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A method is provided for determining necessary conditions on sample size or signal to noise ratio
�SNR� to obtain accurate parameter estimates from remote sensing measurements in fluctuating
environments. These conditions are derived by expanding the bias and covariance of maximum
likelihood estimates �MLEs� in inverse orders of sample size or SNR, where the first-order
covariance term is the Cramer-Rao lower bound �CRLB�. Necessary sample sizes or SNRs are
determined by requiring that �i� the first-order bias and the second-order covariance are much
smaller than the true parameter value and the CRLB, respectively, and �ii� the CRLB falls within
desired error thresholds. An analytical expression is provided for the second-order covariance of
MLEs obtained from general complex Gaussian data vectors, which can be used in many practical
problems since �i� data distributions can often be assumed to be Gaussian by virtue of the central
limit theorem, and �ii� it allows for both the mean and variance of the measurement to be functions
of the estimation parameters. Here, conditions are derived to obtain accurate source localization
estimates in a fluctuating ocean waveguide containing random internal waves, and the consequences
of the loss of coherence on their accuracy are quantified.
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I. INTRODUCTION

In remote sensing applications, parameter estimation of-
ten requires the nonlinear inversion of measured data that are
randomized by additive signal-independent ambient noise, as
well as signal-dependent noise arising from fluctuations in
the propagation medium. Parameter estimates obtained from
such nonlinear inversions are typically biased and do not
attain desired experimental error thresholds. For this reason,
necessary conditions have been developed on sample size or
signal to noise ratio �SNR� to obtain accurate estimates and
aid experimental design.1

These conditions are derived by first expanding the bias
and covariance of maximum likelihood estimates �MLEs� in
inverse order of sample size or SNR, where the first-order
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covariance term is the minimum variance, the Cramer-Rao
lower bound �CRLB�, which is also the minimum mean
square error �MSE� of any unbiased estimate regardless of
the method of estimation. It is then required that �i� the first-
order bias term and the second-order covariance term be-
come much smaller than the true value of the parameter and
the CRLB, respectively, and �ii� the CRLB falls within de-
sired error thresholds.

Here, we provide an analytical expression for the
second-order covariance term of MLEs obtained from gen-
eral complex Gaussian data vectors, which can then be used
in many practical problems since �i� data distributions can
often be assumed to be Gaussian by virtue of the central limit
theorem, and �ii� it allows for both the mean and the variance
of the measurement to be functions of the estimation param-
eters, as is the case in the presence of signal-dependent noise.
For example, the expression can be used to aid the design of

many experiments in a variety of fields where nonlinear in-

© 2010 Acoustical Society of America 2635�/2635/17/$25.00

or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



versions are typically performed and data are often corrupted
by signal-dependent noise, such as ocean acoustics, geophys-
ics, statistical signal processing and optics.2–4

We then consider the problem of source localization in a
fluctuating ocean waveguide containing random internal
waves and calculate the minimum array-gain-augmented sig-
nal to additive noise ratio �SANR� necessary for accurate
localization. The fluctuating ocean waveguide is modeled us-
ing analytical expressions for the mean, spatial covariance,
and mutual intensity3 or the second spatial moment of the
acoustic field forward propagated through random 3-D inter-
nal waves in a stratified ocean waveguide for a continuous
wave �CW� narrowband signal.5 This model provides an ana-
lytical treatment of the loss of inter-modal coherence in the
forward propagating field due to scattering by internal
waves. While the ensuing degradation in localization perfor-
mance may be expected,6,7 the exact effect of internal waves
is here quantified for the first time by computing the
asymptotic biases and variances of source localization esti-
mates. The results presented here can be used to quantify the
effects of environmental uncertainties on passive source lo-
calization techniques, such as matched-field processing
�MFP� and focalization,8 both of which typically utilize line
arrays and CW signals.

Incomplete or imprecise knowledge of environmental
parameters and randomness in the propagation environment
are known to seriously deteriorate the performance of MFP,
which has been investigated extensively in the past.9–18 MFP
has been demonstrated in a number of theoretical and experi-
mental scenarios involving fluctuating or unknown
environments,14,17,18 but with significant localization ambi-
guities due to multimodal propagation and environmental
mismatch. For example, in Ref. 18 it was shown that given
10 log10 SNR of more than 20 dB, peaks in the MFP ambi-
guity surface occurred at the true source range, but signifi-
cant sidelobes were also observed at other ranges. All past
experimental demonstrations of MFP have used SNRs that
have exceeded the minimum levels necessary for accurate
localization derived here.

Previously, the performance of passive source localiza-
tion techniques was investigated by deriving CRLBs in a
non-fluctuating waveguide.6 Later it was shown that these
were single-sample bounds,19 multiple sample bounds were
derived,19,20 and it was shown that stationary averaging could
reduce the bounds to zero.19 Asymptotic statistics were then
used to derive necessary conditions on sample size for errors
to attain the CRLB and these were applied to source local-
ization in a non-fluctuating waveguide.21 Our approach is
based on classical estimation theory,1 is independent of the
estimation technique and has already been applied in a vari-
ety of other problems, including time-delay and Doppler
shift estimation,1 pattern recognition in 2-D images,22 geoa-
coustic parameter inversion,23 and planetary terrain surface
slope estimation.24 In all previous applications except the
last, however, the measurement was modeled as either �i� a
deterministic signal vector, or �ii� a fully randomized signal
vector with zero mean, both embedded in additive white
noise. These are special cases of the scenario considered here

where both the mean and the variance of the measurement
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are parameter-dependent, which is necessary to properly
model acoustic propagation through a fluctuating waveguide
that leads to a signal-dependent noise component. The meth-
odology presented here can then be used in any experimental
design to ensure that statistical biases and errors meet neces-
sary error thresholds.

In Sec. II, we first review the first-order bias and first-
order covariance of MLEs given general multivariate Gauss-
ian data. We then provide a new analytic expression for the
second-order covariance. In Sec. III, we calculate the MLE
statistics and determine necessary conditions on sample size
or SNR to obtain estimates that meet any design error thresh-
old in a deterministic and a random waveguide.

II. GENERAL ASYMPTOTIC EXPANSIONS FOR THE
BIAS AND COVARIANCE OF THE MLE

In this section, we first review the asymptotic expan-
sions for the bias and covariance of the MLE. We also sum-
marize the conditions necessary for an MLE to become as-
ymptotically unbiased and have a variance that attains the
CRLB. We then provide a new expression for the second-
order covariance of the MLE given general multivariate
Gaussian random data and describe how these measurements
are obtained.

A. Asymptotic statistics of the MLE

Following the theory and notation adopted in Ref. 1,
assume an experimental measurement that consists of a set of
n independent and identically distributed N-dimensional real-
valued random data vectors X j obeying the conditional prob-
ability density p�X ;��, where X= �X1

T , . . . ,Xn
T� and � is an

m-dimensional parameter vector. The MLE �̂ of � is the
maximum of the log-likelihood function l���=ln�p�X ;���
with respect to �.25–27 The first-order parameter derivative of
the log-likelihood function is defined as lr=�l��� /��r, where
�r is the rth component of �. The elements of the expected
information matrix, also known as the Fisher information
matrix, are given by irs= �lrls�, and the elements of its inverse
by irs= �i−1�rs, where i−1 is the CRLB,2,25,28 and � . . . � signifies
expected value. Moments of the log-likelihood derivatives
are defined by vR��lR�, and joint moments by vR1,R2,. . .,RM

= �lR1
lR2

. . . lRM
�, where Ri is an arbitrary set of indices.1,21

The moments of �̂r for r=1, . . . ,m can then be expressed
as a series of inverse powers of the sample size n,1,21 pro-
vided that the required derivatives of the likelihood function
exist.29 The MLE bias is then given by23,24

bias��̂r,n� = b1��̂r;�,n� + b2��̂r;�,n�

+ Higher Order terms, �1�

where bj��̂r ;� ,n�=bj��̂r ;� ,1� /nj, so that

bias��̂r,n� =
b1��̂r;�,1�

n
+

b2��̂r;�,1�
n2 + O�n−3� , �2�

where O�n−3� represents integer powers n−3 and higher.

Similarly, the MLE variance can be written as
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var��̂r,n� =
var1��̂r;�,1�

n
+

var2��̂r;�,1�
n2 + O�n−3� , �3�

where the first term on the right hand side of Eq. �3� is the
CRLB, which is the asymptotic value of the variance when
sample size n and SNR become large and also the minimum
possible mean square error �MSE� of an unbiased estimate.

