illustrated by a number of examples in-
volving typical continental shelf environments and array
configurations. The first example employs a horizontal re-

FIG. 6. The Pekeris waveguide with sand bottom, where cw, �w, and �w are
the sound speed, density, and attenuation of the water column, and cb, �b,
and �b are those of the sea-bottom.

FIG. 7. �a� Beam-time image Lbt�s , t� with true source range ro=5 km and be

are at sin �o and sin �o, respectively, where �̂o is the scan angle of the array
is the linear least squares fit ŝl�t� of peak intensity angle versus time using E

ˆ
dashed line is the linear least squares fit sh�t� using Eq. �28�. The two least squa
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ceiving array in a Pekeris waveguide. The environmental pa-
rameters are shown in Fig. 6. The detection geometry is de-
fined by z=30 m, zo=50 m, ro=5 km, and �o=60°. The
source signal is impulsive in the time-domain and bandlim-
ited to 390 to 440 Hz by a Tukey filter.21 The source level is
219 dB re 1 �Pa at 1 m. The array aperture L is 94.5 m, and
is tapered by a Hann window. The source, receiver, and
geoacoustic parameters of the seabed are chosen for consis-
tency with the field experiment described in Sec. IV.

The acoustic field from the impulsive source is mea-
sured as a time-series on each hydrophone sensor of the hori-
zontal array. The hydrophone time-series data are converted
to beam-time data by standard time-domain beamforming.
Only the beam-time sound pressure level Lbt�s , t�
=20 log�PB�s , t� /1 �Pa�, which forms a two-dimensional im-
age as shown in Fig. 7�a�, is necessary for range estimation
by the array invariant method.

The source range estimate

r̂o = −
c�z�
	̂l

sin �̂o �24�

is then a function of the estimates �̂o and 	̂l based on the
Lbt�s , t� data. As noted in Sec. II C, the assumption c�z�
=1490 m/s is employed if no local sound speed measure-
ments are available.

The source bearing estimate �̂o is taken as the scan angle
that corresponds to the global maximum of the beam-time
sound pressure level data Lbt�s , t�. This is typically a good
approximation in any continental shelf environment because
�1� the global maximum is dominated by contributions from
the earliest arrivals corresponding to the lowest-order modes,
which typically suffer the least attenuation and dispersion,
and �2� these modes typically satisfy sin �n	1 so that the
global maximum occurs at sin �n sin �o	sin �o, as can be
seen from Eq. �6�. The location of the global maximum is
found by an automated exhaustive search through the Lbt�s , t�
data, leading to the estimate �̂o=59.8°, which is consistent
with the value obtained by inspection of Fig. 7�a�, and is
within a fraction of a degree of the true bearing.

The array invariant 	l is estimated from the data by first
finding

�o=60° in the Pekeris sand waveguide. The dotted and dashed vertical lines

esponding to the global maximum of the Lbt�s , t� data. The black solid line
6�. �b� The black solid line is the same ŝl�t� as shown in �a�, and the black
aring

corr
q. �2
res fits are nearly identical to each other.
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smax�t� = arg max
s

Lbt�s,t�

by an automated peak detection algorithm. A least squares
estimate of 	̂l is then found under the linear approximation

ŝl�t� = 	̂lt + dl �25�

from Eq. �16�, where dl is a constant intercept. By this ap-
proach, the array invariant estimate 	̂l would explicitly be
the first element of the vector

�	̂l dl�T = �TTT�−1TTS1, �26�

where S1= �smax�t1� ,smax�t2� , ¯ ,smax�tN��T, T
= �(t1 , t2 , ¯ , tN)T1T�, tj = t1+ �j−1��ts, �ts is the sample
spacing in time, and 1 is an 1�N matrix given by 1
= �1,1 , ¯ ,1�. Other methods of estimation could be used
such as the maximum likelihood or the Radon transform
method. If the received field undergoes circular complex
Gaussian fluctuations due to transmission through a ran-
dom waveguide, or due to a random source, the least
squares estimate of the log transformed beam-time inten-
sity data is approximately the maximum likelihood
estimator.22,23

The linear least squares fit ŝl�t� of Eq. �25� is overlain on
the Lbt�s , t� data in Fig. 7�a�. The slope of the fitted line is the
array invariant estimate, 	̂l=−0.244. The corresponding
source range estimate is then r̂o	5.3 km, from Eq. �24�,
which is within 6% of the true range ro=5 km.