The value of n necessary for the MLE to become asymp-
totically unbiased is found by requiring the first-order bias to
be much smaller than the true value of the parameter

n � � b1��̂r;�,1�
�r � . �4�

Similarly, the value of n necessary for the MLE variance to
asymptotically attain the CRLB is found by requiring the
second-order variance to be much smaller than the first-
order, so that

n �
	var2��̂r;�,1�	

var1��̂r;�,1�
. �5�

Only for values of n satisfying these conditions is it possible
for the estimate to be in the asymptotic regime where it is
unbiased and it continuously attains the CRLB,1,21,23 so that
it has the minimum possible mean square error. Following
established convention,21,23 we determine the sample sizes
necessary to obtain an unbiased, minimum variance MLE by
requiring the first-order bias and the second-order variance to
be an order of magnitude smaller than the true value of the
parameter and the first-order variance, respectively,

nb � 10� b1��̂r;�,1�
�r � , �6a�

nv � 10
	var2��̂r;�,1�	

var1��̂r;�,1�
. �6b�

For the rest of this paper, conditions on sample size or SNR
for parameter estimates to attain specified design error
thresholds are calculated by requiring that �i� n meets the
conditions in Eq. �6�, and �ii� the CRLB is smaller than the
desired error threshold. The sample size necessary to obtain
accurate parameter estimates is then given by �max�nb ,nv��
�n�, where

n� =
CRLB�max�nb,nv��
�design threshold�2 . �7�

Expressions for b1��̂r ;� ,n�, var1��̂r ;� ,n� and

var2��̂r ;� ,n� have been derived in terms of tensors in the
form of vR1,R2,. . .,RM

corresponding to moments of the log-
1,30
likelihood derivatives, as summarized below

J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010 Be

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license 
b1��̂r;�,n� = 1
2 iraibc�vabc + 2vab,c� , �8�

var1��̂r;�,n� = irr, �9�

var2��̂r;�,n�

= − irr + irmirm�ipq�2vmq,m,p + vmmpq + 3vmq,pm

+ 2vmmp,q + vmpq,m� + ipziqt�vmptvm,q,z + vmpmvqzt

+ 5
2vmpqvmzt + 2vm,qzvmtp + 2vmmtvqz,p + 6vmt,zvmpq

+ vm,mtvpqz + 2vmq,zvpt,m + 2vmq,mvpt,z + vmq,pvmt,z�� .

�10�

Here, as elsewhere, the Einstein summation convention is
used, where summation over indices appearing both as su-
perscript and subscript is implied. These expressions are
evaluated for the case of multivariate Gaussian data next.

B. General multivariate Gaussian data

The general bias and variance expressions of Eqs.
�8�–�10� are now applied to the specific case of data that
obey the conditional Gaussian probability density28

p�X;�� =
1

�2��nN/2	C���	n/2

�exp
−
1

2�
j=1

n

�X j − �����TC���−1�X j

− ������ , �11�

where C is the real-valued covariance matrix, and � is the
real-valued mean of the real random data. Similarly to the
work of Ref. 21, in the present study of underwater localiza-
tion, X j represents the real and imaginary parts of the
narrow-band acoustic data collected across an array of N /2
sensors around the given harmonic-source frequency, and the
parameter set � represents the range and depth of the acous-
tic source.

The first-order bias has already been provided in Eq. �7�
of Ref. 1 and is repeated below

b1��̂r;�,n� = − 1
2 iraibc��bcC

−1�a − �b�C−1�a�c

+ 1
2 tr�ČbcČa�� . �12�

Typically, as discussed in the Introduction, both the data
mean and covariance in Eq. �11� are functions of the desired
parameter set �. This necessitates evaluation of the joint mo-
ments in Eq. �10� as shown in Ref. 30 and summarized in
Appendix B. The second-order covariance of the MLE given

30
multivariate Gaussian random data is given by
var2��̂r;�,n� = − irr + irmirmiab��maC−1�mb − �mmC−1�ab − �mabC−1�m + tr�ČmČmČaČb� + tr�ČmČaČmČb�

+ tr�ČabČmČm� − tr�ČmaČmČb� − tr�ČmaČbČm� + 1 tr�ČmaČmb� − 1 tr�ČmmČab� − 1 tr�ČmabČm�
2 2 2
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+ 4�ma�C−1�m�b + 2�ma�C−1�b�m − �ab�C−1�m�m + �a�C−1�mm�b + �m�C−1�a�C−1�b�m

+ 2�m�C−1�a�C−1�m�b + �a�C−1�m�C−1�m�b�
+ irmirmiabicd
�maC−1�c�− �mdC−1�b − 2�b�C−1�d�m − 4�b�C−1�m�d − tr�ČmdČb� + tr�ČbdČm�

+ tr�ČmČbČd� + tr�ČmČdČb�� + �acC
−1�m� 1

2�bdC−1�m + 2�mbC−1�d + 1
2 tr�ČbdČm� + tr�ČmbČd�

− tr�ČmČbČd�� + tr�ČmČaČc���m�C−1�b�d + �m�C−1�d�b + 3�b�C−1�m�d + 1
2 �− tr�ČmČbČd�

− tr�ČmČdČb� + tr�ČmdČb� + tr�ČmbČd� − tr�ČbdČm��� + tr�ČmaČc��− 1
4 tr�ČmdČb� − �m�C−1�d�b

− 2�b�C−1�m�d� − 3
2�a�C−1�m�c�b�C−1�m�d + tr�ČacČm�� 1

2 tr�ČmbČd� + 1
8 tr�ČbdČm�� + �m�C−1�a�c�

− �m�C−1�d�b − 2�b�C−1�m�d� + ��cdC−1�a − �c�C−1�a�d + 1
2 tr�ČcdČa��� 1

2 tr�ČmmČb� + 1
2 tr�ČmbČm�

− tr�ČmČmČb� + �mmC−1�b + �mbC−1�m + �m�C−1�m�b�� , �13�
where subscripts indicate derivatives with respect to the
specified indices, tr�C� stands for the trace of C, and the

auxiliary term ČR is defined in Eq. �B1c� for an arbitrary set
of indices R. As shown in Appendix B, the above expression
can be used even if the random data are not distributed in a
Gaussian form, provided that they can be expressed as func-
tions of Gaussian random variables with a Jacobian of the
transformation that is independent of the parameter set �.30

Eq. �13� can be used to calculate the second-order MLE co-
variance in applications where both the data mean and cova-
riance are functions of the estimated parameters.

C. Mean and variance of the measured field

We consider a vertical receiving array employed to lo-
calize a harmonic source in a fluctuating ocean waveguide.
The mean and covariance of the measured field can then be
obtained from the analytical expressions provided in Ref. 5
and summarized in Appendix A. Equation �A1� defines the
qth element of the vector �̄ for q=1,2 ,3 , . . . ,N /2, where
N /2 is the number of hydrophones in the receiving array.
Similarly, Eq. �A4� defines the �q , p� element of the covari-

ance matrix C̄ for q , p=1,2 ,3 , . . . ,N /2. In the above, we

have defined the complex mean �̄ and covariance C̄ that are
related to the real mean � and covariance C of Eq. �11� by
the following expressions:28

� = �Re��̄�
Im��̄�

�, C =
1

2�Re�C̄� − Im�C̄�

Im�C̄� Re�C̄�
� + �an

2 I ,

�14�

where I is the identity matrix and �an
2 is defined as the in-

stantaneous variance of the additive noise on each hydro-
phone. The expressions above are valid under the assumption
that the complex Fourier transform of the data measured at
each hydrophone follow a circularly complex Gaussian ran-
dom process3,31 when the mean is subtracted. Evaluation of

Eqs. �8�–�10� requires knowledge of the higher-order deriva-
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tives of � and C with respect to parameters � and z0, which
are provided in Appendix A.

The SNR and signal to additive noise ratio �SANR� for a
single sample collected across the array are then defined as

SNR�1� =
�q=1

N/2
	��T�rq	r0��	2

�q=1

N/2
�Var��T�rq	r0�� + �an

2 �

=
tr�	�̄	2�

tr�C̄� + N�an
2 /2

, �15�

SANR�1� =
�q=1

N/2
�	��T�rq	r0��	2 + Var��T�rq	r0���

N�an
2 /2

=
tr�	�̄	2� + tr�C̄�

N�an
2 /2

, �16�

where rq is the position of the qth hydrophone on the re-
ceiver array, and r0 is the position of the source. Since the
total received intensity is given by the numerator of Eq. �16�,
we adopt the convention21 of setting the SANR�1� of the
field across the array to unity for a source located at r
=1 km range and any depth z, to maintain consistency be-
tween the different waveguides examined in the next section.
The definition provided in Eq. �16� does not account for
potential improvements due to array gain. For a uniform ar-
ray of N /2 elements, the SANR�1� can be array-gain-
augmented by �N /2� for the ideal case of a plane wave signal
embedded in spatially uncorrelated white noise.2 For a deter-
ministic signal embedded in additive white noise, the cova-
riance matrix C reduces to �an

2 I so that SNR and SANR are
equal and proportional to sample size,21

n =
SANR

SANR�1�
. �17�

The sample size conditions in Eqs. �6� and �7� can then also
be written in terms of SANR and SANR�1�. For general

multivariate Gaussian data, this simple proportionality is
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only approximately valid when the signal-dependent noise
contribution to the covariance is weak.