A slightly more accurate source range estimate can be
obtained from

r̂o =
c�z�

	̂h sin �̂o

, �27�

where a least squares estimate of 	̂h is found under the ap-
ˆ−1 ˆ

FIG. 8. �a� Vertical wavenumber kzn versus frequency for modes in the Peker
Higher-order modes have higher wavenumbers. �b� Frequency derivatives of
that relation �13� is satisfied for the Pekeris waveguide except near mode c
proximation sh �t�=	ht+dh from Eq. �15�, with
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�	̂h dh�T = �TTT�−1TTSh, �28�

Sh= �smax
−1 �t1� ,smax

−1 �t2� , ¯ ,smax
−1 �tN��T, and dh as a constant

intercept. The resulting least squares fit is shown in Fig.
7�b�, where 	̂h=0.355. The estimate of source range is
then r̂o	4.9 km, from Eq. �27�, which is within 2% of the
true range.

In these examples, we do not use knowledge of the en-
vironment to estimate source range. This is necessary to
show that the array invariant method can be used for range
estimation simply by use of Eqs. �24�, �27�, and incoherent
beam-time data Lbt�s , t�.

The array invariant method works because relation �13�
is satisfied in the given Pekeris waveguide environment as
can be seen in Fig. 8, where the vertical wavenumber of the
27 propagating modes and their frequency derivatives are
plotted. The vertical wavenumbers are nearly constant except
near modal cutoff frequencies. Relation �13� is then satisfied
for all modes except near cutoff, as can be seen in Fig. 8�b�.
The components near cutoff, however, do not contribute to
the acoustic pressure as noted in Sec. II C, and can be ne-
glected.

The array invariant method also works because the exact
beam-time migration line s̃n�z , t� is well approximated by the
least squares fits. The exact beam-time migration line s̃n�z , t�,
calculated using Eq. �12�, is shown in Fig. 9�a� as a black
line. The temporal extent of s̃n�z , t� is limited by the time of
the latest modal arrival in the source band, as discussed in
Sec. II C. The detailed shape of s̃n�z , t� is plotted in Fig. 9�b�,
which shows that s̃n�z , t� can be well approximated by the
least squares fits given in Eqs. �26� and �28�.

B. Vertical array

Here we show that source range can be instantaneously

d waveguide of Fig. 6. Each horizontal line corresponds to a specific mode.
This figure shows that kzn is effectively a constant function of frequency so
.

is san
kzn.

ut-off
estimated using the array invariant for vertical arrays with a
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Pekeris waveguide example. The environmental parameters
are shown in Fig. 6. The detection geometry is defined by
zc=50 m, zo=50 m, and ro=5 km. The source signal is im-
pulsive in the time domain and bandlimited in 390 to 440 Hz
by a Tukey filter. The source level is 219 dB re 1 �Pa at
1 m. The array aperture L is 94.5 m, and is tapered by a
Hann window.