III. ILLUSTRATIVE EXAMPLES

Here we demonstrate how the methodology presented in
Sec. II A and the expression for the MLE second-order co-
variance in Eq. �13� can be used to specify conditions on
sample size or SNR to obtain accurate source localization
estimates in a fluctuating ocean waveguide. The effects of
the loss of coherence in the forward propagating field are
quantified by �i� calculating these sample sizes and SNRs, as
well as the asymptotic biases and variances of source local-
ization MLEs, and �ii� comparing them to those for a static
waveguide. In the latter, the measured acoustic field is fully
coherent, and the source localization problem reduces to that
of parameter estimation given a deterministic signal embed-
ded in white additive Gaussian noise. Such a problem was
treated for a different waveguide, source frequency and re-
ceiving array in Ref. 21, and results are presented here for
comparison with the fluctuating waveguide case considered.
In the fluctuating waveguide, both the mean and the variance
of the measurement are parameter dependent so that Eq. �13�
must be used to correctly calculate the asymptotic MLE vari-
ance. The internal wave height standard deviation is chosen
to be greater than the acoustic wavelength so that the wave-
guide becomes highly randomized within a few kilometers of
the source,5 and the effects of environmental uncertainty on
source localization can be distinguished.

The simple two-layer waveguide used in Ref. 5 is again
employed here to model internal waves in a shallow-water

Receiver

array

3D Random Internal Wave Field in an Ocean Waveguide

Source

c1 d1 α1

H

(-ρ0,0,z0)

D

x

y
z

lx

ly

Sediment Halfspace cd dd αd

c2 d2 α2

h(ρs)

qth element

(0,0,zq)

FIG. 1. Geometry of an ocean waveguide environment with two-layer water
column of total depth H=100 m, and upper layer depth of D=30 m. The
density and sound speed in the upper layer are d1=1024 kg /m3 and c1

=1520 m /s, respectively. The density and sound speed in the lower layer
are d2=1025 kg /m3 and c2=1500 m /s, respectively. The bottom sediment
half-space is composed of sand with density db=1.9 g /cm3 and sound
speed cb=1900 m /s. The attenuations in the water column and bottom are

1=
2=6�10−5 dB /� and 
b=0.8 dB /�, respectively. The internal wave
disturbances have coherence length scales lx=100 m and ly =100 m in the x
and y directions, respectively, and are measured with positive height h mea-
sured downward from the interface between the upper and lower water
layers. The internal wave disturbances, when present, are assumed to have a
height standard deviation of �h=4 m. In the case of a deterministic wave-
guide with no internal waves, h=0 m.
continental shelf environment. Figure 1 shows the selected

J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010 Be

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license 
sound speed profile, bottom composition and internal wave
characteristics. The origin of the coordinate system is placed
at the sea surface. The z axis points downward and normal to
the interface between horizontal strata. The water depth is H
and the boundary separating the upper and lower medium is
at depth z=D. Let coordinates of the source be defined by
r0= �−�0 ,0 ,z0�, and receiver coordinates by r= �0,0 ,z�. Spa-
tial cylindrical �� ,� ,z� and spherical systems �r ,� ,�� are
defined by x=r sin � cos �, y=r sin � sin �, z=r cos �, and
�=�x2+y2. The horizontal and vertical wave number com-
ponents for the nth mode are, respectively, 	n=k sin 
n and
�n=k cos 
n, where 
n is the elevation angle of the mode
measured from the z axis. Here, 0�
n�� /2 so that down-
and up-going plane wave components of each mode will then
have elevation angles 
n and �−
n, respectively. The azi-
muth angle of the modal plane wave is denoted by 
, where
0�
�2�. The geometry of spatial and wave number coor-
dinates is shown in Ref. 32.

For single frequency simulations, we employ a 415 Hz
monopole source and a 10-element vertical array in a 100 m
deep waveguide. The water column is comprised of a warm
upper layer with density d1=1024 kg /m3 and sound speed
c1=1520 m /s overlying a cool lower layer with density d2

=1025 kg /m3 and sound speed c2=1500 m /s. The bound-
ary between the layers is at a depth of D=30 m, and the
attenuation in both layers is 
=6�10−5 dB /�. The spacing
of the array elements is 1.5 m �� /2�1.8 m� with the shal-
lowest element at 43.5 m, so that the array is centered in the
water column. The ocean bottom is a fluid half space with a
sound speed of cb=1700 m /s, a density of db=1.9 kg /m3,
and an attenuation of 
b=0.8 dB /wavelength, which are
representative values for sandy environments.

Note that the results presented in this paper are not rep-
resentative of the performance of the waveguide
invariant33,34 or the array invariant,35 since the former uses
acoustic intensity data versus range and frequency and the
latter employs beam-time or coherent hydrophone data over
time. Here, we instead consider instantaneous measurements
of the acoustic field due to a CW source made with a vertical
line array. The results presented here can also be used for
broadband signals when matched-field processing is per-
formed separately for each frequency component and the
computed ambiguity surfaces are then combined incoher-
ently. This is commonly known as incoherent processing,18,36

even though each separate frequency bin is still processed
coherently before the correlation values of the data and rep-
lica fields are averaged. For a broadband signal that consists
of Mf frequency bins, incoherent averaging means that the
effective sample size equals n�Mf, so that conditions on the
necessary sample sizes can be found by scaling the right
hand sides of Eqs. �6a�, �6b�, and �7� by 1 /Mf.

A. Undisturbed waveguide

For the undisturbed static waveguide, coherent interfer-
ence between the waveguide modes leads to a range- and
depth-dependent structure in the total acoustic field intensity
which maintains a modal coherence pattern over very long

ranges with the SANR range-depth pattern of Fig. 2. The
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SANR�1� is computed using Eq. �16� and plotted as a func-
tion of source-receiver range and source depth for the shal-
low water waveguide of Fig. 1 when there are no internal
waves present. The source level is fixed as a constant over
range so that 10 log10 SANR�1� is 0 dB across the array for
a source-receiver range of 1 km. For the static waveguide,
the covariance of the acoustic field measurement in Eq. �14�
reduces to C=�an

2 I so that SNR�1� and SANR�1� in Eqs. �15�
and �16� are equivalent. For the array of 10 elements consid-
ered here, the array-gain-augmented SANR�1� is higher than
the SANR�1� shown in Fig. 2 by a factor of 10.

The first-order bias, first-order covariance �CRLB� and
second-order covariance of the MLEs for source range and
depth are plotted in Fig. 3, given a source fixed at 50 m depth
and a sample size of n=1. The asymptotic bias and the
square root of the CRLB for a range estimate are very small,
typically less than 10 m even at ranges beyond 30–40 km,
while the corresponding quantities for a depth estimate �Fig.
3�b�� reach values comparable to the waveguide depth of 100
m. This suggests that it may be possible to obtain unbiased
range MLEs from a single sample, whereas depth MLEs will
have significant biases, given the SANR[1] in Fig. 2. The
second-order covariance exceeds the CRLB for both the
range and depth MLE even at a few kilometers from the
source, so that the variance of MLEs obtained from a single
sample will not in general attain the CRLB. The CRLB and
the second-order covariance approximately coincide where
10 log10 SANR�1� is about �5 dB, which is where the array-
gain-augmented 10 log10 SANR�1� equals 5 dB. Increasing
the array gain could help obtain single-sample MLEs that
attain the CRLB at longer ranges from the source.

The results shown here are consistent with those of Figs.
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array is centered at �=0 m and z=50 m. The source level is fixed as a
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2 and 4 of Ref. 21 for a deterministic source signal in a static
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waveguide, as expected. Since the bias and variance terms in
the asymptotic expansions of the MLE moments, e.g. Equa-
tion �3�, always depend on inverse order of sample size n, the
asymptotic statistics of the MLE for any arbitrary n can be
obtained by shifting the curves in Fig. 3 according to the
order of the term involved and the value of n desired for a
given SANR�1�. For the static waveguide, the data covari-
ance C is parameter independent, in which case the MLE
bias and covariance can also be expanded in inverse orders
of SNR.30 The necessary sample sizes given throughout this
section can then also be interpreted in terms of necessary
SNR or SANR. Increasing SANR by a factor of 10 in Fig. 3,
for example, would reduce the first-order bias and the CRLB
by one order of magnitude, and the second-order covariance
by two orders of magnitude, as seen by replacing n in Eqs.
�2� and �3� with SANR/SANR�1� �Eq. �17��. Minimum vari-
ance range MLEs could then be obtained from a single
sample up to the maximum range for which the second-order
covariance and the CRLB are equal in Fig. 3, i.e., 8 km,
given such a factor of 10 increase in SANR.

Figure 4 shows the sample size n necessary to obtain an
unbiased source range MLE whose mean square error �MSE�
attains the CRLB and has �CRLB�100 m. It also shows
that for fixed SANR, n fluctuates as a function of source
range due to the modal interference structure of the static
waveguide. If the received 10 log10 SANR is fixed at 0 dB
for all ranges between 1 and 50 km, then to obtain a source
range estimate of 100 m accuracy for 95% of the ranges
either �a� 20 samples are needed, or �b� given a single sample
a 10 log10 SANR of 13 dB �Eq. �17�� is necessary.

Figures 5�a� and 5�b� show the square root of the single-
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FIG. 3. Ocean acoustic localization MLE behavior given a single sample for
�a� range estimation and �b� depth estimation for a 415 Hz source placed at
50 m depth in an undisturbed waveguide with no internal waves. The MLE
first-order bias magnitude �solid line�, square root of the CRLB �circle
marks� and square root of the second-order variance �cross marks�, as well
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plotted as functions of source range. Given the necessary sample size con-
ditions in Eq. �6�, whenever the first-order bias and the second-order vari-
ance attain roughly 10% of the true parameter value and the CRLB, respec-
tively, more than a single sample will be needed to obtain unbiased,
minimum variance MLEs. The source level is fixed as a constant over range
so that 10 log10 SANR�1� is 0 dB at 1 km source range.
sample CRLB for source range and depth estimation. The

Bertsatos et al.: Accurate estimation in fluctuating environments

or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



sample sizes necessary to obtain unbiased source range and
depth estimates that asymptotically attain the CRLB are
given by the maximum of nb, nv in Eq. �6� and shown in
Figs. 5�c� and 5�d�. They are found to be roughly inversely
proportional to SANR�1� and are typically much larger than
one, as expected from Fig. 3. We find that the necessary
sample size is at least an order of magnitude larger in the
upper waveguide layer where SANR�1� decreases more rap-
idly, as can be seen in Fig. 2. Given sufficient source level,
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however, accurate range MLEs may be obtained from a
single sample at any desired source-receiver separation. For
example, increasing source level so that 10 log10 SANR at 1
km range is 40 dB should be sufficient to accurately estimate
the range of a source at any depth and ranges up to roughly
30 km, according to Fig. 5 and Eq. �17�.

Given the sample sizes in Fig. 5�c�, for example, the
source range MLE will be in the asymptotic regime where its
variance continuously attains the CRLB, which is the mini-
mum possible MSE of an unbiased estimate, regardless of
the method of estimation. Since the CRLB is inversely pro-
portional to sample size, as shown in Eq. �3�, conditions can
be specified on sample size for the MLE error to meet any
desired threshold. It is then possible to determine whether
these conditions can be met in practice, since the number of
statistically independent samples of the received acoustic
signal is limited by the ratio of the measurement time win-
dow to the coherence time scale of acoustic field intensity,1,31

which can also be calculated.37

The temporal coherence scale of acoustic field fluctua-
tions for a shallow-water continental shelf environment such
as the one considered here is on the order of minutes,37 so
that the calculated necessary sample sizes imply that accurate
source localization may not be practical at ranges greater
than 20 km given the SANR[1] in Fig. 2, since stationary
averaging over time periods on the order of hours may then
be necessary.

B. Waveguide containing internal waves

The fluctuating waveguide considered here is the same
as that in Ref. 5, where the geometry, variables and param-
eters of the waveguide are also provided here in Fig. 1. The
variance of the acoustic field intensity, or incoherent inten-
sity, starts dominating the expected total intensity for ranges
beyond roughly a few kilometers in the upper layer and 20
km in the lower waveguide layer, as seen in Fig. 6�c�. The
SNR�1� and SANR�1� are computed using Eqs. �15� and
�16�, respectively, and are plotted together with the ratio of
coherent to incoherent intensity in Figs. 6�a�–6�c� as func-
tions of source-receiver range and source depth for a wave-
guide containing random internal waves. The forward propa-
gated field quickly loses its modal coherence structure and
follows a decaying trend with local oscillations over range
due to scattering by random 3-D internal waves. The internal
wave disturbances have a height standard deviation of �h

=4 m and coherence lengths of lx= ly =100 m.5 In this ran-
dom waveguide, there is no longer a simple linear relation-
ship between SNR�1� and SANR�1�, but 10 log10 SNR�1�
can be approximated as equal to 10 log10 SANR�1� minus
4–5 dB for ranges beyond roughly 30 km, as can be seen by
comparing Figs. 6�a� and 6�b�, as well as in Fig. 7.

The loss of coherence in the forward propagated field
has severe effects on localization accuracy, as shown in Fig.
7 where the first-order bias, first-order covariance �CRLB�
and second-order covariance of source position MLEs are
plotted given a source fixed at 50 m depth and a sample size
of n=1. While the asymptotic bias and square root of the

CRLB of the source range estimate �Fig. 7�a�� are still found
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source range.
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to be relatively small, on the order of 10 m for source-
receiver ranges greater than about 20 km, the square root of
the second-order range variance has increased by approxi-
mately an order of magnitude from the static waveguide
case. The asymptotic bias and variances of the source depth
MLE have all increased by an order of magnitude or more, as
seen by comparing Figs. 7�b� and 3�b�. Similarly to the un-
disturbed waveguide scenario, increasing the array gain
could help improve the accuracy of source localization
MLEs.

Given Eq. �6b�, significantly larger sample sizes will be
necessary to obtain unbiased range MLEs that attain the
minimum possible mean square error compared to the static
waveguide case. It will also be practically impossible to at-
tain an accurate source depth estimate from a single sample
for ranges greater than a couple of kilometers, given the
SANR�1� in Fig. 6. For a given SANR�1�, the asymptotic
statistics of the MLE for any arbitrary n can be obtained by
shifting the curves in Fig. 7 according to the order of the
term involved and the value of n desired. For this random
waveguide, the data covariance C is parameter dependent
and the MLE bias and covariance cannot be readily ex-
panded in inverse orders of SANR.30 We find that increasing
SANR by a factor of 10 in Fig. 7 reduces the first-order bias
and the CRLB by roughly one order of magnitude, and the
second-order covariance by approximately two orders of
magnitude, as in the deterministic waveguide case. Minimum
variance range MLEs can then be obtained from a single
sample up to the maximum range for which the second-order
covariance and the CRLB are equal in Fig. 7, i.e. 5 km, given
such a factor of 10 increase in SANR.

Figure 8 shows the sample size n necessary to obtain an
unbiased source range MLE whose MSE attains the CRLB
and has �CRLB�100 m. It also shows that for fixed
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source range in the fluctuating waveguide, since the forward
propagated field now follows a smoother trend with range
than the undisturbed waveguide due to scattering by random
3-D internal waves. If the received 10 log10 SANR is fixed at
0 dB for the four source ranges investigated in Fig. 8 �1, 10,
20, and 30 km�, then to obtain a source range estimate of 100
m accuracy either �a� 20 samples are needed, or �b� given a
single sample a 10 log10 SANR of 13 dB �Eq. �17�� is nec-
essary.

The presence of internal waves may severely affect the
ability to obtain accurate estimates of source position in
practice, as can be deduced from Figs. 9�a� and 9�b� which
show the square root of the single-sample CRLB for source
range and depth estimation. The sample sizes necessary to
obtain unbiased source range and depth estimates which as-
ymptotically attain the CRLB are shown in Figs. 9�c� and
9�d� and are typically much larger than one, as expected
from Fig. 7.