The acoustic field from the impulsive source is mea-
sured as a time-series on each element of the vertical array.
The time-series data are converted to beam-time data by
standard time-domain beamforming. The beam-time sound
pressure level Lbt�sv , t�=20 log�PB�sv , t� /1 �Pa� is shown in
Fig. 10�a�. The Lbt�sv , t� data are symmetric with respect to
array broadside, where sv=0, since each mode is composed
of an up and a down-going plane wave component with
equal amplitude in the water column. Only Lbt�sv�0, t� is
shown in Fig. 10�a�. Resolution of lower-order modes is sig-
nificantly better for the vertical array than the horizontal ar-
ray since equivalent plane waves are incident near broadside
in the former.24

Source range can be estimated from

FIG. 9. �a� Beam-time image Lbt�s , t� identical to that in Fig. 7. The black so
up to n=23. The last four modes with mode cut-off in the 390 to 440-Hz
migration line for non-waterborne modes s̃�z , t� from Eq. �14�. �b� The black
in �a�. The two least squares fits ŝl�t� and ŝh�t� in Fig. 7, overlain as gray da
line s̃n�z , t�.

FIG. 10. �a� Beam-time image Lbt�sv , t� for ro=5 km in the Pekeris sand wa
versus time calculated using Eq. �30�. The gray solid line is the beam-time m
line is the exact beam-time migration line s̃v,n�z , t�. The gray solid and das

˜
beam-time migration line sv,n�z , t� can be well approximated by the least squares
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r̂o =
c�z�
	̂v

, �29�

where a least squares estimate of 	̂v is found with the ap-
proximation �1− ŝv

2�t��−1/2= 	̂vt+dv from Eq. �21�, by

�	̂v dv�T = �TTT�−1TTSv, �30�

where Sv= ��1−smax
2 �t1��−1/2 , �1−smax

2 �t2��−1/2 , ¯ , �1
−smax

2 �tN��−1/2�T, and dv is a constant intercept. Since the
beam-time intensity is symmetric with respect to the sv
=0 axis, smax�t� can be found either from

smax�t� = arg max
sv�0

Lbt�sv,t� ,

or from

smax�t� = arg max
sv�0

Lbt�sv,t� .

The resulting least squares fit is overlain in Fig. 10�a� as a
black line, where 	̂v=0.312. The corresponding source

e is the exact beam-time migration line s̃n�z , t� given in Eq. �12�, for modes
, as shown in Fig. 8, are neglected. The gray solid line is the beam-time
gray solid lines are the detailed shapes of the same s̃n�z , t� and s̃�z , t� shown
and dotted lines, show good agreement with the exact beam-time migration

ide. The black solid line is the linear least squares fit ŝv�t� of peak intensity
tion line for non-waterborne modes, s̃v�z , t�, in Eq. �18�. �b� The black solid
ines are s̃v�z , t� and ŝv�t� in �a�, respectively. It can be seen that the exact

ˆ

lid lin
band
and

shed
vegu
igra

hed l

fit sv�t�.
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range estimate is then r̂o	4.8 km, from Eq. �29�, which is
within 4% of the true range ro=5 km.

C. Environmental invariance

Here we illustrate the environmental invariance of the
range estimation equations �24� and �27� with some ex-
amples. We first note that the array invariants 	l and 	h are
effectively identical for the 100-m deep Pekeris waveguide
of Fig. 9, and for the 150-m deep Pekeris waveguide of Fig.
11. This is because the migration of s̃n�z , t� in response to the
given change in waveguide depth occurs only within s̃�z , t�,
as discussed in Sec. II. From this example, it can also be
deduced that the same invariance holds over frequency. This
is because the dispersion relation in a Pekeris waveguide
with water depth H effectively depends only on the nondi-
mensional parameter Hf /cw for fixed �b /�w and cb /cw, as
shown in Fig. 4–10 of Ref. 15.

The next example illustrates that array invariants are in-
sensitive to the detailed sound speed profile of the water
column and the geoacoustic parameters of the sea-bottom.
Figure 12 shows an ocean waveguide with a sound speed
gradient in the water column. The sound speed changes lin-
early from 1500 m/s at z=40 m to 1490 m/s at z=100 m.
The sea-bottom is assumed to be a consolidated sand bottom

FIG. 11. The same as Fig. 9�a�, but for the 150-m deep Pekeris sand wave-
guide. The exact beam-time migration line s̃n�z , t� is plotted for the first 36
modes of the 41 propagating modes. It can be seen by comparison of Fig.
9�a� and Fig. 11 that the exact beam-time migration line s̃n�z , t� in a Pekeris
waveguide is invariant over the waveguide depth.
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with geoacoustic parameters given in Fig. 12. The true
source range and bearing with respect to the receiver array
are identical to those in Sec. III A.