The minimum error of an unbiased source range MLE is
on the order of tens of meters even at ranges beyond 20 km
for a source in the lower waveguide layer, as expected from
Fig. 7�a�, but may become as high as several hundred meters
for a source in the upper layer where the SANR�1� is much
lower, as seen in Fig. 6. The minimum error of an unbiased
source depth MLE has increased from the undisturbed wave-
guide case by at least an order of magnitude, as expected
from Fig. 7�b�. The sample sizes necessary to attain either of
these CRLBs have also increased by an order of magnitude
or more from those corresponding to the static waveguide
scenario, Fig. 5. These increases in the CRLBs and the nec-
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FIG. 9. Fluctuating waveguide containing internal waves. 10 log10 of the
square root of the CRLB for �a� source range �̂0, �b� source depth ẑ0

MLEs given a single sample. 10 log10�max�nb ,nv��, the sample sizes or
SNRs necessary to obtain �c� source range, �d� source depth MLEs that
become unbiased and have MSEs that attain the CRLB. Given any design
error threshold, the sample size necessary to obtain an accurate source range
or depth MLE is then equal to �max�nb ,nv���n�, where n�
=CRLB�max�nb ,nv�� / �design threshold�2. The internal wave disturbances
have a height standard deviation of �h=4 m and coherence lengths of lx

= ly =100 m. The source level is fixed as a constant over range so that
10 log10 SANR�1� is 0 dB at 1 km source range at all source depths.
essary sample sizes to attain them are particularly pro-
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nounced in the upper layer of the waveguide and the middle
of the lower layer at about 65 m, since those are the regions
of most rapid SNR�1� and SANR�1� decrease, and also
where the received intensity is weakly dependent on source
depth and range.

The calculated necessary sample sizes suggest that it
becomes practically impossible to accurately estimate source
position for ranges greater than a few kilometers for the spe-
cific receiver array, waveguide, source frequency and type of
instantaneous measurements considered given the SANR[1]
in Fig. 6(a) and typical acoustic field coherent scales,5 since
stationary averaging over tens of hours may be required. The
examples presented here illustrate passive source localization
scenarios typical of matched-field processing �MFP� and
focalization8 in fluctuating waveguides.5,38–40 They not only
provide a quantitative demonstration of the degradation in
localization accuracy due to the presence of internal waves,
but can also be used to assess the effects of environmental
uncertainties on parameter estimation.

1. Importance of the joint-moment terms in
calculating the second-order covariance

Here, we show the benefits of employing the expression
for the MLE second-order covariance in Eq. �13� that can be
used to determine necessary sample size conditions for accu-
rate estimation given measurements whose mean and cova-
riance are both parameter dependent. If the physical environ-
ment leads to parameter dependence in both the mean and
covariance and this dependence is neglected in either, then
large errors can easily ensue, as demonstrated for the physi-
cal scenario considered in Sec. III B. Neglecting the param-
eter dependence in either the covariance or the mean is
equivalent to approximating the underwater acoustic mea-
surement as either �i� a deterministic signal vector, or �ii� a
fully randomized signal vector with zero mean, both embed-
ded in additive white noise.

These two common approximations to the received field
may lead to significant miscalculations of the CRLB and the
necessary sample sizes of Eq. �6�, as can be seen by compar-
ing Figs. 7 and 9 to Figs. 10 and 11 and Figs. 12 and 13,
respectively. Note that the asymptotic biases and variances
for source range and depth MLEs �Figs. 10�a� and 10�b�,
respectively� are of the same order of magnitude as those for
the undisturbed waveguide in Fig. 3. This is expected since
neglecting parameter dependence in the covariance C is
equivalent to assuming a static waveguide where the only
noise is purely white additive. The asymptotic biases and
variances for the case where � is assumed parameter inde-
pendent �Figs. 11�a� and 11�b�� are instead found to be many
orders of magnitude larger. The observed increase is much
larger than the decrease in SANR�1� and SNR�1�, and sug-
gests that the covariance of the measurement is only weakly
dependent on source range and depth. The differences ob-
served between Figs. 10 and 11 are consistent with those
observed between Figs. 2 and 3 of Ref. 21, where the biases
of the MLE obtained from a purely random signal are found
to be much larger than those obtained from an equivalent
deterministic signal, and range estimation is more severely

affected.
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Both approximations to the measured signal model are
inappropriate for determining the sample sizes required to
obtain MLEs of source position that attain desired error
thresholds. The minimum errors for unbiased estimates of
source position given a single sample are shown in Figs.
12�a� and 12�b� and Figs. 13�a� and 13�b�. The sample sizes
necessary to attain either of these CRLBs are given in Figs.
12�c� and 12�d� and Figs. 13�c� and 13�d�. Setting the deriva-
tives of C in Eqs. �12� and �13� to zero results in underesti-
mating the sample size required to obtain an accurate esti-
mate of source range by a factor of typically 102, as seen by
comparing Figs. 10�a� and 12�a� to Figs. 7�a� and 9�a�, given
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FIG. 10. The same as Fig. 7, but here the covariance C of the measurement
is assumed parameter independent so that its derivatives in Eqs. �12� and
�13� are set to zero. The asymptotic biases and variances of source range and
depth MLEs are typically underestimated, as seen by comparing with Fig. 7.
This scenario is equivalent to incorrectly assuming the received measure-
ment is a deterministic signal embedded in purely additive white noise, in
which case the SANR and SNR of the measurement are equal and the two
curves coincide.
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FIG. 11. The same as Fig. 7, but here the mean � of the measurement is
assumed parameter independent so that its derivatives in Eqs. �12� and �13�
are set to zero. The asymptotic biases and variances of source range and
depth MLEs may be significantly overestimated, as seen by comparing with
Fig. 7. This scenario is equivalent to incorrectly assuming the received mea-
surement is purely random with zero mean, embedded in additive white

noise.
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the SANR�1� in Fig. 6(a). Similarly, setting instead the de-
rivatives of � to zero leads to an overestimation of this
sample size by a factor of at least 107, given the SANR�1� in
Fig. 6(a). In the latter case, the degradation in range estima-
tion is especially notable and minimum errors are now at
least as large as tens of kilometers beyond 20 km from the
source, having increased by several orders of magnitude
from those calculated in Sec. III B.

C. Discussion

We have calculated the sample sizes or SANRs neces-
sary to obtain accurate source localization estimates in a
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FIG. 12. The same as Fig. 9, but here the covariance C of the measurement
is assumed parameter independent so that its derivatives in Eqs. �12� and
�13� are set to zero. The CRLB and the sample sizes necessary to attain it are
underestimated when compared with Fig. 9. This scenario is equivalent to
incorrectly assuming the received measurement is a deterministic signal
embedded in purely additive white noise.
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FIG. 13. The same as Fig. 9, but here the mean � of the measurement is
assumed parameter independent so that its derivatives in Eqs. �12� and �13�
are set to zero. The CRLB and the sample sizes necessary to attain it are
overestimated when compared with Fig. 9. This scenario is equivalent to
incorrectly assuming the received measurement is purely random with zero

mean, embedded in additive white noise.
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static and a fluctuating waveguide, given a 415 Hz source
and an N /2=10 element array in Secs. III A and III B. As a
rough design rule, we find that in the lower layer of both the
undisturbed and fluctuating waveguide, source range can be
typically estimated to within 100�M m if the received
10 log10 SANR at a single hydrophone is at least �13
+10 log10 20 /N�−20 log10 M� dB, given a single sample
and a vertical array of N� /2 elements. The necessary SANRs
for both the undisturbed and fluctuating waveguide follow
the same design rule because they have similar range-
averaged behavior.

The necessary sample sizes or SANRs presented here
are consistent with those reported in experimental studies.
For example, in Ref. 17, the authors localize a source at a
range of 5 km with an accuracy of approximately 200 m
using single measurements at similar frequencies as investi-
gated here from a 32-element array, despite uncertainties in
the sound speed profile. The effective 10 log10 SANR of
their multi-spectral measurement is roughly 16 dB at a single
hydrophone, which is much higher than the �13
+10 log10�10 /32�−20 log10 2��2 dB estimated from our
rough design rule for accurate source localization in a fluc-
tuating waveguide.

IV. CONCLUSIONS

A method is provided for determining necessary condi-
tions on sample size or signal to noise ratio �SNR� to obtain
accurate parameter estimates from remote sensing measure-
ments in a fluctuating ocean waveguide. These conditions are
derived by first expanding the bias and covariance of maxi-
mum likelihood estimates �MLEs� in inverse orders of
sample size or SNR, where the first-order term in the cova-
riance expansion is the minimum mean square error �MSE�
of any unbiased estimate, the Cramer-Rao lower bound
�CRLB�. Necessary sample sizes or SNRs are then deter-
mined by requiring �i� the first-order bias term and the
second-order covariance term to be much smaller than the
true value of the parameter and the CRLB, respectively, and
�ii� the CRLB to fall within desired error thresholds. An ana-
lytical expression is provided for the second-order covari-
ance of MLEs obtained from general complex Gaussian data
vectors, which can be used in many practical problems since
�i� data distributions can often be assumed to be Gaussian by
virtue of the central limit theorem, and �ii� it allows for both
the mean and the variance of the measurement to be func-
tions of the estimation parameters. By comparing the
asymptotic biases and errors of MLEs, and the sample sizes
or SNRs necessary to attain accurate estimates in a static
waveguide and in the presence of internal waves, it is then
possible to quantitatively assess the effects of environmental
uncertainties on parameter estimation.