The vast majority of modes satisfy relation �13�, and the
exact beam-time migration line s̃n�z , t� effectively span the
entire s̃�z , t� line shown in Fig. 13. Only the negligible por-
tion of the line s̃n�z , t� at its temporal inception arises from
waterborne modes that violate relation �13�, as can be seen
from Figs. 14 and 15. Source range can then be estimated
following the same procedure in Sec. III A, by estimating 	̂l

or 	̂h and using Eqs. �26� or �28�.

IV. EXPERIMENTAL DEMONSTRATION OF THE
ARRAY INVARIANT

We demonstrate the performance of the array invariant
method at range estimation with field data acquired during
the MAE of 2003 conducted in the New Jersey Strataform
area. Water depth typically varied from 70 to 80 m, and
source range from 1 to 8 km for the data considered.

A. Source, receiver geometry, and environmental
parameters

The MAE was conducted in the New Jersey Strataform
area to identify the causes of acoustic clutter in continental
shelf environments.25,26 Broadband source signals were

FIG. 12. Horizontally stratified waveguide with linear sound speed gradient.
The sound speed is constant up to 40-m depth, and linearly decreases to
1490 m/s at 100-m depth. The density and attenuation of the water column
are the same as those in Fig. 6, but the geoacoustic parameters of the sea-
bottom are assumed to be different.

FIG. 13. Beam-time image Lbt�s , t� for
ro=5 km and �o=60° in the environ-
ment shown in Fig. 12. The exact
beam-time migration line s̃n�z , t� is
plotted for the first 27 modes of the 31
propagating modes. The exact beam-
time migration line s̃n�z , t� is nearly
identical to that of the Pekeris wave-
guide shown in Fig. 9, and it effec-
tively spans the entire s̃�z , t� line.
S. Lee and N. C. Makris: The array invariant



transmitted from R/V Endeavor. A horizontal linear receiver
array was towed along linear tracks by R/V Oceanus. The
positions of the source and the tracks used in the present
analysis are shown in Figs. 16 and 17. The positions of both
research vessels were accurately measured by Global Posi-
tioning System �GPS�.

Bathymetry is also plotted in Figs. 16 and 17. The sea-
floor has an extremely benign slope, typically less than 1°, as
can be seen in Fig. 4 of Ref. 26. The seabed is mostly com-
posed of sand with geoacoustic parameters given in Fig.
6.25,26 Two or three XBTs were deployed per track from R/V
Oceanus. The sound speed profiles measured by the XBTs
are shown in Fig. 18.

The receiver was a horizontal line array with aperture

FIG. 14. Mode shape of the first ten modes at 390 and 440 Hz, for the
environment shown in Fig. 12. Only the first three modes are waterborne
since they are trapped in the refract-bottom-reflect sound speed channel
between z=40 m and 100 m shown in Fig. 12.

FIG. 15. Vertical wavenumber kzn of the first ten modes in the environment
shown in Fig. 12. The solid lines represent Re�kzn�, and the dashed lines
represent Im�kzn�. Only the first three modes are waterborne, and exhibit

rapid change of kzn versus frequency.
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L=94.5 m for the frequency band of the present analysis.
Receiver array depth typically varied from 35 to 45 m for
the tracks considered here. The source was a seven-element
vertical line array with a 10-m aperture with center depth at
38.1 m. As will be shown later in this section, this vertical
source array significantly suppressed the amplitudes of the
higher-order modes by generating a narrow vertical beam of
sound with roughly 6° 3-dB beamwidth. The source trans-
mitted 1-second duration linear frequency modulated signals
in the 390 to 440-Hz band every 50 seconds, roughly 100
transmissions per track.25 The signal measured by the receiv-
ing array was tapered by a Hann window, beamformed, and
then matched filtered with a replica signal. As shown in Ap-
pendix A, the array invariant derived for impulsive sources
can also be applied to non-impulsive sources if the received
field is phase conjugated by matched filtering. As noted in

FIG. 16. The source position and the two receiver ship tracks on May 7,
2003. The source to receiver distance varied from 1 km to 6 km. The depth
contour of the sea-bottom in meters is also shown in the figure. The arrows
show the heading of the receiver ship along the tracks. The origin of the
coordinates in Figs. 16 and 17 is at 38.955°N and 73.154°W.

FIG. 17. The source position and the two receiver ship tracks on May 1,

2003. The source to receiver distance varied from 4 km to 8 km.
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Sec. I, a more general formulation that can treat arbitrary
broadband signals that are not necessarily impulsive is
possible.13

B. Instantaneous range estimation by the array
invariant method

We show that source range can be instantaneously and
accurately estimated using the array invariant method from
field data. The measured beam-time sound pressure level
data Lbt�s , t�, obtained after time-domain beamforming and
matched filtering of the acoustic field received on the hori-
zontal array for a source transmission from Track 141d�1, is
imaged in Fig. 19�a�. The range and bearing of the source
with respect to receiver coordinates are ro=3.6 km and �o

=−65° by GPS measurement. The linear least squares fit of
the beam-time migration line ŝl�t�, calculated using Eq. �26�,
is overlain on Fig. 19�a�. The slope of the fitted line is the

FIG. 19. �a� The beam-time sound pressure level image Lbt�s , t� measured d

line is at sin �o, where �o=−65° and �̂o=−68°. The slanted line is the linear

Simulation of the measurement shown in �a� using the sound speed profile in
˜
line is sn�z , t� up to the 20th mode.
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array invariant estimate, 	̂l=0.339. The source range ro is

then estimated as r̂o=−c�z�sin �̂o / 	̂l	4.1 km from Eq. �24�.
This is within 14% of the true range, which is sufficient for
many practical applications.

A corresponding simulation is shown in Fig. 19�b�. The
simulated s̃n�z , t�, overlain in Fig. 19�b�, shows good agree-
ment with the least squares fit of the beam-time migration
line ŝl�t� in Fig. 19�a�. Figure 20 shows that vertical
wavenumber is effectively a constant function of frequency
so that relation �13� is satisfied for the MAE waveguide,
which implies that the array invariant method should work
well as shown in the example in Fig. 19.

We show that source range can be consistently and ro-
bustly estimated using the array invariant method with ex-
perimental field data. Source range was estimated 241 times
for ranges between 1 and 8 km over a 6-hour period using
MAE data. High correlation was found between source range

FIG. 18. Sound speed profiles mea-
sured by XBT’s during the MAE
2003. Two XBTs were deployed for
tracks 141a�1 and 141d�1 ��a� and �b��,
and three XBTs were deployed for
tracks 84�1 and 85�4 ��c� and �d��. The
Greenwich Mean Time of the deploy-
ment are shown in the parentheses.

the MAE 2003. The dotted vertical line is at sin �o, and the dashed vertical

squares fit of peak beam-time migration. The receiver depth is 39.7 m. �b�
18�b� XBT3. The positions of sin �o and sin �̂o are nearly identical. The slant
uring

least

Fig.
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estimates using the array invariant method and ranges mea-
sured by GPS. The range estimates r̂o using the array invari-
ant method are shown in Fig. 21 along with the GPS mea-
sured ranges ro for tracks 141a�1, 141d�1, 84�1, and 85�4.

Only ping transmissions that have 20° � ��̂o��75° were used
in range estimation since the array invariant for a horizontal
array is insensitive to ro at broadside incidence, and since the
endfire resolution of a horizontal linear array is significantly
worse than the near-broadside resolution.