Here, we consider the problem of source localization in
a fluctuating waveguide containing random internal waves,
which we model using the analytical expressions provided in
Ref. 5 for the mean, mutual intensity, and spatial covariance
of the acoustic field forward propagated through random 3-D
internal waves in a stratified ocean waveguide for a continu-

ous wave �CW� narrowband signal. The loss of coherence in
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the forward propagating field due to scattering by internal
waves may have severe consequences on parameter estima-
tion and lead to significant losses in localization ability with
narrowband vertical array measurements for fixed source and
receiver. We determine the sample sizes and SNRs necessary
to obtain accurate source localization estimates in an undis-
turbed waveguide and find that the median necessary sample
size or SNR increases by at least an order magnitude in a
fluctuating waveguide, when internal wave fluctuations result
in the incoherent intensity component dominating the total
acoustic field intensity. Past experiments demonstrating lo-
calization with matched-field processing �MFP� in random or
fluctuating environments have used SNRs that exceeded the
derived conditions and so have not tested the limits of pas-
sive detection and localization. In practice, many stealthy or
distant sources will have much lower SNRs than have been
used in current experiments, and so would likely require im-
practically long stationary averaging periods for localization
to be possible. The results shown here provide an example of
how asymptotic statistics can be used in experimental design
to ensure that statistical biases and errors meet pre-
determined error thresholds.

We also demonstrate the advantages of using the expres-
sion for the second-order covariance presented here, which
accounts for parameter dependence on both the mean and the
variance of the measurement. This is achieved by comparing
the asymptotic biases and errors to those calculated when
either the covariance or the mean of the measurement is in-
correctly assumed to be parameter independent. Such ap-
proximations are often necessary to model the measured field
in fluctuating environments when it is not possible to deter-
mine the parameter dependence of both its mean and vari-
ance. Using the analytical tools developed here, we can in-
stead take advantage of the parameter dependence of both
the mean and variance of the measured field to obtain more
accurate parameter estimates. We find that modeling the
measurement as a deterministic signal vector leads to signifi-
cantly underestimating both the CRLB as well as the sample
size or SNR required to attain it. Similarly, modeling the
measurement as a zero-mean, fully randomized signal vector
results in a gross overestimation of the CRLB and the re-
quired sample size or SNR to attain it.

APPENDIX A: MEAN, COVARIANCE OF THE
FORWARD PROPAGATED FIELD, AND THEIR
DERIVATIVES

Here, we review the analytical expressions for the mean
field, variance, and expected total intensity of the forward
field propagated through an ocean waveguide containing ran-
dom internal waves. These expressions will be used to cal-
culate the mean vector � and the covariance matrix C in Eq.
�11�, and determine their derivatives with respect to source
range and depth. We employ the formulation developed in
Refs. 5 and 41, where it is assumed that the internal wave
inhomogeneities follow a stationary random process in
space. Referring to Fig. 1, for a source at r0= �−�0 ,0 ,z0�, the
mean forward field received by the qth hydrophone array

element at rq= �0,0 ,zq� is given by Eq. �83� of Ref. 41
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��T�rq	r0�� = �
n

�i
�n��rq	r0�ei�−�0

0 �n��s�d�s, �A1�

where �s is the horizontal location of the internal wave inho-
mogeneity, and

�i
�n��rq	r0� = 4�

i

d�z0��8�
e−i�/4un�zq�un�z0�

ei	n�0

�	n�0

�A2�

is the incident field contribution from mode n given no in-
homogeneities in the medium, d�z0� is the density at the
source depth z0, un�z� is the modal amplitude at depth z, 	n is
the horizontal wave number, and �n is the change in the
horizontal wave number due to multiple scattering from the
inhomogeneities. As detailed in Ref. 41, the modal horizontal
wave number change is complex, and it leads to both disper-
sion and attenuation in the mean forward field. Analytic ex-
pressions for �n are provided in Eqs. �56� and �60� of Ref. 41
for compact inhomogeneities that obey a stationary random
process in depth and for general inhomogeneities with arbi-
trary depth dependence, respectively.

The variance of the forward field at the receiver is given
by Eq. �84� of Ref. 41

Var��T�rq	r0�� = �
n

2�

d2�z0�
1

		n	�0
	un�z0�	2	un�zq�	2

� e−2I
	n�0+�−�0

0 �n��s�d�s�

��e�−�0

0 �n��a�d�a − 1� , �A3�

where �n is defined in Ref. 41 as the exponential coefficient
of modal field variance, and I
 . . . �, R
 . . . � correspond to the
imaginary and real part, respectively. The variance of the
forward field depends on the first- and second-order mo-
ments of the scatter function density of the random medium.
Analytic expressions for �n for general surface and volume
inhomogeneities are provided in Eqs. �74� and �77� of Ref.
41 for fully correlated and uncorrelated scatterers, respec-
tively.

The covariance of the forward fields received at rq and
rp is given by Eq. �104� of Ref. 41

Cov��T�rq	r0�,�T�rp	r0��

= �
n

2�

d2�z0�
1

		n	�0
	un�z0�	2un�zq�u��zp�e−2I
	n��0

� exp��
−�0

0

�iR
�n,q��s� − �n,p��s�� − I
�n,q��s�

+ �n,p��s���d�s� � �e�−�0

0 �n,q,p��s�d�s − 1� . �A4�

The mean forward field of Eq. �A1� is also called the
coherent field, the magnitude square of which is proportional
to coherent intensity. The variance of the forward field in Eq.
�A3� provides a measure of the incoherent intensity. The total
intensity of the forward field is the sum of the coherent and
incoherent intensities. As shown in Ref. 5, the coherent field
tends to dominate at short ranges from the source and in

slightly random media, while the incoherent field tends to
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dominate in highly random media. It should be noted that in
a nonrandom waveguide �n=0 so that the variance of the
forward field is zero, from Eq. �A3�. This is expected since
the field is fully coherent in this case.

1. Derivatives of the mean field with respect to
source range and depth

Going back to Eq. �A1�, the modal amplitude un�z� is
defined as

un�z� = �N�1�eiR
�n�z − N�2�e−iR
�n�z�e−I
�n�z. �A5�

We will assume that

�
−�0

0

�n��s�d�s = �n�0 �A6a�

and

�d�z0�
�z0

= 0, �A6b�

so that

��T�r	r0�� = �
n=1

�

Cn�z�fn�z0�gn��0� , �A7�

where the following quantities have been defined

Cn�z� = 4�
i

d�z0��8�	n

e−i�/4un�z� , �A8a�

fn�z0� = un�z0� , �A8b�

gn��0� =
1

��0

ei�	n+�n��0. �A8c�

The derivatives of the mean field with respect to source
depth and range can then be simply expressed in terms of
derivatives of fn�z0�, gn��0� and their products, respectively.

a. Depth derivatives

The first three derivatives of the mean with respect to
source depth z0 are given by

fn
1�z0� = iR
�n��N�1�eiR
�n�z0 + N�2�e−iR
�n�z0�e−I
�n�z0

− I
�n�fn�z0� , �A9a�

fn
2�z0� = − ��R
�n��2 + �I
�n��2�fn�z0� − 2I
�n�fn

1�z0� ,

�A9b�

fn
3�z0� = − ��R
�n��2 + �I
�n��2�fn

1�z0� − 2I
�n�fn
2�z0� .