Figure 22 shows range estimates r̂o versus GPS mea-
sured ranges ro for all four tracks. The solid line in Fig. 22 is
the linear regression of r̂o with respect to ro. The regression
coefficient and the correlation coefficient of 0.946 and 0.835,
respectively, are high and indicate that the data have signifi-
cantly supported the array invariant range estimation model.

The root mean square �rms� error of all range estimates
determined by the array invariant method is 25% of the
source range. The accuracy of this particular experimental
configuration shows that the array invariant is of extreme
practical value.

Even greater accuracy can be achieved for similar mea-
surement scenarios if the source is omnidirectional. The ver-
tical linear source array used in this experiment significantly
degraded performance by suppressing higher-order modes,
especially at long ranges. This is not typical of mobile
sources that are detected and tracked in operational systems.
Comparison of simulations in Fig. 9 and Fig. 19�b� shows
that the amplitudes of the higher-order modes are signifi-
cantly reduced by the beampattern of the source. This is
especially noticeable since ro=5 km in Fig. 9, whereas ro

=3.6 km in Fig. 19�b�. This also appears in the experimental
measurement in Fig. 19�a� where peak amplitude decays rap-
idly with increasing arrival time.

The length of the receiver array used in the MAE was
roughly 64 /2, one-half the length of many standard arrays.

FIG. 20. Vertical wavenumbers kzn at z=39.7 m calculated using the sound
speed profile in Fig. 18�b� XBT3. This figure shows that relation �13� is
satisfied for the MAE waveguide so that the array invariant method should
be applicable. This is because the vertical wavenumber is effectively a con-
stant function of frequency.
Using a more typical 128 /2 aperture array would increase
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the range resolution by a factor of 2, since the range resolu-
tion of the array invariant method is roughly proportional to
receiving array beamwidth.

Uncertainties in array position, tilt, and shape can also
introduce range estimation error. Our numerical simulations
show that a 1° tilt in both the horizontal and vertical, which
was typical in the MAE,25,26 can cause roughly a 10% error
in the current source range estimates.

V. COMPARISON OF THE ARRAY INVARIANT
METHOD TO OTHER RANGE ESTIMATION
TECHNIQUES

It has been suggested that the interference pattern of
incoherent acoustic intensity measured as a function of range
and frequency can be used for source localization in shallow-
water waveguides by the waveguide invariant method, pro-
vided that the values of the invariant parameters are known
accurately.9,10 The waveguide invariant parameter �mn be-
tween two propagating modes m and n is defined as

�mn = −
vpm

−1 − vpn
−1

vgm
−1 − vgn

−1 . �31�

For an ideal waveguide with perfectly reflecting boundaries
or for a waveguide with an n2-linear sound speed profile, the
waveguide invariant parameters are approximately equal to 1
and −3, respectively. Equation �31� shows that the wave-
guide invariant requires multiple modes in its fundamental
definition, whereas the array invariant does not require mul-
tiple modes as discussed in Sec. II B.

Range estimation using the waveguide invariant can lead
to large errors if the distribution of �mn is not known a priori
since uncertainty in ro is proportional to uncertainly in �mn.
Incoherent intensity interference patterns measured during
the MAE and corresponding waveguide invariant parameters
are provided in Figs. 23 and 24, respectively, where it can be
seen that �mn can vary from 1 by more than a factor of 2.
This variation of �mn will lead to more than a factor of 2
error in range estimates if �mn=1 is assumed without a priori
knowledge of the waveguide invariant parameters. The
waveguide invariant parameters also can suffer from large
temporal and spatial variation. This is demonstrated in Fig.
24, where roughly a factor of 2 change in �mn is shown to
have occurred in less than 2 hours.

Range estimation using MFP techniques also requires
accurate knowledge of the environmental parameters. For ex-
ample, Fig. 9 in Ref. 7 shows that a very common uncer-
tainty of only ±6 m/s sound speed mismatch in the water
column results in intolerable MFP ambiguity in a 100-m
deep shallow-water waveguide with a source at 5-km range.

The array invariant, waveguide invariant, and MFP tech-
niques for passive source range estimation all fit into a simi-
lar category. This is because they all work even when the

source is in the far-field of the receiver since they all rely on
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the waveguide effects such as modal dispersion or interfer-
ence. While near-field techniques for source localization,
such as focusing or triangulation, may have better range
resolution than any of these far-field waveguide techniques,
they require an extended aperture or combination of widely
separated apertures, which limits their practicality.

VI. CONCLUSION

The array invariant method has been introduced for in-
stantaneous source range estimation in an ocean waveguide.
The method exploits the dispersive behavior of guided wave
propagation. It has been shown that the array invariant
method does not require a priori knowledge of the environ-
mental parameters, nor does it require extensive computa-
tions. The ability to make simple and accurate range esti-
mates by the array invariant method has been demonstrated

FIG. 21. Experimental range estimates using the array invariant method. The
array invariant method. �a� Track 141a�1: 66 range estimates are shown, a
141d�1:58 range estimates are shown, and 4 noise-corrupted data is ignored.
8 noise-corrupted data are ignored. The rms error erms is 1.4 km. �d� Track
rms error erms is 1.7 km.
with data from the MAE of 2003.
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APPENDIX A: STATIONARY PHASE APPROXIMATION
APPLIED TO BEAMFORMING IN A WAVEGUIDE

The method of stationary phase has long been used in
guided wave propagation problems to obtain the time-
domain response at a receiver,15,16 and to obtain the time-
domain solution of the scattered field3,17 by a broadband
source. The stationary phase approximation used here is ex-
plicitly given in Appendix A 1, and applied to beamforming
in a waveguide in Appendix A 2.

1. General stationary phase approximation

Let

I�x� = 

a

b

g�f�eix��f�df , �A1�

and let ��f� satisfy ����� f̃��0 and ��1�� f̃�=��2�� f̃�= ¯

��−1� ˜ ˜ ���

lines show ro measured by GPS. The cross marks show r̂o estimated by the
noise-corrupted data are ignored. The rms error erms is 0.6 km. �b� Track
rms error erms is 0.6 km. �c� Track 84�1: 61 range estimates are shown, and
56 range estimates are shown, and 6 noise-corrupted data are ignored. The
solid
nd 3
The

85�4:
=� �f�=0 at f = f , where � �f� is the �th derivative of
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��f� with respect to f for positive integer �. Then ��f� can be expanded into the Taylor series as

��f� 	 �� f̃� +
����� f̃�

�!
�f − f̃��

near f = f̃ , and Eq. �A1� can be approximated as

I�x� 	 �2g� f̃�eix�� f̃�+sgn������ f̃��i�/2�� �!

x������ f̃��
�1/���1/��

�
if � is even,

2g� f̃�eix�� f̃�� �!

x������ f̃��
�1/���1/��

�
cos� �

2�
� if � is odd, � �A2�

for x�1.27 Solutions for the special cases of �=2 and �=3 can be found in Ref. 16. The error term introduced by the
approximation in Eq. �A2� vanishes at a rate of 1 /x and therefore is negligible for sufficiently large x.27

FIG. 22. Experimental range estimates using the array invariant method. The range estimates r̂o versus GPS measured ranges ro for tracks 141a�1, 141d�1,
84�1, and 85�4 plotted in logarithmic scale. The solid line is the linear regression r̂o=a+bro, where the regression coefficient b=0.946 and the intercept a
=161 m. The correlation coefficient is 0.835.