�A9c�

b. Range derivatives

The first three derivatives of the mean with respect to
source range �0 are given by

gn
1��0� =

ei�	n+�n��0�i�	n + �n� −
1 � , �A10a�
��0 2�0
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gn
2��0� =

ei�	n+�n��0

��0
�− �	n + �n�2 − i

�	n + �n�
�0

+
3

4�0
2� ,

�A10b�

gn
3��0� =

ei�	n+�n��0

��0
�− �	n + �n�3 +

3

2�0
�	n + �n�2

+ i
9

4�0
2 �	n + �n� −

15

8�0
3� . �A10c�

2. Derivatives of the covariance of the field with
respect to source range and depth

We can express the covariance of the forward propa-
gated field in Eq. �A4� as

Cov��T�rm	r0�,�T�rp	r0�� � �
n=1

�

Dn�zm,zp�hn�z0�ln��0� ,

�A11�

where

Dn�zm,zp� =
2�

d2�z0�		n	
un�zm�un

��zp� , �A12a�

hn�z0� = 	un�z0�	2, �A12b�

ln��0� =
1

�0
e−2I
	n+�n��0�e�−�0

0 �n��s�d�s − 1� . �A12c�

We can simplify the above expressions for hn�z0� and ln��0�
by writing

hn�z0� = �e−2I
�n�z0��cos2�R
�n�z0�M1

+ sin2�R
�n�z0�M2

+ 2 cos�R
�n�z0�sin�R
�n�z0�M3� , �A13�

and,

ln��0� =
1

�0
e−2I
	n+�n��0�e�−�0

0 �n��s�d�s − 1�

�
1

�0
e−�n�0��n − 1� , �A14�

where

M1 = �R
N�1� − N�2���2 + �I
N�1� − N�2���2, �A15a�

M2 = �R
N�1� + N�2���2 + �I
N�1� + N�2���2, �A15b�

M3 = 2�R
N�2��I
N�1�� − R
N�1��I
N�2��� , �A15c�

�n = 2I
	n + �n� , �A15d�

�n = e�−�0

0 �n��s�d�s. �A15e�

The derivatives of the covariance of the field with respect to
source depth and range can then be simply expressed in
terms of derivatives of hn�z0�, ln��0� and their products, re-

spectively.
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a. Depth derivatives

The first three derivatives of the variance with respect to
source depth z0 are given by

hn
1�z0� = − 2I
�n�hn�z0� + 2R
�n�e−2I
�n�z0�

− cos�R
�n�z0�sin�R
�n�z0��M1 − M2�

+ �cos2�R
�n�z0� − sin2�R
�n�z0��M3� , �A16a�

hn
2�z0� = − 2I
�n��2hn

1�z0� + 2I
�n�hn�z0��

+ 2�R
�n��2e−2I
�n�z0��sin2�R
�n�z0�

− cos2�R
�n�z0���M1 − M2�

− 4 cos�R
�n�z0�sin�R
�n�z0�M3� , �A16b�

hn
3�z0� = − 2I
�n��3hn

2�z0� + 6I
�n�hn
1�z0�

+ 4�I
�n��2hn�z0�� − 4�R
�n��2�hn
1�z0�

+ 2I
�n�hn�z0�� . �A16c�

b. Range derivatives

The first three derivatives of the variance with respect to
source range �0 are given by

ln
1��0� =

1

�0
e−�n�0��n +

1

�0
+ �n�− �n −

1

�0
+ �n�� ,

�A17a�

ln
2��0� =

1

�0
e−�n�0�− ��n +

1

�0
�2

−
1

�0
2 + �n���n +

1

�0
�2

− 2�n��n +
1

�0
� +

1

�0
2 + �n

2 + �n��� , �A17b�

ln
3��0� =

1

�0
e−�n�0���n +

1

�0
�3

+
3

�0
2��n +

1

�0
�

+
2

�0
3 + �n�− ��n +

1

�0
�3

+ 3�n��n +
1

�0
�2

− 3�n
2��n +

1

�0
� −

3

�0
2��n +

1

�0
� + 3

�n

�0
2 + �n

3

−
2

�0
3 − 3�n���n +

1

�0
� + 3�n�n� + �n��� . �A17c�

APPENDIX B: JOINT MOMENTS FOR ASYMPTOTIC
GAUSSIAN INFERENCE: GENERAL MULTIVARIATE
GAUSSIAN DATA

Before giving the explicit expressions for the first order
bias and the second order co-variance, we define the auxil-
iary quantities

Nab =
1

2
C−1�ab + �C−1�b�a

=
1

C−1 �2�
a b +

�C−1

b

��
a , �B1a�
2 �� � � �� ��
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Mabc =
1

3
C−1�abc + �C−1�c�ab + �C−1�bc�a

=
1

3
C−1 �3�

��a � �b � �c +
�C−1

��c

�2�

��a � �b

+
�2C−1

��b � �c

��

��a , �B1b�

Ča1..ap
= C−1Ca1..ap

= C−1 �pC

��a1 . . ��ap
, �B1c�

C̃a1..ap
= C�C−1�a1..ap

= C
�pC−1

��a1 . . ��ap
, �B1d�


abc = tr� �2

��b � �c�C−1 �C

��a�� + tr�C
�3C−1

��a � �b � �c� ,

�B1e�

and specify that we will write the tensors as a principal group
of terms plus the terms obtained by a rearrangement of the
indexes using the notation described in Table I. If more than
one of the symmetry prescriptions appear in the same tensor,
it means that the total number of terms contained is the prod-
uct of the number of terms generated by each symmetry. As
a reminder, for the terms where the sample size n is not
explicitly shown, we write a square bracket beside it contain-
ing the corresponding power. For example, vabvcd�2� is pro-
portional to n2 since it is the product of two terms propor-
tional to n.

The tensors are then given by

va,b = − vab = iab = n��a
TC−1�b + 1

2 tr�ČaČb�� , �B2a�

vabc = n�− �ab
T C−1�c − �a

T�C−1�b�c + 2
3 tr�ČaČbČc�

− 1
2 tr�ČabČc��, rot�a,b,c� , �B2b�

vab,c = n�Nab
T�c + 1

4 tr�C̃abC̃c��, �a ↔ b� , �B2c�

va,b,c = n�− 1
2�a

T�C−1�b�c + 1
6 tr�ČaČbČc��, perm�a,b,c� ,

TABLE I. Definitions of the shorthand notations used in Equations B2b-s.
perm�a,b,c� is a shorthand for sum of terms obtained by all permutations of
the indices a,b, and c. rot�a,b,c� is a shorthand for the sum of terms obtained
by rotating the indices a,b, and c. �a↔b� is a shorthand for the sum of terms
with indices a and b interchanged. These shorthand notations are used to
write Equations B2b-s in a compact manner.

Aa1,a2,. . .,am
, perm�a1 ,a2 , . . . ,am� Add the terms with permutated indexes

Aa1,a2,. . .,am
, rot�a1 ,a2 , . . . ,am� Add the terms with rotated indexes

Aa1,a2,. . .,am
, �ai↔aj�

Add the terms with indexes ai and
aj inverted
�B2d�

2648 J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license 
vabcd = n�− 1
8�ab

T C−1�cd − 1
6�abc

T C−1�d

− 3
8 tr�ČaČbČcČd� + 1

2 tr�ČabČcČd�

− 1
16 tr�ČabČcd� − 1

12 tr�ČabcČd� − 1
2�ab

T �C−1�c�d

− 1
4�a

T�C−1�bc�d�, perm�a,b,c,d� , �B2e�

va,b,c,d = 1
8va,bvc,d�2� + n� 1

2�a
TC−1C̃bC̃c�d

+ 1
8 tr�ČaČbČcČd��, perm�a,b,c,d� , �B2f�

vab,c,d = 1
4vabvc,d�2� − n� 1

8 tr�C̃cC̃dC̃ab� + 1
8 tr�C̃cC̃abC̃d�

+ Nab
TC̃d�c + 1

4�c
TC−1C̃ab�d�,

�a ↔ b��c ↔ d� , �B2g�

vab,cd = 1
4vabvcd�2� + n� 1

8 tr�C̃abC̃cd� + Nab
TCNcd�,

�a ↔ b��c ↔ d� , �B2h�

vabc,d = n� 1
6 tr�C̃abcC̃d� + Mabc

T �d�, rot�a,b,c� , �B2i�

vabcde = n�− 1
24�abcd

T C−1�e − 1
12�abc

T C−1�de

− 1
48 tr�ČabcdČe� − 1

24 tr�ČabcČde�

+ 1
6 tr�ČabcČdČe� + 1

4 tr�ČabČcdČe�

− 3
4 tr�ČaeČbČcČd� + 2

5 tr�ČaČbČcČdČe�

− 1
12�a

T�C−1�bcd�e − 1
8�ab

T C−1C̃c�de

− 1
6�abc

T C−1C̃d�e − 1
4�ab

T C−1C̃cd�e�,

perm�a,b,c,d,e� , �B2j�

vabc,d,e = 1
6vd,evabc�2� − n� 1

6 tr�C̃abcC̃dC̃e�

+ 1
6�d

TC−1C̃abc�e + Mabc
T C̃e�d�,

rot�a,b,c��d ↔ e� , �B2k�

vabc,de = 1
6vdevabc�2� + n� 1

12 tr�C̃abcC̃de� + Mabc
T CNde�,

rot�a,b,c��d ↔ e� , �B2l�

vab,cd,e = 1
4vabvcd,e�2� −

n

2
� 1

4 tr�C̃abC̃eC̃cd� + Nab
TC̃cd�e

+ Nab
TC̃eCNcd�, �a ↔ b��c ↔ d��ab ↔ cd� ,
�B2m�
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vab,c,d,e = � 1