FIG. 23. Incoherent acoustic intensity measured over the array aperture during the MAE 2003. �a� is one of the measurements from Track 141a�1, and �b� is
the incoherent intensity of the same data shown in Fig. 19 from Track 141d�1. The receiver array has 64 channels, the number of which are shown on top of
the figures. The range from each channel to the source is shown at the bottom of the figures. The black lines are the interference patterns for �mn=1 �—�

�mn=2 �---�, �mn=3 �-·-·�, and �mn=4 �¯�, respectively, calculated using Eq. �31�. Variation of �mn from 1 by more than a factor of 2 can be observed.
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2. Application of the stationary phase approximation
for array beamforming

The complex beamformed pressure PB+�s , t� of Eq. �3�
can be rewritten as

PB+�s,t� =
4�i

�8���zo�
e−i�/4�

n



0

�

�Q�f��un�zo�un�z�

�
B�s − sn�
�krnro

eiro�n�f�df , �A3�

where

�n�f� = krn −
2�ft − � Q�f�

ro
, �A4�

and �Q�f�� and �Q�f� are the magnitude and phase of Q�f�.

Then �n��f� is zero at the frequency f that satisfies
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t =
ro

vgn� f̃�
+

1

2�
� d

df
� Q�f��

f= f̃
, �A5�

where f̃ is the dominant frequency component that arrives at
the receiver array at time t. The first term in the right-hand

side of Eq. �A5� is the travel time of the nth mode at f = f̃ .
The second term is the relative phase shift of the source
spectrum, or the relative source time delay of the fre-

quency component f̃ . The stationary phase approximation
of Eq. �A3� is then

PB+�s,t� 	
4�i

�8���zo�
e−i�/4�

n

�Q� f̃��ũn�zo�ũn�z�

�
B̃�s − s̃n�
�k̃rnro

Fn� f̃� , �A6�
where
Fn� f̃� = �ei�k̃rnro−�2� f̃ t−�Q� f̃��/ro+sgn��n�� f̃���/4�� 2�

ro�n�� f̃�
�1/2

if �n�� f̃� � 0,

ei�k̃rnro−�2� f̃ t−�Q� f̃��/ro�� 6

ro��n�� f̃��
�1/3��1/3�

3 if �n�� f̃� = 0. � �A7�

The phase term of the source spectrum in Eq. �A3� can be eliminated when the time duration of the source is much smaller
than the time spread of the source due to waveguide dispersion so that the relative phase difference is negligible. Equation �A3�
then simplifies to

FIG. 24. �a� Track 141a�1: The waveguide invariant parameters �mn calculated using the sound speed profile in Fig. 18�a� XBT2 at f =415 Hz. �b� Track
141d�1: The waveguide invariant parameters �mn calculated using the sound speed profile in Fig. 18�b� XBT3 at f =415 Hz. It can be seen that roughly a factor

of 2 change in �mn has occurred in less than 2 hours.
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PB+�s,t� 	
4�i

�8���zo�
e−i�/4�

n

�Q� f̃��ũn�zo�ũn�z�

�
B̃�s − s̃n�
�k̃rnro

Fn� f̃� �A8�

for Q�f�= �Q�f��, where

Fn� f̃� =�ei�k̃rnr0−2� f̃ t�−i sgn�ṽgn� ��/4��ṽgn�2

ro�ṽgn� �
if ṽgn� � 0,

ei�k̃rnr0−2� f̃ t�� 3�ṽgn�2

�ro�ṽgn� ��1/3��1/3�
3

if ṽgn� = 0. �
�A9�

Similar results can be obtained if the received field is
matched filtered with the transmitted signal. The matched
filter output PM of the beamformed field PB is

PM�s,t� = 2 ReK

0

�

PB�s, f�Q*�f�e−i2�ftdf�
= 2 Re�PM+�s,t�� , �A10�

where K= ��−�
� �Q�f��2df�−1/2. Again using the method of sta-

tionary phase,

PM+�s,t� 	
4�Ki

�8���zo�
e−i�/4�

n

�Q� f̃��2

� ũn�zo�ũn�z�
B̃�s − s̃n�
�k̃rnro

Fn� f̃� , �A11�

where f̃ satisfies Eq. �5�. The function Fn� f̃� in Eq. �A11� is
identical to that for impulsive sources given in Eq. �A9�.
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