12
vabvc,d,e +

1

4
vd,evab,c��2�

+
n

2
�1

2
tr�C̃abC̃cC̃dC̃e� + 2Nab

TC̃eC̃c�d

+ �d
TC−1C̃cC̃ab�e�, �a ↔ b�perm�c,d,e� ,

�B2n�

vabc,d,e,f = � 1

18
vabcvd,e,f +

1

6
vabc,dve,f��2�

+
n

6
�tr�C̃abcC̃dC̃eC̃ f� + 6Mabc

T C̃eC̃ f�d

+ �d
TC−1C̃ fC̃abc�e + �d

TC−1C̃abcC̃ f�e�,

rot�a,b,c�perm�d,e, f� , �B2o�

vab,cd,e,f =
1

16
vabvcdve,f�3� + �vab

8
�vcd,e,f − vcdve,f�

+
ve,f

16
�vcd,ab − vcdvab� +

1

8
vab,evcd,f��2�

+ n� 3

16
tr�C̃abC̃cdC̃eC̃ f� +

1

2
Ncd

T C̃eC̃ fCNab

+
1

8
�d

TC−1C̃abC̃cd� f + �e
TC−1C̃ fC̃cdCNab�,

�a ↔ b��c ↔ b��e ↔ f��ab ↔ cd� , �B2p�

vab,cd,ef ,g =
vabvcdvef ,g

16
�3�

+
vabvcd,ef ,g + vab,gvef ,cd − 3vab,gvcdvef

16
�2�

+
n

4
�1

4
tr�C̃abC̃cdC̃efC̃g� + Nab

T C̃cdC̃ef�g

+ Nab
T C̃cdC̃gCNef + Nab

T C̃gC̃cdCNef�,

�a ↔ b��c ↔ d��e ↔ f�perm�ab,cd,ef� ,

�B2q�

vabcd,e,f ,g = �vabcdve,f ,g

144
+

vabcd,gve,f

48
��2�

+ n� 1

48
tr�C̃eC̃ fC̃gC̃abcd� + �1

6
�a

TC−1C̃bcd

+
1

6
�abc

T C−1C̃d +
1

4
�ab

T C−1C̃cd

+
1

24
�abcd

T C−1�C̃eC̃ f�g

+
1

�e
TC−1C̃abcdC̃ f�g�,
24

J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010 Be

Downloaded 21 Dec 2011 to 18.38.0.166. Redistribution subject to ASA license 
perm�a,b,c,d�perm�g,e, f� , �B2r�

vabc,de,f ,g

=
vabcvdev f ,g

12
�3�

+
vdevabc,f ,g + vabcvde,f ,g + v f ,gvabc,de + 2vabc,fvde,g

12
�2�

−
vdevabcv f ,g

4
�2�

+ n�Mabc
T C̃ fC̃gCNde +

1

3
Nde

TC̃ fC̃abc�g

+
1

3
Nde

TC̃abcC̃ f�g +
1

6
� f

TC−1C̃abcC̃de�g

+
1

6
� f

TC−1C̃deC̃abc�g +
1

2
Mabc

T C̃deC̃ f�g

+
1

2
Mabc

T C̃ fC̃de�g +
1

4
tr�C̃abcC̃deC̃ fC̃g��,

rot�a,b,c��f ↔ g��d ↔ e� . �B2s�

The expressions given above are in a form suitable for
analyzing situations where the parametric dependence is on
both the mean vector � and the covariance matrix C. The
formalism can also be readily adapted to the case where only
the mean vector or the covariance depends on the parameters
by setting the derivatives of the covariance matrix or the
mean vector to zero, respectively.

The explicit expressions of the tensors evaluated for
general Gaussian random variables can also be used for ran-
dom data that are not distributed in a Gaussian form pro-
vided that they can be expressed as functions of Gaussian
random variables with a Jacobian of the transformation that
is independent of the parameters to be estimated.30 Consider
for example a single vector sample composed of R1 , . . . ,Rb

arbitrary random variables which can be expressed in terms
of y1 , . . . ,yq Gaussian random variables �q�b�. Assume the
Jacobian of the transformation is independent of the
m-dimensional parameter vector �. The mapping is assumed
to be one-to-one between y= �y1 , . . . ,yq�T and R
= �R1 , . . . ,Rb�T �for q=b�, or between y and R���R ,��T

��R1 , . . . ,Rb ,�1 , . . . ,�q−b�T �for q�b�, with �1 , . . . ,�q−b

some arbitrary random variables that are not dependent on
the parameter vector �. For the general case of q�b, the
parameter independent Jacobian of the transformation is J�
= 	�y /�R�	. Under these assumptions, we have the following
identity which holds for the expectation of any function of
derivatives of the likelihood function with respect to the
parameters,30

�f�R =� f� � ln�p�R	���
��i

, ¯ ,
�d ln�p�R	���

��i
d �p�R	��dR

=� � f� � ln�p�R	��p����
��i

, ¯ ,
�d ln�p�R	��p����

��i
d �
�p�R	��p���dRd� , �B3�
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for all i=1,2 , . . . ,m, where the last equality is introduced so
as to make the transformation between R� and y, since
p�R 	��p���= p�y�R ,� 	���J� and � is parameter indepen-
dent. Equation �B3� can then be written as

�f�R =� � f� � ln�p�y�R,��	��J��
��i

, ¯ ,

�d ln�p�x�R,��	��J��
��i

d �
�p�y�R,��	��J�dRd�

=� f� � ln�p�y	���
��i

, ¯ ,
�d ln�p�y	���

��i
d �p�y	��dy

= �f�y. �B4�

The expected value of any function of derivatives of the
likelihood function for R with respect to the parameters �
can then be written as the same function of derivatives of the
likelihood function for y. Since the asymptotic orders are

function of expectations that have the same structure as Eq.
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�B3�, the asymptotic orders of the MLE of a parameter � can
be computed from measurements of the non-Gaussian quan-
tity R.

For example, the MLE of a scalar parameter � from an
observation R distributed as a Gamma with parameter depen-
dent mean ����,

p�R	�� = � n

����
�n Rn−1

��n�
exp�−

nR

����
� , �B5�

can be computed using the set of Gaussian random variables
y1 , . . . ,y2n

p�y1, . . . ,y2n	�� = �
i=1

2n
1

������
exp�−

yi
2

����
� . �B6�

Substituting for the tensors of Eq. �B2� into Eqs. �8� and
�10�, expressions are obtained for the first-order bias and
second-order covariance of the MLE given general multi-
variate Gaussian data. The former has been stated in Eq. �7�
of Ref. 1, while the latter is now shown here. For the diag-

onal terms of the second order covariance matrix,
var2��̂r, �̂r� = irr + irmirmiab��maC−1�mb − �mmC−1�ab − �mabC−1�m + tr�ČmČmČaČb� + tr�ČmČaČmČb�

+ tr�ČabČmČm� − tr�ČmaČmČb� − tr�ČmaČbČm� + 1
2 tr�ČmaČmb� − 1

2 tr�ČmmČab� − 1
2 tr�ČmabČm�

+ 4�ma�C−1�m�b + 2�ma�C−1�b�m − �ab�C−1�m�m + �a�C−1�mm�b + �m�C−1�a�C−1�b�m

+ 2�m�C−1�a�C−1�m�b + �a�C−1�m�C−1�m�b� + irmirmiabicd
�maC−1�c�− �mdC−1�b − 2�b�C−1�d�m

− 4�b�C−1�m�d − tr�ČmdČb� + tr�ČbdČm� + tr�ČmČbČd� + tr�ČmČdČb�� + �acC
−1�m� 1

2�bdC−1�m

+ 2�mbC−1�d + 1
2 tr�ČbdČm� + tr�ČmbČd� − tr�ČmČbČd�� + tr�ČmČaČc���m�C−1�b�d + �m�C−1�d�b

+ 3�b�C−1�m�d + 1
2 �− tr�ČmČbČd� − tr�ČmČdČb� + tr�ČmdČb� + tr�ČmbČd� − tr�ČbdČm��� + tr�ČmaČc�

��− 1
4 tr�ČmdČb� − �m�C−1�d�b − 2�b�C−1�m�d� − 3

2�a�C−1�m�c�b�C−1�m�d + tr�ČacČm�� 1
2 tr�ČmbČd�

+ 1
8 tr�ČbdČm�� + �m�C−1�a�c�− �m�C−1�d�b − 2�b�C−1�m�d� + ��cdC−1�a − �c�C−1�a�d + 1

2 tr�ČcdČa��
�� 1

2 tr�ČmmČb� + 1
2 tr�ČmbČm� − tr�ČmČmČb� + �mmC−1�b + �mbC−1�m + �m�C−1�m�b�� . �B7�
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